1 | /* SimpleFit.c |
---|
2 | |
---|
3 | A simplified project designed to act as a template for your curve fitting function. |
---|
4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
5 | */ |
---|
6 | |
---|
7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
8 | #include "GaussWeights.h" |
---|
9 | #include "libSphere.h" |
---|
10 | |
---|
11 | // scattering from a sphere - hardly needs to be an XOP... |
---|
12 | double |
---|
13 | SphereForm(double dp[], double q) |
---|
14 | { |
---|
15 | double scale,radius,delrho,bkg; //my local names |
---|
16 | double bes,f,vol,f2,pi,qr; |
---|
17 | |
---|
18 | pi = 4.0*atan(1.0); |
---|
19 | scale = dp[0]; |
---|
20 | radius = dp[1]; |
---|
21 | delrho = dp[2]; |
---|
22 | bkg = dp[3]; |
---|
23 | |
---|
24 | qr = q*radius; |
---|
25 | if(qr == 0){ |
---|
26 | bes = 1.0; |
---|
27 | }else{ |
---|
28 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
29 | } |
---|
30 | |
---|
31 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
32 | f = vol*bes*delrho; // [=] A-1 |
---|
33 | // normalize to single particle volume, convert to 1/cm |
---|
34 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
35 | |
---|
36 | return(scale*f2+bkg); //scale, and add in the background |
---|
37 | } |
---|
38 | |
---|
39 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
40 | double |
---|
41 | CoreShellForm(double dp[], double q) |
---|
42 | { |
---|
43 | double x,pi; |
---|
44 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
45 | double bes,f,vol,qr,contr,f2; |
---|
46 | |
---|
47 | pi = 4.0*atan(1.0); |
---|
48 | x=q; |
---|
49 | |
---|
50 | scale = dp[0]; |
---|
51 | rcore = dp[1]; |
---|
52 | thick = dp[2]; |
---|
53 | rhocore = dp[3]; |
---|
54 | rhoshel = dp[4]; |
---|
55 | rhosolv = dp[5]; |
---|
56 | bkg = dp[6]; |
---|
57 | // core first, then add in shell |
---|
58 | qr=x*rcore; |
---|
59 | contr = rhocore-rhoshel; |
---|
60 | if(qr == 0){ |
---|
61 | bes = 1.0; |
---|
62 | }else{ |
---|
63 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
64 | } |
---|
65 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
66 | f = vol*bes*contr; |
---|
67 | //now the shell |
---|
68 | qr=x*(rcore+thick); |
---|
69 | contr = rhoshel-rhosolv; |
---|
70 | if(qr == 0){ |
---|
71 | bes = 1.0; |
---|
72 | }else{ |
---|
73 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
74 | } |
---|
75 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
76 | f += vol*bes*contr; |
---|
77 | |
---|
78 | // normalize to particle volume and rescale from [A-1] to [cm-1] |
---|
79 | f2 = f*f/vol*1.0e8; |
---|
80 | |
---|
81 | //scale if desired |
---|
82 | f2 *= scale; |
---|
83 | // then add in the background |
---|
84 | f2 += bkg; |
---|
85 | |
---|
86 | return(f2); |
---|
87 | } |
---|
88 | |
---|
89 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
90 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
91 | double |
---|
92 | VesicleForm(double dp[], double q) |
---|
93 | { |
---|
94 | double x,pi; |
---|
95 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
96 | double bes,f,vol,qr,contr,f2; |
---|
97 | pi = 4.0*atan(1.0); |
---|
98 | x= q; |
---|
99 | |
---|
100 | scale = dp[0]; |
---|
101 | rcore = dp[1]; |
---|
102 | thick = dp[2]; |
---|
103 | rhocore = dp[3]; |
---|
104 | rhosolv = rhocore; |
---|
105 | rhoshel = dp[4]; |
---|
106 | bkg = dp[5]; |
---|
107 | // core first, then add in shell |
---|
108 | qr=x*rcore; |
---|
109 | contr = rhocore-rhoshel; |
---|
110 | if(qr == 0){ |
---|
111 | bes = 1.0; |
---|
112 | }else{ |
---|
113 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
114 | } |
---|
115 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
116 | f = vol*bes*contr; |
---|
117 | //now the shell |
---|
118 | qr=x*(rcore+thick); |
---|
119 | contr = rhoshel-rhosolv; |
---|
120 | if(qr == 0){ |
---|
121 | bes = 1.0; |
---|
122 | }else{ |
---|
123 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
124 | } |
---|
125 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
126 | f += vol*bes*contr; |
---|
127 | |
---|
128 | // normalize to the particle volume and rescale from [A-1] to [cm-1] |
---|
129 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
130 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
131 | f2 = f*f/vol*1.0e8; |
---|
132 | |
---|
133 | //scale if desired |
---|
134 | f2 *= scale; |
---|
135 | // then add in the background |
---|
136 | f2 += bkg; |
---|
137 | |
---|
138 | return(f2); |
---|
139 | } |
---|
140 | |
---|
141 | |
---|
142 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
143 | // |
---|
144 | double |
---|
145 | PolyCoreForm(double dp[], double q) |
---|
146 | { |
---|
147 | double pi; |
---|
148 | double scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
149 | double d, g ,h; |
---|
150 | double qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
151 | double t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
152 | double zp3,vpoly; |
---|
153 | double s2y, arg1, arg2, arg3, drh1, drh2; |
---|
154 | |
---|
155 | pi = 4.0*atan(1.0); |
---|
156 | qq= q; |
---|
157 | scale = dp[0]; |
---|
158 | corrad = dp[1]; |
---|
159 | sig = dp[2]; |
---|
160 | del = dp[3]; |
---|
161 | drho1 = dp[4]-dp[5]; //core-shell |
---|
162 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
163 | bkg = dp[7]; |
---|
164 | |
---|
165 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
