1 | /* TwoPhaseFit.c |
---|
2 | |
---|
3 | */ |
---|
4 | |
---|
5 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
6 | #include "libTwoPhase.h" |
---|
7 | |
---|
8 | // scattering from the Teubner-Strey model for microemulsions - hardly needs to be an XOP... |
---|
9 | double |
---|
10 | TeubnerStreyModel(double dp[], double q) |
---|
11 | { |
---|
12 | double inten,q2,q4; //my local names |
---|
13 | |
---|
14 | q2 = q*q; |
---|
15 | q4 = q2*q2; |
---|
16 | |
---|
17 | inten = 1.0/(dp[0]+dp[1]*q2+dp[2]*q4); |
---|
18 | inten += dp[3]; |
---|
19 | return(inten); |
---|
20 | } |
---|
21 | |
---|
22 | double |
---|
23 | Power_Law_Model(double dp[], double q) |
---|
24 | { |
---|
25 | double qval; |
---|
26 | double inten,A,m,bgd; //my local names |
---|
27 | |
---|
28 | qval= q; |
---|
29 | |
---|
30 | A = dp[0]; |
---|
31 | m = dp[1]; |
---|
32 | bgd = dp[2]; |
---|
33 | inten = A*pow(qval,-m) + bgd; |
---|
34 | return(inten); |
---|
35 | } |
---|
36 | |
---|
37 | |
---|
38 | double |
---|
39 | Peak_Lorentz_Model(double dp[], double q) |
---|
40 | { |
---|
41 | double qval; |
---|
42 | double inten,I0, qpk, dq,bgd; //my local names |
---|
43 | qval= q; |
---|
44 | |
---|
45 | I0 = dp[0]; |
---|
46 | qpk = dp[1]; |
---|
47 | dq = dp[2]; |
---|
48 | bgd = dp[3]; |
---|
49 | inten = I0/(1.0 + pow( (qval-qpk)/dq,2) ) + bgd; |
---|
50 | |
---|
51 | return(inten); |
---|
52 | } |
---|
53 | |
---|
54 | double |
---|
55 | Peak_Gauss_Model(double dp[], double q) |
---|
56 | { |
---|
57 | double qval; |
---|
58 | double inten,I0, qpk, dq,bgd; //my local names |
---|
59 | |
---|
60 | qval= q; |
---|
61 | |
---|
62 | I0 = dp[0]; |
---|
63 | qpk = dp[1]; |
---|
64 | dq = dp[2]; |
---|
65 | bgd = dp[3]; |
---|
66 | inten = I0*exp(-0.5*pow((qval-qpk)/dq,2))+ bgd; |
---|
67 | |
---|
68 | return(inten); |
---|
69 | } |
---|
70 | |
---|
71 | double |
---|
72 | Lorentz_Model(double dp[], double q) |
---|
73 | { |
---|
74 | double qval; |
---|
75 | double inten,I0, L,bgd; //my local names |
---|
76 | |
---|
77 | qval= q; |
---|
78 | |
---|
79 | I0 = dp[0]; |
---|
80 | L = dp[1]; |
---|
81 | bgd = dp[2]; |
---|
82 | inten = I0/(1.0 + (qval*L)*(qval*L)) + bgd; |
---|
83 | |
---|
84 | return(inten); |
---|
85 | } |
---|
86 | |
---|
87 | double |
---|
88 | Fractal(double dp[], double q) |
---|
89 | { |
---|
90 | double x,pi; |
---|
91 | double r0,Df,corr,phi,sldp,sldm,bkg; |
---|
92 | double pq,sq,ans; |
---|
93 | |
---|
94 | pi = 4.0*atan(1.0); |
---|
95 | x=q; |
---|
96 | |
---|
97 | phi = dp[0]; // volume fraction of building block spheres... |
---|
98 | r0 = dp[1]; // radius of building block |
---|
99 | Df = dp[2]; // fractal dimension |
---|
100 | corr = dp[3]; // correlation length of fractal-like aggregates |
---|
101 | sldp = dp[4]; // SLD of building block |
---|
102 | sldm = dp[5]; // SLD of matrix or solution |
---|
103 | bkg = dp[6]; // flat background |
---|
104 | |
---|
105 | //calculate P(q) for the spherical subunits, units cm-1 sr-1 |
---|
106 | pq = 1.0e8*phi*4.0/3.0*pi*r0*r0*r0*(sldp-sldm)*(sldp-sldm)*pow((3*(sin(x*r0) - x*r0*cos(x*r0))/pow((x*r0),3)),2); |
