[6e93a02] | 1 | /* SimpleFit.c |
---|
| 2 | |
---|
| 3 | A simplified project designed to act as a template for your curve fitting function. |
---|
| 4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers, IgorXOP.h, XOP.h and XOPSupport.h |
---|
| 8 | #include "libStructureFactor.h" |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | //Hard Sphere Structure Factor |
---|
| 12 | // |
---|
| 13 | double |
---|
| 14 | HardSphereStruct(double dp[], double q) |
---|
| 15 | { |
---|
| 16 | double denom,dnum,alpha,beta,gamm,a,asq,ath,afor,rca,rsa; |
---|
| 17 | double calp,cbeta,cgam,prefac,c,vstruc; |
---|
| 18 | double r,phi,struc; |
---|
| 19 | |
---|
| 20 | r = dp[0]; |
---|
| 21 | phi = dp[1]; |
---|
| 22 | // compute constants |
---|
| 23 | denom = pow((1.0-phi),4); |
---|
| 24 | dnum = pow((1.0 + 2.0*phi),2); |
---|
| 25 | alpha = dnum/denom; |
---|
| 26 | beta = -6.0*phi*pow((1.0 + phi/2.0),2)/denom; |
---|
| 27 | gamm = 0.50*phi*dnum/denom; |
---|
| 28 | // |
---|
| 29 | // calculate the structure factor |
---|
| 30 | // |
---|
| 31 | a = 2.0*q*r; |
---|
| 32 | asq = a*a; |
---|
| 33 | ath = asq*a; |
---|
| 34 | afor = ath*a; |
---|
| 35 | rca = cos(a); |
---|
| 36 | rsa = sin(a); |
---|
| 37 | calp = alpha*(rsa/asq - rca/a); |
---|
| 38 | cbeta = beta*(2.0*rsa/asq - (asq - 2.0)*rca/ath - 2.0/ath); |
---|
| 39 | cgam = gamm*(-rca/a + (4.0/a)*((3.0*asq - 6.0)*rca/afor + (asq - 6.0)*rsa/ath + 6.0/afor)); |
---|
| 40 | prefac = -24.0*phi/a; |
---|
| 41 | c = prefac*(calp + cbeta + cgam); |
---|
| 42 | vstruc = 1.0/(1.0-c); |
---|
| 43 | struc = vstruc; |
---|
| 44 | |
---|
| 45 | return(struc); |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | //Sticky Hard Sphere Structure Factor |
---|
| 49 | // |
---|
| 50 | double |
---|
| 51 | StickyHS_Struct(double dp[], double q) |
---|
| 52 | { |
---|
| 53 | double qv; |
---|
| 54 | double rad,phi,eps,tau,eta; |
---|
| 55 | double sig,aa,etam1,qa,qb,qc,radic; |
---|
| 56 | double lam,lam2,test,mu,alpha,beta; |
---|
| 57 | double kk,k2,k3,ds,dc,aq1,aq2,aq3,aq,bq1,bq2,bq3,bq,sq; |
---|
| 58 | |
---|
| 59 | qv= q; |
---|
| 60 | rad = dp[0]; |
---|
| 61 | phi = dp[1]; |
---|
| 62 | eps = dp[2]; |
---|
| 63 | tau = dp[3]; |
---|
| 64 | |
---|
| 65 | eta = phi/(1.0-eps)/(1.0-eps)/(1.0-eps); |
---|
| 66 | |
---|
| 67 | sig = 2.0 * rad; |
---|
| 68 | aa = sig/(1.0 - eps); |
---|
| 69 | etam1 = 1.0 - eta; |
---|
| 70 | //C |
---|
| 71 | //C SOLVE QUADRATIC FOR LAMBDA |
---|
| 72 | //C |
---|
| 73 | qa = eta/12.0; |
---|
| 74 | qb = -1.0*(tau + eta/(etam1)); |
---|
| 75 | qc = (1.0 + eta/2.0)/(etam1*etam1); |
---|
| 76 | radic = qb*qb - 4.0*qa*qc; |
---|
| 77 | if(radic<0) { |
---|
| 78 | //if(x>0.01 && x<0.015) |
---|
| 79 | // Print "Lambda unphysical - both roots imaginary" |
---|
| 80 | //endif |
---|
| 81 | return(-1.0); |
---|
| 82 | } |
---|
| 83 | //C KEEP THE SMALLER ROOT, THE LARGER ONE IS UNPHYSICAL |
---|
| 84 | lam = (-1.0*qb-sqrt(radic))/(2.0*qa); |
---|
| 85 | lam2 = (-1.0*qb+sqrt(radic))/(2.0*qa); |
---|
| 86 | if(lam2<lam) { |
---|
| 87 | lam = lam2; |
---|
| 88 | } |
---|
| 89 | test = 1.0 + 2.0*eta; |
---|
| 90 | mu = lam*eta*etam1; |
---|
| 91 | if(mu>test) { |
---|
| 92 | //if(x>0.01 && x<0.015) |
---|
| 93 | // Print "Lambda unphysical mu>test" |
---|
| 94 | //endif |
---|
| 95 | return(-1.0); |
---|
| 96 | } |
---|
| 97 | alpha = (1.0 + 2.0*eta - mu)/(etam1*etam1); |
---|
| 98 | beta = (mu - 3.0*eta)/(2.0*etam1*etam1); |
---|
| 99 | //C |