166 | |
---|
167 | h=qq; |
---|
168 | |
---|
169 | drh1 = drho1; |
---|
170 | drh2 = drho2; |
---|
171 | g = drh2 * -1. / drh1; |
---|
172 | zp1 = zz + 1.; |
---|
173 | zp2 = zz + 2.; |
---|
174 | zp3 = zz + 3.; |
---|
175 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
176 | |
---|
177 | |
---|
178 | // remember that h is the passed in value of q for the calculation |
---|
179 | y = h *del; |
---|
180 | x = h *corrad; |
---|
181 | d = atan(x * 2. / zp1); |
---|
182 | arg1 = zp1 * d; |
---|
183 | arg2 = zp2 * d; |
---|
184 | arg3 = zp3 * d; |
---|
185 | sy = sin(y); |
---|
186 | cy = cos(y); |
---|
187 | s2y = sin(y * 2.); |
---|
188 | c2y = cos(y * 2.); |
---|
189 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
190 | c2 = g * y * (g - cy); |
---|
191 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
192 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
193 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
194 | c6 = c3 - g * g * sy * sy; |
---|
195 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
196 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
197 | c9 = g * sy * (1. - g * cy); |
---|
198 | |
---|
199 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
200 | tb1 = exp(zp1 * .5 * tb); |
---|
201 | tb2 = exp(zp2 * .5 * tb); |
---|
202 | tb3 = exp(zp3 * .5 * tb); |
---|
203 | |
---|
204 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
205 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
206 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
207 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
208 | t5 = t1 + t2 + t3 + t4; |
---|
209 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
210 | // normalize by the average volume !!! corrected for polydispersity |
---|
211 | // and convert to cm-1 |
---|
212 | form /= vpoly; |
---|
213 | form *= 1.0e8; |
---|
214 | //Scale |
---|
215 | form *= scale; |
---|
216 | // then add in the background |
---|
217 | form += bkg; |
---|
218 | |
---|
219 | return(form); |
---|
220 | } |
---|
221 | |
---|
222 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
223 | // structure factor effects are explicitly and correctly included. |
---|
224 | // |
---|
225 | double |
---|
226 | PolyHardSphereIntensity(double dp[], double q) |
---|
227 | { |
---|
228 | double pi; |
---|
229 | double rad,z2,phi,cont,bkg,sigma; //my local names |
---|
230 | double mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
231 | double ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
232 | double ka,zz,v1,v2,p1,p2; |
---|
233 | double h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
234 | double capl,capl1,capmu,capmu1,r3,pq; |
---|
235 | double ka2,r1,heff; |
---|
236 | double hh,k; |
---|
237 | |
---|
238 | pi = 4.0*atan(1.0); |
---|
239 | k= q; |
---|
240 | |
---|
241 | rad = dp[0]; // radius (A) |
---|
242 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
243 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
244 | cont = dp[3]*1.0e4; // contrast (odd units) |
---|
245 | bkg = dp[4]; |
---|
246 | sigma = 2*rad; |
---|
247 | |
---|
248 | zz=1.0/(z2*z2)-1.0; |
---|
249 | bb = sigma/(zz+1.0); |
---|
250 | cc = zz+1.0; |
---|
251 | |
---|
252 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
253 | r1 = sigma/2.0; |
---|
254 | r3 = r1*r1*r1; |
---|
255 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
256 | rho=phi/(1.3333333333*pi*r3); |
---|
257 | t1 = rho*bb*cc; |
---|
258 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
259 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
260 | capd = 1.0-pi*t3/6.0; |
---|
261 | //************ |
---|
262 | v1=1.0/(1.0+bb*bb*k*k); |
---|
263 | v2=1.0/(4.0+bb*bb*k*k); |
---|
264 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
265 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
266 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
267 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
268 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
269 | s1=bb*cc; |
---|
270 | s2=cc*(cc+1.0)*bb*bb; |
---|
271 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
272 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
273 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
274 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
275 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
276 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
277 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
278 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
279 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
280 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
281 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
282 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
283 | |
---|
284 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
285 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
286 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
287 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
288 | |
---|
289 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
290 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
291 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
292 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
293 | |
---|
294 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
295 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