---|
107 | |
---|
108 | //calculate S(q) |
---|
109 | sq = Df*exp(gammln(Df-1.0))*sin((Df-1.0)*atan(x*corr)); |
---|
110 | sq /= pow((x*r0),Df) * pow((1.0 + 1.0/(x*corr)/(x*corr)),((Df-1.0)/2.0)); |
---|
111 | sq += 1.0; |
---|
112 | //combine and return |
---|
113 | ans = pq*sq + bkg; |
---|
114 | |
---|
115 | return(ans); |
---|
116 | } |
---|
117 | |
---|
118 | double |
---|
119 | DAB_Model(double dp[], double q) |
---|
120 | { |
---|
121 | double qval,inten; |
---|
122 | double Izero, range, incoh; |
---|
123 | |
---|
124 | qval= q; |
---|
125 | Izero = dp[0]; |
---|
126 | range = dp[1]; |
---|
127 | incoh = dp[2]; |
---|
128 | |
---|
129 | inten = Izero/pow((1.0 + (qval*range)*(qval*range)),2) + incoh; |
---|
130 | |
---|
131 | return(inten); |
---|
132 | } |
---|
133 | |
---|
134 | // G. Beaucage's Unified Model (1-4 levels) |
---|
135 | // |
---|
136 | double |
---|
137 | OneLevel(double dp[], double q) |
---|
138 | { |
---|
139 | double x,ans,erf1; |
---|
140 | double G1,Rg1,B1,Pow1,bkg,scale; |
---|
141 | |
---|
142 | x=q; |
---|
143 | scale = dp[0]; |
---|
144 | G1 = dp[1]; |
---|
145 | Rg1 = dp[2]; |
---|
146 | B1 = dp[3]; |
---|
147 | Pow1 = dp[4]; |
---|
148 | bkg = dp[5]; |
---|
149 | |
---|
150 | erf1 = erf( (x*Rg1/sqrt(6.0))); |
---|
151 | |
---|
152 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
153 | ans += B1*pow((erf1*erf1*erf1/x),Pow1); |
---|
154 | |
---|
155 | ans *= scale; |
---|
156 | ans += bkg; |
---|
157 | return(ans); |
---|
158 | } |
---|
159 | |
---|
160 | // G. Beaucage's Unified Model (1-4 levels) |
---|
161 | // |
---|
162 | double |
---|
163 | TwoLevel(double dp[], double q) |
---|
164 | { |
---|
165 | double x; |
---|
166 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
167 | double erf1,erf2,scale; |
---|
168 | |
---|
169 | x=q; |
---|
170 | |
---|
171 | scale = dp[0]; |
---|
172 | G1 = dp[1]; //equivalent to I(0) |
---|
173 | Rg1 = dp[2]; |
---|
174 | B1 = dp[3]; |
---|
175 | Pow1 = dp[4]; |
---|
176 | G2 = dp[5]; |
---|
177 | Rg2 = dp[6]; |
---|
178 | B2 = dp[7]; |
---|
179 | Pow2 = dp[8]; |
---|
180 | bkg = dp[9]; |
---|
181 | |
---|
182 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
183 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
184 | //Print erf1 |
---|
185 | |
---|
186 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
187 | ans += B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
188 | ans += G2*exp(-x*x*Rg2*Rg2/3.0); |
---|
189 | ans += B2*pow((erf2*erf2*erf2/x),Pow2); |
---|
190 | |
---|
191 | ans *= scale; |
---|
192 | ans += bkg; |
---|
193 | |
---|
194 | return(ans); |
---|
195 | } |
---|
196 | |
---|
197 | // G. Beaucage's Unified Model (1-4 levels) |
---|
198 | // |
---|
199 | double |
---|
200 | ThreeLevel(double dp[], double q) |
---|
201 | { |
---|
202 | double x; |
---|
203 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
204 | double G3,Rg3,B3,Pow3,erf3; |
---|
205 | double erf1,erf2,scale; |
---|
206 | |
---|
207 | x=q; |
---|
208 | |
---|
209 | scale = dp[0]; |
---|
210 | G1 = dp[1]; //equivalent to I(0) |