---|
| 100 | //C CALCULATE THE STRUCTURE FACTOR |
---|
| 101 | //C |
---|
| 102 | kk = qv*aa; |
---|
| 103 | k2 = kk*kk; |
---|
| 104 | k3 = kk*k2; |
---|
| 105 | ds = sin(kk); |
---|
| 106 | dc = cos(kk); |
---|
| 107 | aq1 = ((ds - kk*dc)*alpha)/k3; |
---|
| 108 | aq2 = (beta*(1.0-dc))/k2; |
---|
| 109 | aq3 = (lam*ds)/(12.0*kk); |
---|
| 110 | aq = 1.0 + 12.0*eta*(aq1+aq2-aq3); |
---|
| 111 | // |
---|
| 112 | bq1 = alpha*(0.5/kk - ds/k2 + (1.0 - dc)/k3); |
---|
| 113 | bq2 = beta*(1.0/kk - ds/k2); |
---|
| 114 | bq3 = (lam/12.0)*((1.0 - dc)/kk); |
---|
| 115 | bq = 12.0*eta*(bq1+bq2-bq3); |
---|
| 116 | // |
---|
| 117 | sq = 1.0/(aq*aq +bq*bq); |
---|
| 118 | |
---|
| 119 | return(sq); |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | // SUBROUTINE SQWELL: CALCULATES THE STRUCTURE FACTOR FOR A |
---|
| 125 | // DISPERSION OF MONODISPERSE HARD SPHERES |
---|
| 126 | // IN THE Mean Spherical APPROXIMATION ASSUMING THE SPHERES |
---|
| 127 | // INTERACT THROUGH A SQUARE WELL POTENTIAL. |
---|
| 128 | //** not the best choice of closure ** see note below |
---|
| 129 | // REFS: SHARMA,SHARMA, PHYSICA 89A,(1977),212 |
---|
| 130 | double |
---|
| 131 | SquareWellStruct(double dp[], double q) |
---|
| 132 | { |
---|
| 133 | double req,phis,edibkb,lambda,struc; |
---|
| 134 | double sigma,eta,eta2,eta3,eta4,etam1,etam14,alpha,beta,gamm; |
---|
| 135 | double x,sk,sk2,sk3,sk4,t1,t2,t3,t4,ck; |
---|
| 136 | |
---|
| 137 | x= q; |
---|
| 138 | |
---|
| 139 | req = dp[0]; |
---|
| 140 | phis = dp[1]; |
---|
| 141 | edibkb = dp[2]; |
---|
| 142 | lambda = dp[3]; |
---|
| 143 | |
---|
| 144 | sigma = req*2.; |
---|
| 145 | eta = phis; |
---|
| 146 | eta2 = eta*eta; |
---|
| 147 | eta3 = eta*eta2; |
---|
| 148 | eta4 = eta*eta3; |
---|
| 149 | etam1 = 1. - eta; |
---|
| 150 | etam14 = etam1*etam1*etam1*etam1; |
---|
| 151 | alpha = ( pow((1. + 2.*eta),2) + eta3*( eta-4.0 ) )/etam14; |
---|
| 152 | beta = -(eta/3.0) * ( 18. + 20.*eta - 12.*eta2 + eta4 )/etam14; |
---|
| 153 | gamm = 0.5*eta*( pow((1. + 2.*eta),2) + eta3*(eta-4.) )/etam14; |
---|
| 154 | // |
---|
| 155 | // calculate the structure factor |
---|
| 156 | |
---|
| 157 | sk = x*sigma; |
---|
| 158 | sk2 = sk*sk; |
---|
| 159 | sk3 = sk*sk2; |
---|
| 160 | sk4 = sk3*sk; |
---|
| 161 | t1 = alpha * sk3 * ( sin(sk) - sk * cos(sk) ); |
---|
| 162 | t2 = beta * sk2 * ( 2.*sk*sin(sk) - (sk2-2.)*cos(sk) - 2.0 ); |
---|
| 163 | t3 = ( 4.0*sk3 - 24.*sk ) * sin(sk); |
---|
| 164 | t3 = t3 - ( sk4 - 12.0*sk2 + 24.0 )*cos(sk) + 24.0; |
---|
| 165 | t3 = gamm*t3; |
---|
| 166 | t4 = -edibkb*sk3*(sin(lambda*sk) - lambda*sk*cos(lambda*sk)+ sk*cos(sk) - sin(sk) ); |
---|
| 167 | ck = -24.0*eta*( t1 + t2 + t3 + t4 )/sk3/sk3; |
---|
| 168 | struc = 1./(1.-ck); |
---|
| 169 | |
---|
| 170 | return(struc); |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | // Hayter-Penfold (rescaled) MSA structure factor for screened Coulomb interactions |
---|
| 174 | // |
---|
| 175 | double |
---|
| 176 | HayterPenfoldMSA(double dp[], double q) |
---|
| 177 | { |
---|
| 178 | double Elcharge=1.602189e-19; // electron charge in Coulombs (C) |
---|
| 179 | double kB=1.380662e-23; // Boltzman constant in J/K |
---|
| 180 | double FrSpPerm=8.85418782E-12; //Permittivity of free space in C^2/(N m^2) |
---|
| 181 | double SofQ, QQ, Qdiam, Vp, csalt, ss; |
---|
| 182 | double VolFrac, SIdiam, diam, Kappa, cs, IonSt; |
---|
| 183 | double dialec, Perm, Beta, Temp, zz, charge; |
---|