296 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
297 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
298 | |
---|
299 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
300 | |
---|
301 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
302 | |
---|
303 | //* This part computes the first integral in equation (1). It also |
---|
304 | // generates the KC approximated effective structure factor.*/ |
---|
305 | |
---|
306 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
307 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
308 | |
---|
309 | ka=k*(sigma/2.0); |
---|
310 | // |
---|
311 | hh=hint1+hint2; // this is the model intensity |
---|
312 | // |
---|
313 | heff=1.0+hint1/hint2; |
---|
314 | ka2=ka*ka; |
---|
315 | //* |
---|
316 | // heff is PY analytical solution for intensity divided by the |
---|
317 | // form factor. happ is the KC approximated effective S(q) |
---|
318 | |
---|
319 | //******************* |
---|
320 | // add in the background then return the intensity value |
---|
321 | |
---|
322 | return(hh+bkg); //scale, and add in the background |
---|
323 | } |
---|
324 | |
---|
325 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
326 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
327 | // |
---|
328 | double |
---|
329 | BimodalSchulzSpheres(double dp[], double q) |
---|
330 | { |
---|
331 | double x,pq; |
---|
332 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
333 | double scale2,ravg2,pd2,rho2; //my local names |
---|
334 | |
---|
335 | x= q; |
---|
336 | |
---|
337 | scale = dp[0]; |
---|
338 | ravg = dp[1]; |
---|
339 | pd = dp[2]; |
---|
340 | rho = dp[3]; |
---|
341 | scale2 = dp[4]; |
---|
342 | ravg2 = dp[5]; |
---|
343 | pd2 = dp[6]; |
---|
344 | rho2 = dp[7]; |
---|
345 | rhos = dp[8]; |
---|
346 | bkg = dp[9]; |
---|
347 | |
---|
348 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
349 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
350 | // add in the background |
---|
351 | pq += bkg; |
---|
352 | |
---|
353 | return (pq); |
---|
354 | } |
---|
355 | |
---|
356 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
357 | // |
---|
358 | double |
---|
359 | SchulzSpheres(double dp[], double q) |
---|
360 | { |
---|
361 | double x,pq; |
---|
362 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
363 | |
---|
364 | x= q; |
---|
365 | |
---|
366 | scale = dp[0]; |
---|
367 | ravg = dp[1]; |
---|
368 | pd = dp[2]; |
---|
369 | rho = dp[3]; |
---|
370 | rhos = dp[4]; |
---|
371 | bkg = dp[5]; |
---|
372 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
373 | // add in the background |
---|
374 | pq += bkg; |
---|
375 | |
---|
376 | return(pq); |
---|
377 | } |
---|
378 | |
---|
379 | // calculates everything but the background |
---|
380 | double |
---|
381 | SchulzSphere_Fn(double scale, double ravg, double pd, double rho, double rhos, double x) |
---|
382 | { |
---|
383 | double zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
384 | double aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
385 | double v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
386 | |
---|
387 | pi = 4.0*atan(1.0); |
---|
388 | delrho = rho-rhos; |
---|
389 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
390 | |
---|
391 | zp1 = zz + 1.0; |
---|
392 | zp2 = zz + 2.0; |
---|
393 | zp3 = zz + 3.0; |
---|
394 | zp4 = zz + 4.0; |
---|
395 | zp5 = zz + 5.0; |
---|
396 | zp6 = zz + 6.0; |
---|
397 | zp7 = zz + 7.0; |
---|
398 | // |
---|
399 | aa = (zz+1)/x/ravg; |
---|
400 | |
---|
401 | at1 = atan(1.0/aa); |
---|
402 | at2 = atan(2.0/aa); |
---|
403 | // |
---|
404 | // calculations are performed to avoid large # errors |
---|
405 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
406 | // |
---|
407 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
408 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
409 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
410 | // print t1,t2,t3 |
---|
411 | rt1 = pow(10,t1); |
---|
412 | rt2 = pow(10,t2); |
---|
413 | rt3 = pow(10,t3); |
---|
414 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
415 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
416 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
417 | g1 = (v1+v2+v3); |
---|
418 | |
---|
419 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
420 | pq = pow(10,pq)*8*pi*pi*delrho*delrho; |
---|
421 | |
---|
422 | // |
---|
423 | // beta factor is not used here, but could be for the |
---|
424 | // decoupling approximation |
---|
425 | // |
---|
426 | // g11 = g1 |
---|
427 | // gd = -zp7*log(aa) |
---|
428 | // g1 = log(g11) + gd |
---|
429 | // |
---|
430 | // t1 = zp1*at1 |
---|
431 | // t2 = zp2*at1 |
---|
432 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
433 | // g22 = g2*g2 |
---|
434 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
435 | // beta = 2*alog(beta) |
---|
436 | |
---|
437 | //re-normalize by the average volume |
---|
438 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
439 | pq /= vpoly; |
---|
440 | //scale, convert to cm^-1 |
---|
441 | pq *= scale * 1.0e8; |
---|
442 | |
---|
443 | return(pq); |
---|
444 | } |
---|
445 | |
---|
446 | // scattering from a uniform sphere with a rectangular size distribution |
---|
447 | // |
---|
448 | double |
---|
449 | PolyRectSpheres(double dp[], double q) |
---|
450 | { |
---|