---|
211 | Rg1 = dp[2]; |
---|
212 | B1 = dp[3]; |
---|
213 | Pow1 = dp[4]; |
---|
214 | G2 = dp[5]; |
---|
215 | Rg2 = dp[6]; |
---|
216 | B2 = dp[7]; |
---|
217 | Pow2 = dp[8]; |
---|
218 | G3 = dp[9]; |
---|
219 | Rg3 = dp[10]; |
---|
220 | B3 = dp[11]; |
---|
221 | Pow3 = dp[12]; |
---|
222 | bkg = dp[13]; |
---|
223 | |
---|
224 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
225 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
226 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
227 | //Print erf1 |
---|
228 | |
---|
229 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
230 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
231 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*pow((erf3*erf3*erf3/x),Pow3); |
---|
232 | |
---|
233 | ans *= scale; |
---|
234 | ans += bkg; |
---|
235 | |
---|
236 | return(ans); |
---|
237 | } |
---|
238 | |
---|
239 | // G. Beaucage's Unified Model (1-4 levels) |
---|
240 | // |
---|
241 | double |
---|
242 | FourLevel(double dp[], double q) |
---|
243 | { |
---|
244 | double x; |
---|
245 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
246 | double G3,Rg3,B3,Pow3,erf3; |
---|
247 | double G4,Rg4,B4,Pow4,erf4; |
---|
248 | double erf1,erf2,scale; |
---|
249 | |
---|
250 | x=q; |
---|
251 | |
---|
252 | scale = dp[0]; |
---|
253 | G1 = dp[1]; //equivalent to I(0) |
---|
254 | Rg1 = dp[2]; |
---|
255 | B1 = dp[3]; |
---|
256 | Pow1 = dp[4]; |
---|
257 | G2 = dp[5]; |
---|
258 | Rg2 = dp[6]; |
---|
259 | B2 = dp[7]; |
---|
260 | Pow2 = dp[8]; |
---|
261 | G3 = dp[9]; |
---|
262 | Rg3 = dp[10]; |
---|
263 | B3 = dp[11]; |
---|
264 | Pow3 = dp[12]; |
---|
265 | G4 = dp[13]; |
---|
266 | Rg4 = dp[14]; |
---|
267 | B4 = dp[15]; |
---|
268 | Pow4 = dp[16]; |
---|
269 | bkg = dp[17]; |
---|
270 | |
---|
271 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
272 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
273 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
274 | erf4 = erf( (x*Rg4/sqrt(6.0)) ); |
---|
275 | |
---|
276 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
277 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
278 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*exp(-x*x*Rg4*Rg4/3.0)*pow((erf3*erf3*erf3/x),Pow3); |
---|
279 | ans += G4*exp(-x*x*Rg4*Rg4/3.0) + B4*pow((erf4*erf4*erf4/x),Pow4); |
---|
280 | |
---|
281 | ans *= scale; |
---|
282 | ans += bkg; |
---|
283 | |
---|
284 | return(ans); |
---|
285 | } |
---|
286 | |
---|
287 | |
---|
288 | static double |
---|
289 | gammln(double xx) { |
---|
290 | |
---|
291 | double x,y,tmp,ser; |
---|
292 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
293 | 24.01409824083091,-1.231739572450155, |
---|
294 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
295 | int j; |
---|
296 | |
---|
297 | y=x=xx; |
---|
298 | tmp=x+5.5; |
---|
299 | tmp -= (x+0.5)*log(tmp); |
---|
300 | ser=1.000000000190015; |
---|
301 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
302 | return -tmp+log(2.5066282746310005*ser/x); |
---|
303 | } |
---|
304 | |
---|
305 | |
---|