| 184 | double pi; |
---|
| 185 | int ierr; |
---|
| 186 | |
---|
| 187 | pi = 4.0*atan(1.); |
---|
| 188 | QQ= q; |
---|
| 189 | |
---|
| 190 | diam=dp[0]; //in A |
---|
| 191 | zz = dp[1]; //# of charges |
---|
| 192 | VolFrac=dp[2]; |
---|
| 193 | Temp=dp[3]; //in degrees Kelvin |
---|
| 194 | csalt=dp[4]; //in molarity |
---|
| 195 | dialec=dp[5]; // unitless |
---|
| 196 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 197 | //////////////////////////// convert to USEFUL inputs in SI units // |
---|
| 198 | //////////////////////////// NOTE: easiest to do EVERYTHING in SI units // |
---|
| 199 | //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 200 | Beta=1.0/(kB*Temp); // in Joules^-1 |
---|
| 201 | Perm=dialec*FrSpPerm; //in C^2/(N m^2) |
---|
| 202 | charge=zz*Elcharge; //in Coulomb (C) |
---|
| 203 | SIdiam = diam*1E-10; //in m |
---|
| 204 | Vp=4.0*pi/3.0*(SIdiam/2.0)*(SIdiam/2.0)*(SIdiam/2.0); //in m^3 |
---|
| 205 | cs=csalt*6.022E23*1E3; //# salt molecules/m^3 |
---|
| 206 | |
---|
| 207 | // Compute the derived values of : |
---|
| 208 | // Ionic strength IonSt (in C^2/m^3) |
---|
| 209 | // Kappa (Debye-Huckel screening length in m) |
---|
| 210 | // and gamma Exp(-k) |
---|
| 211 | IonSt=0.5 * Elcharge*Elcharge*(zz*VolFrac/Vp+2.0*cs); |
---|
| 212 | Kappa=sqrt(2*Beta*IonSt/Perm); //Kappa calc from Ionic strength |
---|
| 213 | // Kappa=2/SIdiam // Use to compare with HP paper |
---|
| 214 | gMSAWave[5]=Beta*charge*charge/(pi*Perm*SIdiam*pow((2.0+Kappa*SIdiam),2)); |
---|
| 215 | |
---|
| 216 | // Finally set up dimensionless parameters |
---|
| 217 | Qdiam=QQ*diam; |
---|
| 218 | gMSAWave[6] = Kappa*SIdiam; |
---|
| 219 | gMSAWave[4] = VolFrac; |
---|
| 220 | |
---|
| 221 | //Function sqhpa(qq) {this is where Hayter-Penfold program began} |
---|
| 222 | |
---|
| 223 | // FIRST CALCULATE COUPLING |
---|
| 224 | |
---|
| 225 | ss=pow(gMSAWave[4],(1.0/3.0)); |
---|
| 226 | gMSAWave[9] = 2.0*ss*gMSAWave[5]*exp(gMSAWave[6]-gMSAWave[6]/ss); |
---|
| 227 | |
---|
| 228 | // CALCULATE COEFFICIENTS, CHECK ALL IS WELL |
---|
| 229 | // AND IF SO CALCULATE S(Q*SIG) |
---|
| 230 | |
---|
| 231 | ierr=0; |
---|
| 232 | ierr=sqcoef(ierr); |
---|
| 233 | if (ierr>=0) { |
---|
| 234 | SofQ=sqhcal(Qdiam); |
---|
| 235 | }else{ |
---|
| 236 | //SofQ=NaN; |
---|
| 237 | SofQ=-1.0; |
---|
| 238 | // print "Error Level = ",ierr |
---|
| 239 | // print "Please report HPMSA problem with above error code" |
---|
| 240 | } |
---|
| 241 | |
---|
| 242 | return(SofQ); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | ///////////////////////////////////////////////////////////// |
---|
| 248 | ///////////////////////////////////////////////////////////// |
---|
| 249 | // |
---|
| 250 | // |
---|
| 251 | // CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING |
---|
| 252 | // COEFFICIENTS FOR "SQHPA" |
---|
| 253 | // |
---|
| 254 | // JOHN B. HAYTER (I.L.L.) 14-SEP-81 |
---|
| 255 | // |
---|
| 256 | // ON EXIT: |
---|
| 257 | // |
---|
| 258 | // SETA IS THE RESCALED VOLUME FRACTION |
---|
| 259 | // SGEK IS THE RESCALED CONTACT POTENTIAL |
---|
| 260 | // SAK IS THE RESCALED SCREENING CONSTANT |
---|
| 261 | // A,B,C,F,U,V ARE THE MSA COEFFICIENTS |
---|
| 262 | // G1= G(1+) IS THE CONTACT VALUE OF G(R/SIG): |
---|
| 263 | // FOR THE GILLAN CONDITION, THE DIFFERENCE FROM |
---|
| 264 | // ZERO INDICATES THE COMPUTATIONAL ACCURACY. |
---|
| 265 | // |
---|
| 266 | // IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS. |