451 | double pi,x; |
---|
452 | double scale,rad,pd,cont,bkg; //my local names |
---|
453 | double inten,h1,qw,qr,width,sig,averad3; |
---|
454 | |
---|
455 | pi = 4.0*atan(1.0); |
---|
456 | x= q; |
---|
457 | |
---|
458 | scale = dp[0]; |
---|
459 | rad = dp[1]; // radius (A) |
---|
460 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
461 | cont = dp[3]; // contrast (A^-2) |
---|
462 | bkg = dp[4]; |
---|
463 | |
---|
464 | // as usual, poly = sig/ravg |
---|
465 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
466 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
467 | |
---|
468 | sig = pd*rad; |
---|
469 | width = sqrt(3.0)*sig; |
---|
470 | |
---|
471 | //x is the q-value |
---|
472 | qw = x*width; |
---|
473 | qr = x*rad; |
---|
474 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
475 | h1 -= 5.0/2.0*cos(2*qr)*sin(qw)*cos(qw); |
---|
476 | h1 += 0.5*qr*qr*cos(2*qr)*sin(2*qw); |
---|
477 | h1 += 0.5*qw*qw*cos(2*qr)*sin(2*qw); |
---|
478 | h1 += qw*qr*sin(2*qr)*cos(2*qw); |
---|
479 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
480 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
481 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
482 | |
---|
483 | // calculate P(q) = <f^2> |
---|
484 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
485 | |
---|
486 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
487 | // with |
---|
488 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
489 | |
---|
490 | // normalize to the average volume |
---|
491 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
492 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
493 | |
---|
494 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
495 | inten /= 4.0*pi/3.0*averad3; |
---|
496 | //resacle to 1/cm |
---|
497 | inten *= 1.0e8; |
---|
498 | //scale the result |
---|
499 | inten *= scale; |
---|
500 | // then add in the background |
---|
501 | inten += bkg; |
---|
502 | |
---|
503 | return(inten); |
---|
504 | } |
---|
505 | |
---|
506 | |
---|
507 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
508 | // |
---|
509 | double |
---|
510 | GaussPolySphere(double dp[], double q) |
---|
511 | { |
---|
512 | double pi,x; |
---|
513 | double scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
514 | double va,vb,zi,yy,summ,inten; |
---|
515 | int nord=20,ii; |
---|
516 | |
---|
517 | pi = 4.0*atan(1.0); |
---|
518 | x= q; |
---|
519 | |
---|
520 | scale=dp[0]; |
---|
521 | rad=dp[1]; |
---|
522 | pd=dp[2]; |
---|
523 | sig=pd*rad; |
---|
524 | rho=dp[3]; |
---|
525 | rhos=dp[4]; |
---|
526 | delrho=rho-rhos; |
---|
527 | bkg=dp[5]; |
---|
528 | |
---|
529 | va = -4.0*sig + rad; |
---|
530 | if (va<0) { |
---|
531 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
532 | } |
---|
533 | vb = 4.0*sig +rad; |
---|
534 | |
---|
535 | summ = 0.0; // initialize integral |
---|
536 | for(ii=0;ii<nord;ii+=1) { |
---|
537 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
538 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
539 | // calculate sphere scattering |
---|
540 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
541 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
542 | yy *= yy; |
---|
543 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
544 | |
---|
545 | summ += yy; //add to the running total of the quadrature |
---|
546 | } |
---|
547 | // calculate value of integral to return |
---|
548 | inten = (vb-va)/2.0*summ; |
---|
549 | |
---|
550 | //re-normalize by polydisperse sphere volume |
---|
551 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
552 | |
---|
553 | inten *= 1.0e8; |
---|
554 | inten *= scale; |
---|
555 | inten += bkg; |
---|
556 | |
---|
557 | return(inten); //scale, and add in the background |
---|
558 | } |
---|
559 | |
---|
560 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
561 | // |
---|
562 | double |
---|
563 | LogNormalPolySphere(double dp[], double q) |
---|
564 | { |
---|
565 | double pi,x; |
---|
566 | double scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
567 | double va,vb,zi,yy,summ,inten; |
---|
568 | int nord=76,ii; |
---|
569 | |
---|
570 | pi = 4.0*atan(1.0); |
---|
571 | x= q; |
---|
572 | |
---|
573 | scale=dp[0]; |
---|
574 | rad=dp[1]; //rad is the median radius |
---|
575 | mu = log(dp[1]); |
---|
576 | sig=dp[2]; |
---|
577 | rho=dp[3]; |
---|
578 | rhos=dp[4]; |
---|
579 | delrho=rho-rhos; |
---|
580 | bkg=dp[5]; |
---|
581 | |
---|
582 | va = -3.5*sig + mu; |
---|
583 | va = exp(va); |
---|
584 | if (va<0) { |
---|
585 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
586 | } |
---|
587 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
588 | vb = exp(vb); |
---|
589 | |
---|
590 | summ = 0.0; // initialize integral |
---|
591 | for(ii=0;ii<nord;ii+=1) { |
---|
592 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
593 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
594 | // calculate sphere scattering |
---|
595 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
596 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
597 | yy *= yy; |
---|
598 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
599 | |
---|
600 | summ += yy; //add to the running total of the quadrature |
---|
601 | } |
---|
602 | // calculate value of integral to return |
---|
603 | inten = (vb-va)/2.0*summ; |
---|
604 | |
---|