---|
| 267 | // < 0: FAILED TO CONVERGE |
---|
| 268 | // |
---|
| 269 | int |
---|
| 270 | sqcoef(int ir) |
---|
| 271 | { |
---|
| 272 | int itm=40,ix,ig,ii; |
---|
| 273 | double acc=5.0E-6,del,e1,e2,f1,f2; |
---|
| 274 | |
---|
| 275 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 276 | f1=0; //these were never properly initialized... |
---|
| 277 | f2=0; |
---|
| 278 | |
---|
| 279 | ig=1; |
---|
| 280 | if (gMSAWave[6]>=(1.0+8.0*gMSAWave[4])) { |
---|
| 281 | ig=0; |
---|
| 282 | gMSAWave[15]=gMSAWave[14]; |
---|
| 283 | gMSAWave[16]=gMSAWave[4]; |
---|
| 284 | ix=1; |
---|
| 285 | ir = sqfun(ix,ir); |
---|
| 286 | gMSAWave[14]=gMSAWave[15]; |
---|
| 287 | gMSAWave[4]=gMSAWave[16]; |
---|
| 288 | if((ir<0.0) || (gMSAWave[14]>=0.0)) { |
---|
| 289 | return ir; |
---|
| 290 | } |
---|
| 291 | } |
---|
| 292 | gMSAWave[10]=fmin(gMSAWave[4],0.20); |
---|
| 293 | if ((ig!=1) || ( gMSAWave[9]>=0.15)) { |
---|
| 294 | ii=0; |
---|
| 295 | do { |
---|
| 296 | ii=ii+1; |
---|
| 297 | if(ii>itm) { |
---|
| 298 | ir=-1; |
---|
| 299 | return ir; |
---|
| 300 | } |
---|
| 301 | if (gMSAWave[10]<=0.0) { |
---|
| 302 | gMSAWave[10]=gMSAWave[4]/ii; |
---|
| 303 | } |
---|
| 304 | if(gMSAWave[10]>0.6) { |
---|
| 305 | gMSAWave[10] = 0.35/ii; |
---|
| 306 | } |
---|
| 307 | e1=gMSAWave[10]; |
---|
| 308 | gMSAWave[15]=f1; |
---|
| 309 | gMSAWave[16]=e1; |
---|
| 310 | ix=2; |
---|
| 311 | ir = sqfun(ix,ir); |
---|
| 312 | f1=gMSAWave[15]; |
---|
| 313 | e1=gMSAWave[16]; |
---|
| 314 | e2=gMSAWave[10]*1.01; |
---|
| 315 | gMSAWave[15]=f2; |
---|
| 316 | gMSAWave[16]=e2; |
---|
| 317 | ix=2; |
---|
| 318 | ir = sqfun(ix,ir); |
---|
| 319 | f2=gMSAWave[15]; |
---|
| 320 | e2=gMSAWave[16]; |
---|
| 321 | e2=e1-(e2-e1)*f1/(f2-f1); |
---|
| 322 | gMSAWave[10] = e2; |
---|
| 323 | del = fabs((e2-e1)/e1); |
---|
| 324 | } while (del>acc); |
---|
| 325 | gMSAWave[15]=gMSAWave[14]; |
---|
| 326 | gMSAWave[16]=e2; |
---|
| 327 | ix=4; |
---|
| 328 | ir = sqfun(ix,ir); |
---|
| 329 | gMSAWave[14]=gMSAWave[15]; |
---|
| 330 | e2=gMSAWave[16]; |
---|
| 331 | ir=ii; |
---|
| 332 | if ((ig!=1) || (gMSAWave[10]>=gMSAWave[4])) { |
---|
| 333 | return ir; |
---|
| 334 | } |
---|
| 335 | } |
---|
| 336 | gMSAWave[15]=gMSAWave[14]; |
---|
| 337 | gMSAWave[16]=gMSAWave[4]; |
---|
| 338 | ix=3; |
---|
| 339 | ir = sqfun(ix,ir); |
---|
| 340 | gMSAWave[14]=gMSAWave[15]; |
---|
| 341 | gMSAWave[4]=gMSAWave[16]; |
---|
| 342 | if ((ir>=0) && (gMSAWave[14]<0.0)) { |
---|
| 343 | ir=-3; |
---|
| 344 | } |
---|
| 345 | return ir; |
---|
| 346 | } |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | int |
---|
| 350 | sqfun(int ix, int ir) |
---|
| 351 | { |
---|
| 352 | double acc=1.0e-6; |
---|
| 353 | double reta,eta2,eta21,eta22,eta3,eta32,eta2d,eta2d2,eta3d,eta6d,e12,e24,rgek; |
---|
| 354 | double rak,ak1,ak2,dak,dak2,dak4,d,d2,dd2,dd4,dd45,ex1,ex2,sk,ck,ckma,skma; |
---|
| 355 | double al1,al2,al3,al4,al5,al6,be1,be2,be3,vu1,vu2,vu3,vu4,vu5,ph1,ph2,ta1,ta2,ta3,ta4,ta5; |
---|
| 356 | double a1,a2,a3,b1,b2,b3,v1,v2,v3,p1,p2,p3,pp,pp1,pp2,p1p2,t1,t2,t3,um1,um2,um3,um4,um5,um6; |
---|
| 357 | double w0,w1,w2,w3,w4,w12,w13,w14,w15,w16,w24,w25,w26,w32,w34,w3425,w35,w3526,w36,w46,w56; |
---|
| 358 | double fa,fap,ca,e24g,pwk,qpw,pg,del,fun,fund,g24; |
---|
| 359 | int ii,ibig,itm=40; |
---|
| 360 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 361 | a2=0; |
---|
| 362 | a3=0; |
---|
| 363 | b2=0; |
---|
| 364 | b3=0; |
---|
| 365 | v2=0; |
---|
| 366 | v3=0; |
---|
| 367 | p2=0; |
---|
| 368 | p3=0; |
---|
| 369 | |
---|
| 370 | // CALCULATE CONSTANTS; NOTATION IS HAYTER PENFOLD (1981) |
---|
| 371 | |
---|
| 372 | reta = gMSAWave[16]; |
---|
| 373 | eta2 = reta*reta; |
---|
| 374 | eta3 = eta2*reta; |
---|
| 375 | e12 = 12.0*reta; |
---|
| 376 | e24 = e12+e12; |
---|
| 377 | gMSAWave[13] = pow( (gMSAWave[4]/gMSAWave[16]),(1.0/3.0)); |
---|
| 378 | gMSAWave[12]=gMSAWave[6]/gMSAWave[13]; |
---|
| 379 | ibig=0; |
---|
| 380 | if (( gMSAWave[12]>15.0) && (ix==1)) { |
---|
| 381 | ibig=1; |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | gMSAWave[11] = gMSAWave[5]*gMSAWave[13]*exp(gMSAWave[6]- gMSAWave[12]); |
---|
| 385 | rgek = gMSAWave[11]; |
---|
| 386 | rak = gMSAWave[12]; |
---|
| 387 | ak2 = rak*rak; |
---|
| 388 | ak1 = 1.0+rak; |
---|
| 389 | dak2 = 1.0/ak2; |
---|
| 390 | dak4 = dak2*dak2; |
---|
| 391 | d = 1.0-reta; |
---|
| 392 | d2 = d*d; |
---|
| 393 | dak = d/rak; |
---|
| 394 | dd2 = 1.0/d2; |
---|
| 395 | dd4 = dd2*dd2; |
---|
| 396 | dd45 = dd4*2.0e-1; |
---|
| 397 | eta3d=3.0*reta; |
---|
| 398 | eta6d = eta3d+eta3d; |
---|
| 399 | eta32 = eta3+ eta3; |
---|
| 400 | eta2d = reta+2.0; |
---|
| 401 | eta2d2 = eta2d*eta2d; |
---|
| 402 | eta21 = 2.0*reta+1.0; |
---|
| 403 | eta22 = eta21*eta21; |
---|
| 404 | |
---|
| 405 | // ALPHA(I) |
---|
| 406 | |
---|
| 407 | al1 = -eta21*dak; |
---|
| 408 | al2 = (14.0*eta2-4.0*reta-1.0)*dak2; |
---|
| 409 | al3 = 36.0*eta2*dak4; |
---|
| 410 | |
---|
| 411 | // BETA(I) |
---|
| 412 | |
---|
| 413 | be1 = -(eta2+7.0*reta+1.0)*dak; |
---|
| 414 | be2 = 9.0*reta*(eta2+4.0*reta-2.0)*dak2; |
---|
| 415 | be3 = 12.0*reta*(2.0*eta2+8.0*reta-1.0)*dak4; |
---|
| 416 | |
---|
| 417 | // NU(I) |
---|
| 418 | |
---|
| 419 | vu1 = -(eta3+3.0*eta2+45.0*reta+5.0)*dak; |
---|
| 420 | vu2 = (eta32+3.0*eta2+42.0*reta-2.0e1)*dak2; |
---|
| 421 | vu3 = (eta32+3.0e1*reta-5.0)*dak4; |
---|
| 422 | vu4 = vu1+e24*rak*vu3; |
---|
| 423 | vu5 = eta6d*(vu2+4.0*vu3); |
---|
| 424 | |
---|
| 425 | // PHI(I) |
---|
| 426 | |
---|
| 427 | ph1 = eta6d/rak; |
---|
| 428 | ph2 = d-e12*dak2; |
---|
| 429 | |
---|
| 430 | // TAU(I) |
---|
| 431 | |
---|
| 432 | ta1 = (reta+5.0)/(5.0*rak); |
---|
| 433 | ta2 = eta2d*dak2; |
---|
| 434 | ta3 = -e12*rgek*(ta1+ta2); |
---|
| 435 | ta4 = eta3d*ak2*(ta1*ta1-ta2*ta2); |
---|
| 436 | ta5 = eta3d*(reta+8.0)*1.0e-1-2.0*eta22*dak2; |
---|
| 437 | |
---|
| 438 | // double PRECISION SINH(K), COSH(K) |
---|
| 439 | |
---|
| 440 | ex1 = exp(rak); |
---|
| 441 | ex2 = 0.0; |
---|
| 442 | if ( gMSAWave[12]<20.0) { |
---|
| 443 | ex2=exp(-rak); |
---|
| 444 | } |
---|
| 445 | sk=0.5*(ex1-ex2); |
---|
| 446 | ck = 0.5*(ex1+ex2); |
---|
| 447 | ckma = ck-1.0-rak*sk; |
---|
| 448 | skma = sk-rak*ck; |
---|
| 449 | |
---|
| 450 | // a(I) |
---|
| 451 | |
---|
| 452 | a1 = (e24*rgek*(al1+al2+ak1*al3)-eta22)*dd4; |
---|
| 453 | if (ibig==0) { |
---|
| 454 | a2 = e24*(al3*skma+al2*sk-al1*ck)*dd4; |
---|
| 455 | a3 = e24*(eta22*dak2-0.5*d2+al3*ckma-al1*sk+al2*ck)*dd4; |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | // b(I) |
---|
| 459 | |
---|
| 460 | b1 = (1.5*reta*eta2d2-e12*rgek*(be1+be2+ak1*be3))*dd4; |
---|
| 461 | if (ibig==0) { |
---|
| 462 | b2 = e12*(-be3*skma-be2*sk+be1*ck)*dd4; |
---|
| 463 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2-be3*ckma+be1*sk-be2*ck)*dd4; |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | // V(I) |