605 | //re-normalize by polydisperse sphere volume |
---|
606 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
607 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
608 | |
---|
609 | inten *= 1.0e8; |
---|
610 | inten *= scale; |
---|
611 | inten += bkg; |
---|
612 | |
---|
613 | return(inten); |
---|
614 | } |
---|
615 | |
---|
616 | static double |
---|
617 | LogNormal_distr(double sig, double mu, double pt) |
---|
618 | { |
---|
619 | double retval,pi; |
---|
620 | |
---|
621 | pi = 4.0*atan(1.0); |
---|
622 | retval = (1/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
623 | return(retval); |
---|
624 | } |
---|
625 | |
---|
626 | static double |
---|
627 | Gauss_distr(double sig, double avg, double pt) |
---|
628 | { |
---|
629 | double retval,Pi; |
---|
630 | |
---|
631 | Pi = 4.0*atan(1.0); |
---|
632 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
633 | return(retval); |
---|
634 | } |
---|
635 | |
---|
636 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
637 | // - the polydispersity is of the WHOLE sphere |
---|
638 | // |
---|
639 | double |
---|
640 | PolyCoreShellRatio(double dp[], double q) |
---|
641 | { |
---|
642 | double pi,x; |
---|
643 | double scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
644 | double sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
645 | double pi43,c1,c2,form,volume,arg1,arg2; |
---|
646 | |
---|
647 | pi = 4.0*atan(1.0); |
---|
648 | x= q; |
---|
649 | |
---|
650 | scale = dp[0]; |
---|
651 | corrad = dp[1]; |
---|
652 | thick = dp[2]; |
---|
653 | sig = dp[3]; |
---|
654 | sld1 = dp[4]; |
---|
655 | sld2 = dp[5]; |
---|
656 | sld3 = dp[6]; |
---|
657 | bkg = dp[7]; |
---|
658 | |
---|
659 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
660 | shlrad = corrad + thick; |
---|
661 | drho1 = sld1-sld2; //core-shell |
---|
662 | drho2 = sld2-sld3; //shell-solvent |
---|
663 | zp1 = zz + 1.; |
---|
664 | zp2 = zz + 2.; |
---|
665 | zp3 = zz + 3.; |
---|
666 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
667 | |
---|
668 | // the beta factor is not calculated |
---|
669 | // the calculated form factor <f^2> has units [length^2] |
---|
670 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
671 | // conversion to get to absolute scale |
---|
672 | |
---|
673 | pi43=4.0/3.0*pi; |
---|
674 | pp=corrad/shlrad; |
---|
675 | volume=pi43*shlrad*shlrad*shlrad; |
---|
676 | c1=drho1*volume; |
---|
677 | c2=drho2*volume; |
---|
678 | |
---|
679 | arg1 = x*shlrad*pp; |
---|
680 | arg2 = x*shlrad; |
---|
681 | |
---|
682 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
683 | form += c2*c2*fnt2(arg2,zz); |
---|
684 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
685 | |
---|
686 | //convert the result to [cm^-1] |
---|
687 | |
---|
688 | //scale the result |
---|
689 | // - divide by the polydisperse volume, mult by 10^8 |
---|
690 | form /= vpoly; |
---|
691 | form *= 1.0e8; |
---|
692 | form *= scale; |
---|
693 | |
---|
694 | //add in the background |
---|
695 | form += bkg; |
---|
696 | |
---|
697 | return(form); |
---|
698 | } |
---|
699 | |
---|
700 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
701 | //c |
---|
702 | //c function fnt2(y,z) |
---|
703 | //c |
---|
704 | double |
---|
705 | fnt2(double yy, double zz) |
---|
706 | { |
---|
707 | double z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
708 | |
---|
709 | z1=zz+1.0; |
---|
710 | z2=zz+2.0; |
---|
711 | z3=zz+3.0; |
---|
712 | u=yy/z1; |
---|
713 | ww=atan(2.0*u); |
---|
714 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
715 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
716 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
717 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
718 | |
---|
719 | return(ans); |
---|
720 | } |
---|
721 | |
---|
722 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
723 | //c |
---|
724 | //c function fnt3(y,p,z) |
---|
725 | //c |
---|
726 | double |
---|
727 | fnt3(double yy, double pp, double zz) |
---|
728 | { |
---|
729 | double z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
730 | |
---|
731 | z1=zz+1.0; |
---|
732 | z2=zz+2.0; |
---|
733 | z3=zz+3.0; |
---|
734 | yp=(1.0+pp)*yy; |
---|
735 | yn=(1.0-pp)*yy; |
---|
736 | up=yp/z1; |
---|
737 | un=yn/z1; |
---|
738 | vp=atan(up); |
---|
739 | vn=atan(un); |
---|
740 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
741 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
742 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
743 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
744 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
745 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
746 | ans=4.5/z1/pow(yy,6); |
---|
747 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
748 | |
---|
749 | return(ans); |
---|
750 | } |
---|
751 | |
---|
752 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
753 | // are properly accounted for... |
---|
754 | // Input (fitting) variables are: |
---|
755 | // larger sphere radius(angstroms) = guess[0] |
---|
756 | // smaller sphere radius (A) = w[1] |
---|
757 | // number fraction of larger spheres = guess[2] |
---|
758 | // total volume fraction of spheres = guess[3] |
---|
759 | // size ratio, alpha(0<a<1) = derived |
---|
760 | // SLD(A-2) of larger particle = guess[4] |
---|
761 | // SLD(A-2) of smaller particle = guess[5] |
---|