---|
| 467 | |
---|
| 468 | v1 = (eta21*(eta2-2.0*reta+1.0e1)*2.5e-1-rgek*(vu4+vu5))*dd45; |
---|
| 469 | if (ibig==0) { |
---|
| 470 | v2 = (vu4*ck-vu5*sk)*dd45; |
---|
| 471 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3+vu4*sk-vu5*ck)*dd45; |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | // P(I) |
---|
| 476 | |
---|
| 477 | pp1 = ph1*ph1; |
---|
| 478 | pp2 = ph2*ph2; |
---|
| 479 | pp = pp1+pp2; |
---|
| 480 | p1p2 = ph1*ph2*2.0; |
---|
| 481 | p1 = (rgek*(pp1+pp2-p1p2)-0.5*eta2d)*dd2; |
---|
| 482 | if (ibig==0) { |
---|
| 483 | p2 = (pp*sk+p1p2*ck)*dd2; |
---|
| 484 | p3 = (pp*ck+p1p2*sk+pp1-pp2)*dd2; |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | // T(I) |
---|
| 488 | |
---|
| 489 | t1 = ta3+ta4*a1+ta5*b1; |
---|
| 490 | if (ibig!=0) { |
---|
| 491 | |
---|
| 492 | // VERY LARGE SCREENING: ASYMPTOTIC SOLUTION |
---|
| 493 | |
---|
| 494 | v3 = ((eta3-6.0*eta2+5.0)*d-eta6d*(2.0*eta3-3.0*eta2+18.0*reta+1.0e1)*dak2+e24*vu3)*dd45; |
---|
| 495 | t3 = ta4*a3+ta5*b3+e12*ta2 - 4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
| 496 | p3 = (pp1-pp2)*dd2; |
---|
| 497 | b3 = e12*(0.5*d2*eta2d-eta3d*eta2d2*dak2+be3)*dd4; |
---|
| 498 | a3 = e24*(eta22*dak2-0.5*d2-al3)*dd4; |
---|
| 499 | um6 = t3*a3-e12*v3*v3; |
---|
| 500 | um5 = t1*a3+a1*t3-e24*v1*v3; |
---|
| 501 | um4 = t1*a1-e12*v1*v1; |
---|
| 502 | al6 = e12*p3*p3; |
---|
| 503 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
| 504 | al4 = e12*p1*p1-b1-b1; |
---|
| 505 | w56 = um5*al6-al5*um6; |
---|
| 506 | w46 = um4*al6-al4*um6; |
---|
| 507 | fa = -w46/w56; |
---|
| 508 | ca = -fa; |
---|
| 509 | gMSAWave[3] = fa; |
---|
| 510 | gMSAWave[2] = ca; |
---|
| 511 | gMSAWave[1] = b1+b3*fa; |
---|
| 512 | gMSAWave[0] = a1+a3*fa; |
---|
| 513 | gMSAWave[8] = v1+v3*fa; |
---|
| 514 | gMSAWave[14] = -(p1+p3*fa); |
---|
| 515 | gMSAWave[15] = gMSAWave[14]; |
---|
| 516 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
| 517 | gMSAWave[15] = 0.0; |
---|
| 518 | } |
---|
| 519 | gMSAWave[10] = gMSAWave[16]; |
---|
| 520 | |
---|
| 521 | } else { |
---|
| 522 | |
---|
| 523 | t2 = ta4*a2+ta5*b2+e12*(ta1*ck-ta2*sk); |
---|
| 524 | t3 = ta4*a3+ta5*b3+e12*(ta1*sk-ta2*(ck-1.0))-4.0e-1*reta*(reta+1.0e1)-1.0; |
---|
| 525 | |
---|
| 526 | // MU(i) |
---|
| 527 | |
---|
| 528 | um1 = t2*a2-e12*v2*v2; |
---|
| 529 | um2 = t1*a2+t2*a1-e24*v1*v2; |
---|
| 530 | um3 = t2*a3+t3*a2-e24*v2*v3; |
---|
| 531 | um4 = t1*a1-e12*v1*v1; |
---|
| 532 | um5 = t1*a3+t3*a1-e24*v1*v3; |
---|
| 533 | um6 = t3*a3-e12*v3*v3; |
---|
| 534 | |
---|
| 535 | // GILLAN CONDITION ? |
---|
| 536 | // |
---|
| 537 | // YES - G(X=1+) = 0 |
---|
| 538 | // |
---|
| 539 | // COEFFICIENTS AND FUNCTION VALUE |
---|
| 540 | // |
---|
| 541 | if ((ix==1) || (ix==3)) { |
---|
| 542 | |
---|
| 543 | // NO - CALCULATE REMAINING COEFFICIENTS. |
---|
| 544 | |
---|
| 545 | // LAMBDA(I) |
---|
| 546 | |
---|
| 547 | al1 = e12*p2*p2; |
---|
| 548 | al2 = e24*p1*p2-b2-b2; |
---|
| 549 | al3 = e24*p2*p3; |
---|
| 550 | al4 = e12*p1*p1-b1-b1; |
---|
| 551 | al5 = e24*p1*p3-b3-b3-ak2; |
---|
| 552 | al6 = e12*p3*p3; |
---|
| 553 | |
---|
| 554 | // OMEGA(I) |
---|
| 555 | |
---|
| 556 | w16 = um1*al6-al1*um6; |
---|
| 557 | w15 = um1*al5-al1*um5; |
---|
| 558 | w14 = um1*al4-al1*um4; |
---|
| 559 | w13 = um1*al3-al1*um3; |
---|
| 560 | w12 = um1*al2-al1*um2; |
---|
| 561 | |
---|
| 562 | w26 = um2*al6-al2*um6; |
---|
| 563 | w25 = um2*al5-al2*um5; |
---|
| 564 | w24 = um2*al4-al2*um4; |