762 | // SLD(A-2) of the solvent = guess[6] |
---|
763 | // background = guess[7] |
---|
764 | double |
---|
765 | BinaryHS(double dp[], double q) |
---|
766 | { |
---|
767 | double x,pi; |
---|
768 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
769 | double psf11,psf12,psf22; |
---|
770 | double phi1,phi2,phr,a3; |
---|
771 | double v1,v2,n1,n2,qr1,qr2,b1,b2,sc1,sc2; |
---|
772 | int err; |
---|
773 | |
---|
774 | pi = 4.0*atan(1.0); |
---|
775 | x= q; |
---|
776 | r2 = dp[0]; |
---|
777 | r1 = dp[1]; |
---|
778 | phi2 = dp[2]; |
---|
779 | phi1 = dp[3]; |
---|
780 | rho2 = dp[4]; |
---|
781 | rho1 = dp[5]; |
---|
782 | rhos = dp[6]; |
---|
783 | bgd = dp[7]; |
---|
784 | |
---|
785 | |
---|
786 | phi = phi1 + phi2; |
---|
787 | aa = r1/r2; |
---|
788 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
789 | a3=aa*aa*aa; |
---|
790 | phr=phi2/phi; |
---|
791 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
792 | // calculate the PSF's here |
---|
793 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
794 | |
---|
795 | // /* do form factor calculations */ |
---|
796 | |
---|
797 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
798 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
799 | |
---|
800 | n1 = phi1/v1; |
---|
801 | n2 = phi2/v2; |
---|
802 | |
---|
803 | qr1 = r1*x; |
---|
804 | qr2 = r2*x; |
---|
805 | |
---|
806 | if (qr1 == 0){ |
---|
807 | sc1 = 1.0/3.0; |
---|
808 | }else{ |
---|
809 | sc1 = (sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
810 | } |
---|
811 | if (qr2 == 0){ |
---|
812 | sc2 = 1.0/3.0; |
---|
813 | }else{ |
---|
814 | sc2 = (sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
815 | } |
---|
816 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*sc1; |
---|
817 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*sc2; |
---|
818 | inten = n1*b1*b1*psf11; |
---|
819 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
820 | inten += n2*b2*b2*psf22; |
---|
821 | ///* convert I(1/A) to (1/cm) */ |
---|
822 | inten *= 1.0e8; |
---|
823 | |
---|
824 | inten += bgd; |
---|
825 | |
---|
826 | return(inten); |
---|
827 | } |
---|
828 | |
---|
829 | double |
---|
830 | BinaryHS_PSF11(double dp[], double q) |
---|
831 | { |
---|
832 | double x,pi; |
---|
833 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
834 | double psf11,psf12,psf22; |
---|
835 | double phi1,phi2,phr,a3; |
---|
836 | int err; |
---|
837 | |
---|
838 | pi = 4.0*atan(1.0); |
---|
839 | x= q; |
---|
840 | r2 = dp[0]; |
---|
841 | r1 = dp[1]; |
---|
842 | phi2 = dp[2]; |
---|
843 | phi1 = dp[3]; |
---|
844 | rho2 = dp[4]; |
---|
845 | rho1 = dp[5]; |
---|
846 | rhos = dp[6]; |
---|
847 | bgd = dp[7]; |
---|
848 | phi = phi1 + phi2; |
---|
849 | aa = r1/r2; |
---|
850 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
851 | a3=aa*aa*aa; |
---|
852 | phr=phi2/phi; |
---|
853 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
854 | // calculate the PSF's here |
---|
855 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
856 | |
---|
857 | return(psf11); //scale, and add in the background |
---|
858 | } |
---|
859 | |
---|
860 | double |
---|
861 | BinaryHS_PSF12(double dp[], double q) |
---|
862 | { |
---|
863 | double x,pi; |
---|
864 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
865 | double psf11,psf12,psf22; |
---|
866 | double phi1,phi2,phr,a3; |
---|
867 | int err; |
---|
868 | |
---|
869 | pi = 4.0*atan(1.0); |
---|
870 | x= q; |
---|
871 | r2 = dp[0]; |
---|
872 | r1 = dp[1]; |
---|
873 | phi2 = dp[2]; |
---|
874 | phi1 = dp[3]; |
---|
875 | rho2 = dp[4]; |
---|
876 | rho1 = dp[5]; |
---|
877 | rhos = dp[6]; |
---|
878 | bgd = dp[7]; |
---|
879 | phi = phi1 + phi2; |
---|
880 | aa = r1/r2; |
---|
881 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
882 | a3=aa*aa*aa; |
---|
883 | phr=phi2/phi; |
---|
884 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
885 | // calculate the PSF's here |
---|
886 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
887 | |
---|
888 | return(psf12); //scale, and add in the background |
---|
889 | } |
---|
890 | |
---|
891 | double |
---|
892 | BinaryHS_PSF22(double dp[], double q) |
---|
893 | { |
---|
894 | double x,pi; |
---|
895 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
896 | double psf11,psf12,psf22; |
---|
897 | double phi1,phi2,phr,a3; |
---|
898 | int err; |
---|
899 | |
---|
900 | pi = 4.0*atan(1.0); |
---|
901 | x= q; |
---|
902 | |
---|
903 | r2 = dp[0]; |
---|
904 | r1 = dp[1]; |
---|
905 | phi2 = dp[2]; |
---|
906 | phi1 = dp[3]; |
---|
907 | rho2 = dp[4]; |
---|
908 | rho1 = dp[5]; |
---|
909 | rhos = dp[6]; |
---|
910 | bgd = dp[7]; |
---|
911 | phi = phi1 + phi2; |
---|
912 | aa = r1/r2; |
---|
913 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
914 | a3=aa*aa*aa; |
---|
915 | phr=phi2/phi; |
---|
916 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
917 | // calculate the PSF's here |
---|
918 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
919 | |
---|
920 | return(psf22); //scale, and add in the background |
---|
921 | } |
---|
922 | |
---|
923 | int |
---|
924 | ashcroft(double qval, double r2, double nf2, double aa, double phi, double *s11, double *s22, double *s12) |
---|
925 | { |
---|
926 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
927 | |
---|
928 | // calculate constant terms |
---|
929 | double s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
930 | double a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
931 | double err=0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
932 | double c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
933 | double t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
934 | |
---|
935 | s2 = 2.0*r2; |
---|
936 | s1 = aa*s2; |
---|
937 | v = phi; |
---|
938 | a3 = aa*aa*aa; |
---|
939 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
940 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
941 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
942 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
943 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
944 | wmv = 1/(1.-v); |
---|
945 | wmv3 = wmv*wmv*wmv; |
---|
946 | wmv4 = wmv*wmv3; |
---|
947 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
948 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
949 | a2=a2i/a3; |
---|
950 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
951 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
952 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
953 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
954 | gm12=2.*gm1*(1.-aa)/aa; |
---|
955 | //c |
---|
956 | //c calculate the direct correlation functions and print results |
---|
957 | //c |
---|
958 | // do 20 j=1,npts |
---|
959 | |
---|
960 | yy=qval*s2; |
---|
961 | //c calculate direct correlation functions |
---|
962 | //c ----c11 |
---|
963 | ay=aa*yy; |
---|
964 | ay2 = ay*ay; |
---|
965 | ay3 = ay*ay*ay; |
---|
966 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
967 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
968 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
969 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
970 | |
---|
971 | //c ------c22 |
---|
972 | y2=yy*yy; |
---|
973 | y3=yy*y2; |
---|
974 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
975 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
976 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
977 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
978 | |
---|
979 | //c -----c12 |
---|
980 | yl=.5*yy*(1.-aa); |
---|
981 | yl3=yl*yl*yl; |
---|
982 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
983 | y1=aa*yy; |
---|
984 | y13 = y1*y1*y1; |
---|
985 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
986 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
987 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
988 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
989 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
990 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
991 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
992 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
993 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
994 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
995 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
996 | ttt4=a1*(t41+t42)/y1; |
---|
997 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
998 | |
---|
999 | c11=f11; |
---|
1000 | c22=f22; |
---|
1001 | c12=f12; |
---|
1002 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
1003 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
1004 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
1005 | |
---|
1006 | return(err); |
---|
1007 | } |
---|
1008 | |
---|
1009 | |
---|
1010 | |
---|
1011 | /* |
---|
1012 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
1013 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1014 | //must always be a surfactant layer on the outside |
---|
1015 | // |
---|
1016 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1017 | // resolution smeared version gives he most appropriate view of the model |
---|
1018 | |
---|
1019 | Warning: |
---|
1020 | The call to WaveData() below returns a pointer to the middle |
---|
1021 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1022 | calculations could cause memory to move, you should copy the coefficient |
---|
1023 | values to local variables or an array before such operations. |
---|
1024 | */ |
---|
1025 | double |
---|
1026 | MultiShell(double dp[], double q) |
---|
1027 | { |
---|
1028 | double x; |
---|
1029 | double scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
1030 | int ii; |
---|
1031 | double fval,voli,ri,sldi; |
---|
1032 | double pi; |
---|
1033 | |
---|
1034 | pi = 4.0*atan(1.0); |
---|
1035 | |
---|
1036 | x= q; |
---|
1037 | scale = dp[0]; |
---|
1038 | rcore = dp[1]; |
---|
1039 | ts = dp[2]; |
---|
1040 | tw = dp[3]; |
---|
1041 | rhocore = dp[4]; |
---|
1042 | rhoshel = dp[5]; |
---|
1043 | num = dp[6]; |
---|
1044 | bkg = dp[7]; |
---|
1045 | |
---|
1046 | //calculate with a loop, two shells at a time |
---|
1047 | |
---|
1048 | ii=0; |
---|
1049 | fval=0; |
---|
1050 | |
---|
1051 | do { |
---|
1052 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
1053 | voli = 4*pi/3*ri*ri*ri; |
---|
1054 | sldi = rhocore-rhoshel; |
---|
1055 | fval += voli*sldi*F_func(ri*x); |
---|
1056 | ri += ts; |
---|
1057 | voli = 4*pi/3*ri*ri*ri; |
---|
1058 | sldi = rhoshel-rhocore; |
---|
1059 | fval += voli*sldi*F_func(ri*x); |
---|
1060 | ii+=1; //do 2 layers at a time |
---|
1061 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1062 | |
---|
1063 | fval *= fval; //square it |
---|