---|
| 565 | |
---|
| 566 | w36 = um3*al6-al3*um6; |
---|
| 567 | w35 = um3*al5-al3*um5; |
---|
| 568 | w34 = um3*al4-al3*um4; |
---|
| 569 | w32 = um3*al2-al3*um2; |
---|
| 570 | // |
---|
| 571 | w46 = um4*al6-al4*um6; |
---|
| 572 | w56 = um5*al6-al5*um6; |
---|
| 573 | w3526 = w35+w26; |
---|
| 574 | w3425 = w34+w25; |
---|
| 575 | |
---|
| 576 | // QUARTIC COEFFICIENTS |
---|
| 577 | |
---|
| 578 | w4 = w16*w16-w13*w36; |
---|
| 579 | w3 = 2.0*w16*w15-w13*w3526-w12*w36; |
---|
| 580 | w2 = w15*w15+2.0*w16*w14-w13*w3425-w12*w3526; |
---|
| 581 | w1 = 2.0*w15*w14-w13*w24-w12*w3425; |
---|
| 582 | w0 = w14*w14-w12*w24; |
---|
| 583 | |
---|
| 584 | // ESTIMATE THE STARTING VALUE OF f |
---|
| 585 | |
---|
| 586 | if (ix==1) { |
---|
| 587 | // LARGE K |
---|
| 588 | fap = (w14-w34-w46)/(w12-w15+w35-w26+w56-w32); |
---|
| 589 | } else { |
---|
| 590 | // ASSUME NOT TOO FAR FROM GILLAN CONDITION. |
---|
| 591 | // IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE. |
---|
| 592 | gMSAWave[14]=0.5*eta2d*dd2*exp(-rgek); |
---|
| 593 | if (( gMSAWave[11]<=2.0) && ( gMSAWave[11]>=0.0) && ( gMSAWave[12]<=1.0)) { |
---|
| 594 | e24g = e24*rgek*exp(rak); |
---|
| 595 | pwk = sqrt(e24g); |
---|
| 596 | qpw = (1.0-sqrt(1.0+2.0*d2*d*pwk/eta22))*eta21/d; |
---|
| 597 | gMSAWave[14] = -qpw*qpw/e24+0.5*eta2d*dd2; |
---|
| 598 | } |
---|
| 599 | pg = p1+gMSAWave[14]; |
---|
| 600 | ca = ak2*pg+2.0*(b3*pg-b1*p3)+e12*gMSAWave[14]*gMSAWave[14]*p3; |
---|
| 601 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
| 602 | fap = -(pg+p2*ca)/p3; |
---|
| 603 | } |
---|
| 604 | |
---|
| 605 | // AND REFINE IT ACCORDING TO NEWTON |
---|
| 606 | ii=0; |
---|
| 607 | do { |
---|
| 608 | ii = ii+1; |
---|
| 609 | if (ii>itm) { |
---|
| 610 | // FAILED TO CONVERGE IN ITM ITERATIONS |
---|
| 611 | ir=-2; |
---|
| 612 | return (ir); |
---|
| 613 | } |
---|
| 614 | fa = fap; |
---|
| 615 | fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa; |
---|
| 616 | fund = w1+(2.0*w2+(3.0*w3+4.0*w4*fa)*fa)*fa; |
---|
| 617 | fap = fa-fun/fund; |
---|
| 618 | del=fabs((fap-fa)/fa); |
---|
| 619 | } while (del>acc); |
---|
| 620 | |
---|
| 621 | ir = ir+ii; |
---|
| 622 | fa = fap; |
---|
| 623 | ca = -(w16*fa*fa+w15*fa+w14)/(w13*fa+w12); |
---|
| 624 | gMSAWave[14] = -(p1+p2*ca+p3*fa); |
---|
| 625 | gMSAWave[15] = gMSAWave[14]; |
---|
| 626 | if (fabs(gMSAWave[15])<1.0e-3) { |
---|
| 627 | gMSAWave[15] = 0.0; |
---|
| 628 | } |
---|
| 629 | gMSAWave[10] = gMSAWave[16]; |
---|
| 630 | } else { |
---|
| 631 | ca = ak2*p1+2.0*(b3*p1-b1*p3); |
---|
| 632 | ca = -ca/(ak2*p2+2.0*(b3*p2-b2*p3)); |
---|
| 633 | fa = -(p1+p2*ca)/p3; |
---|
| 634 | if (ix==2) { |
---|
| 635 | gMSAWave[15] = um1*ca*ca+(um2+um3*fa)*ca+um4+um5*fa+um6*fa*fa; |
---|
| 636 | } |
---|
| 637 | if (ix==4) { |
---|
| 638 | gMSAWave[15] = -(p1+p2*ca+p3*fa); |
---|
| 639 | } |
---|
| 640 | } |
---|
| 641 | gMSAWave[3] = fa; |
---|
| 642 | gMSAWave[2] = ca; |
---|
| 643 | gMSAWave[1] = b1+b2*ca+b3*fa; |
---|
| 644 | gMSAWave[0] = a1+a2*ca+a3*fa; |
---|
| 645 | gMSAWave[8] = (v1+v2*ca+v3*fa)/gMSAWave[0]; |
---|
| 646 | } |
---|
| 647 | g24 = e24*rgek*ex1; |
---|
| 648 | gMSAWave[7] = (rak*ak2*ca-g24)/(ak2*g24); |
---|
| 649 | return (ir); |
---|
| 650 | } |
---|
| 651 | |
---|
| 652 | // called as DiamCyl(hcyl,rcyl) |
---|
| 653 | double |
---|
| 654 | DiamCyl(double hcyl, double rcyl) |
---|
| 655 | { |
---|
| 656 | |
---|
| 657 | double diam,a,b,t1,t2,ddd; |
---|