1064 | fval /= voli; //normalize by the overall volume |
---|
1065 | fval *= scale*1e8; |
---|
1066 | fval += bkg; |
---|
1067 | |
---|
1068 | return(fval); |
---|
1069 | } |
---|
1070 | |
---|
1071 | /* |
---|
1072 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
1073 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
1074 | //must always be a surfactant layer on the outside |
---|
1075 | // |
---|
1076 | // bragg peaks arise naturally from the periodicity of the sample |
---|
1077 | // resolution smeared version gives he most appropriate view of the model |
---|
1078 | // |
---|
1079 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
1080 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
1081 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
1082 | // |
---|
1083 | Warning: |
---|
1084 | The call to WaveData() below returns a pointer to the middle |
---|
1085 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
1086 | calculations could cause memory to move, you should copy the coefficient |
---|
1087 | values to local variables or an array before such operations. |
---|
1088 | */ |
---|
1089 | double |
---|
1090 | PolyMultiShell(double dp[], double q) |
---|
1091 | { |
---|
1092 | double x; |
---|
1093 | double scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
1094 | int ii,minPairs,maxPairs,first; |
---|
1095 | double fval,ri,pi; |
---|
1096 | double avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
1097 | |
---|
1098 | pi = 4.0*atan(1.0); |
---|
1099 | x= q; |
---|
1100 | |
---|
1101 | scale = dp[0]; |
---|
1102 | avg = dp[1]; // average (total) outer radius |
---|
1103 | pd = dp[2]; |
---|
1104 | rcore = dp[3]; |
---|
1105 | ts = dp[4]; |
---|
1106 | tw = dp[5]; |
---|
1107 | rhocore = dp[6]; |
---|
1108 | rhoshel = dp[7]; |
---|
1109 | bkg = dp[8]; |
---|
1110 | |
---|
1111 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
1112 | |
---|
1113 | //max radius set to be 5 std deviations past mean |
---|
1114 | hi = avg + pd*avg*5.0; |
---|
1115 | lo = avg - pd*avg*5.0; |
---|
1116 | |
---|
1117 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
1118 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
1119 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
1120 | |
---|
1121 | ii=minPairs; |
---|
1122 | fval=0; |
---|
1123 | d1 = 0; |
---|
1124 | d2 = 0; |
---|
1125 | r1 = 0; |
---|
1126 | r2 = 0; |
---|
1127 | distr = 0; |
---|
1128 | first = 1; |
---|
1129 | do { |
---|
1130 | //make the current values old |
---|
1131 | r1 = r2; |
---|
1132 | d1 = d2; |
---|
1133 | |
---|
1134 | ri = (double)ii*(ts+tw) - tw + rcore; |
---|
1135 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
1136 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
1137 | r2 = ri; |
---|
1138 | d2 = SchulzPoint(ri,avg,zz); |
---|
1139 | if( !first ) { |
---|
1140 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
1141 | } |
---|
1142 | ii+=1; |
---|
1143 | first = 0; |
---|
1144 | } while(ii<=maxPairs); |
---|
1145 | |
---|
1146 | fval /= 4*pi/3*avg*avg*avg; //normalize by the overall volume |
---|
1147 | fval /= distr; |
---|
1148 | fval *= scale; |
---|
1149 | fval += bkg; |
---|
1150 | |
---|
1151 | return(fval); |
---|
1152 | } |
---|
1153 | |
---|
1154 | double |
---|
1155 | MultiShellGuts(double x,double rcore,double ts,double tw,double rhocore,double rhoshel,int num) { |
---|
1156 | |
---|
1157 | double ri,sldi,fval,voli,pi; |
---|
1158 | int ii; |
---|
1159 | |
---|
1160 | pi = 4.0*atan(1.0); |
---|
1161 | ii=0; |
---|
1162 | fval=0; |
---|
1163 | |
---|
1164 | do { |
---|
1165 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
1166 | voli = 4*pi/3*ri*ri*ri; |
---|
1167 | sldi = rhocore-rhoshel; |
---|
1168 | fval += voli*sldi*F_func(ri*x); |
---|
1169 | ri += ts; |
---|
1170 | voli = 4*pi/3*ri*ri*ri; |
---|
1171 | sldi = rhoshel-rhocore; |
---|
1172 | fval += voli*sldi*F_func(ri*x); |
---|
1173 | ii+=1; //do 2 layers at a time |
---|
1174 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
1175 | |
---|
1176 | fval *= fval; |
---|
1177 | fval /= voli; |
---|
1178 | fval *= 1e8; |
---|
1179 | |
---|
1180 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
1181 | } |
---|
1182 | |
---|
1183 | static double |
---|
1184 | SchulzPoint(double x, double avg, double zz) { |
---|
1185 | |
---|
1186 | double dr; |
---|
1187 | |
---|
1188 | dr = zz*log(x) - gammln(zz+1)+(zz+1)*log((zz+1)/avg)-(x/avg*(zz+1)); |
---|
1189 | return (exp(dr)); |
---|
1190 | } |
---|
1191 | |
---|
1192 | static double |
---|
1193 | gammln(double xx) { |
---|
1194 | |
---|
1195 | double x,y,tmp,ser; |
---|
1196 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
1197 | 24.01409824083091,-1.231739572450155, |
---|
1198 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
1199 | int j; |
---|
1200 | |
---|
1201 | y=x=xx; |
---|
1202 | tmp=x+5.5; |
---|
1203 | tmp -= (x+0.5)*log(tmp); |
---|
1204 | ser=1.000000000190015; |
---|
1205 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
1206 | return -tmp+log(2.5066282746310005*ser/x); |
---|
1207 | } |
---|
1208 | |
---|
1209 | double |
---|
1210 | F_func(double qr) { |
---|
1211 | double sc; |
---|
1212 | if (qr == 0){ |
---|
1213 | sc = 1.0; |
---|
1214 | }else{ |
---|
1215 | sc=(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
1216 | } |
---|
1217 | return sc; |
---|
1218 | } |
---|
1219 | |
---|