| 658 | double pi; |
---|
| 659 | |
---|
| 660 | pi = 4.0*atan(1.0); |
---|
| 661 | if (rcyl == 0 || hcyl == 0) { |
---|
| 662 | return 0.0; |
---|
| 663 | } |
---|
| 664 | a = rcyl; |
---|
| 665 | b = hcyl/2.0; |
---|
| 666 | t1 = a*a*2.0*b/2.0; |
---|
| 667 | t2 = 1.0 + (b/a)*(1.0+a/b/2.0)*(1.0+pi*a/b/2.0); |
---|
| 668 | ddd = 3.0*t1*t2; |
---|
| 669 | diam = pow(ddd,(1.0/3.0)); |
---|
| 670 | |
---|
| 671 | return(diam); |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | //prolate OR oblate ellipsoids |
---|
| 675 | //aa is the axis of rotation |
---|
| 676 | //if aa>bb, then PROLATE |
---|
| 677 | //if aa<bb, then OBLATE |
---|
| 678 | // A. Isihara, J. Chem. Phys. 18, 1446 (1950) |
---|
| 679 | //returns DIAMETER |
---|
| 680 | // called as DiamEllip(aa,bb) |
---|
| 681 | double |
---|
| 682 | DiamEllip(double aa, double bb) |
---|
| 683 | { |
---|
| 684 | |
---|
| 685 | double ee,e1,bd,b1,bL,b2,del,ddd,diam; |
---|
| 686 | |
---|
| 687 | if (aa == 0 || bb == 0) { |
---|
| 688 | return 0.0; |
---|
| 689 | } |
---|
| 690 | if (aa == bb) { |
---|
| 691 | return 2.0*aa; |
---|
| 692 | } |
---|
| 693 | if(aa>bb) { |
---|
| 694 | ee = (aa*aa - bb*bb)/(aa*aa); |
---|
| 695 | }else{ |
---|
| 696 | ee = (bb*bb - aa*aa)/(bb*bb); |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | bd = 1.0-ee; |
---|
| 700 | e1 = sqrt(ee); |
---|
| 701 | b1 = 1.0 + asin(e1)/(e1*sqrt(bd)); |
---|
| 702 | bL = (1.0+e1)/(1.0-e1); |
---|
| 703 | b2 = 1.0 + bd/2/e1*log(bL); |
---|
| 704 | del = 0.75*b1*b2; |
---|
| 705 | |
---|
| 706 | ddd = 2.0*(del+1.0)*aa*bb*bb; //volume is always calculated correctly |
---|
| 707 | diam = pow(ddd,(1.0/3.0)); |
---|
| 708 | |
---|
| 709 | return(diam); |
---|
| 710 | } |
---|
| 711 | |
---|
| 712 | double |
---|
| 713 | sqhcal(double qq) |
---|
| 714 | { |
---|
| 715 | double SofQ,etaz,akz,gekz,e24,x1,x2,ck,sk,ak2,qk,q2k,qk2,qk3,qqk,sink,cosk,asink,qcosk,aqk,inter; |
---|
| 716 | // WAVE gMSAWave = $"root:HayPenMSA:gMSAWave" |
---|
| 717 | |
---|
| 718 | etaz = gMSAWave[10]; |
---|
| 719 | akz = gMSAWave[12]; |
---|
| 720 | gekz = gMSAWave[11]; |
---|
| 721 | e24 = 24.0*etaz; |
---|
| 722 | x1 = exp(akz); |
---|
| 723 | x2 = 0.0; |
---|
| 724 | if ( gMSAWave[12]<20.0) { |
---|
| 725 | x2 = exp(-akz); |
---|
| 726 | } |
---|
| 727 | ck = 0.5*(x1+x2); |
---|
| 728 | sk = 0.5*(x1-x2); |
---|
| 729 | ak2 = akz*akz; |
---|
| 730 | |
---|
| 731 | if (qq<=0.0) { |
---|
| 732 | SofQ = -1.0/gMSAWave[0]; |
---|
| 733 | } else { |
---|
| 734 | qk = qq/gMSAWave[13]; |
---|
| 735 | q2k = qk*qk; |
---|
| 736 | qk2 = 1.0/q2k; |
---|
| 737 | qk3 = qk2/qk; |
---|
| 738 | qqk = 1.0/(qk*(q2k+ak2)); |
---|
| 739 | sink = sin(qk); |
---|
| 740 | cosk = cos(qk); |
---|
| 741 | asink = akz*sink; |
---|
| 742 | qcosk = qk*cosk; |
---|
| 743 | aqk = gMSAWave[0]*(sink-qcosk); |
---|
| 744 | aqk=aqk+gMSAWave[1]*((2.0*qk2-1.0)*qcosk+2.0*sink-2.0/qk); |
---|
| 745 | inter=24.0*qk3+4.0*(1.0-6.0*qk2)*sink; |
---|
| 746 | aqk=(aqk+0.5*etaz*gMSAWave[0]*(inter-(1.0-12.0*qk2+24.0*qk2*qk2)*qcosk))*qk3; |
---|
| 747 | aqk=aqk +gMSAWave[2]*(ck*asink-sk*qcosk)*qqk; |
---|
| 748 | aqk=aqk +gMSAWave[3]*(sk*asink-qk*(ck*cosk-1.0))*qqk; |
---|
| 749 | aqk=aqk +gMSAWave[3]*(cosk-1.0)*qk2; |
---|
| 750 | aqk=aqk -gekz*(asink+qcosk)*qqk; |
---|
| 751 | SofQ = 1.0/(1.0-e24*aqk); |
---|
| 752 | } |
---|
| 753 | return (SofQ); |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | ///////////end of XOP |
---|
| 757 | |
---|
| 758 | |
---|