[ae3ce4e] | 1 | /* SimpleFit.c |
---|
| 2 | |
---|
| 3 | A simplified project designed to act as a template for your curve fitting function. |
---|
| 4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
| 8 | #include "GaussWeights.h" |
---|
| 9 | #include "libSphere.h" |
---|
| 10 | |
---|
| 11 | // scattering from a sphere - hardly needs to be an XOP... |
---|
| 12 | double |
---|
| 13 | SphereForm(double dp[], double q) |
---|
| 14 | { |
---|
| 15 | double scale,radius,delrho,bkg; //my local names |
---|
| 16 | double bes,f,vol,f2,pi; |
---|
| 17 | |
---|
| 18 | pi = 4.0*atan(1.0); |
---|
| 19 | scale = dp[0]; |
---|
| 20 | radius = dp[1]; |
---|
| 21 | delrho = dp[2]; |
---|
| 22 | bkg = dp[3]; |
---|
| 23 | //handle q==0 separately |
---|
| 24 | if(q==0){ |
---|
| 25 | f = 4.0/3.0*pi*radius*radius*radius*delrho*delrho*scale*1.0e8 + bkg; |
---|
| 26 | return(f); |
---|
| 27 | } |
---|
| 28 | |
---|
| 29 | bes = 3.0*(sin(q*radius)-q*radius*cos(q*radius))/(q*q*q)/(radius*radius*radius); |
---|
| 30 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
| 31 | f = vol*bes*delrho; // [=] A-1 |
---|
| 32 | // normalize to single particle volume, convert to 1/cm |
---|
| 33 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
| 34 | |
---|
| 35 | return(scale*f2+bkg); //scale, and add in the background |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
| 39 | double |
---|
| 40 | CoreShellForm(double dp[], double q) |
---|
| 41 | { |
---|
| 42 | double x,pi; |
---|
| 43 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 44 | double bes,f,vol,qr,contr,f2; |
---|
| 45 | |
---|
| 46 | pi = 4.0*atan(1.0); |
---|
| 47 | x=q; |
---|
| 48 | |
---|
| 49 | scale = dp[0]; |
---|
| 50 | rcore = dp[1]; |
---|
| 51 | thick = dp[2]; |
---|
| 52 | rhocore = dp[3]; |
---|
| 53 | rhoshel = dp[4]; |
---|
| 54 | rhosolv = dp[5]; |
---|
| 55 | bkg = dp[6]; |
---|
| 56 | // core first, then add in shell |
---|
| 57 | qr=x*rcore; |
---|
| 58 | contr = rhocore-rhoshel; |
---|
| 59 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 60 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 61 | f = vol*bes*contr; |
---|
| 62 | //now the shell |
---|
| 63 | qr=x*(rcore+thick); |
---|
| 64 | contr = rhoshel-rhosolv; |
---|
| 65 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 66 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 67 | f += vol*bes*contr; |
---|
| 68 | |
---|
| 69 | // normalize to particle volume and rescale from [A-1] to [cm-1] |
---|
| 70 | f2 = f*f/vol*1.0e8; |
---|
| 71 | |
---|
| 72 | //scale if desired |
---|
| 73 | f2 *= scale; |
---|
| 74 | // then add in the background |
---|
| 75 | f2 += bkg; |
---|
| 76 | |
---|
| 77 | return(f2); |
---|
| 78 | } |
---|
| 79 | |
---|
| 80 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
| 81 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
| 82 | double |
---|
| 83 | VesicleForm(double dp[], double q) |
---|
| 84 | { |
---|
| 85 | double x,pi; |
---|
| 86 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 87 | double bes,f,vol,qr,contr,f2; |
---|
| 88 | pi = 4.0*atan(1.0); |
---|
| 89 | x= q; |
---|
| 90 | |
---|
| 91 | scale = dp[0]; |
---|
| 92 | rcore = dp[1]; |
---|
| 93 | thick = dp[2]; |
---|
| 94 | rhocore = dp[3]; |
---|
| 95 | rhosolv = rhocore; |
---|
| 96 | rhoshel = dp[4]; |
---|
| 97 | bkg = dp[5]; |
---|
| 98 | // core first, then add in shell |
---|
| 99 | qr=x*rcore; |
---|
| 100 | contr = rhocore-rhoshel; |
---|
| 101 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 102 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 103 | f = vol*bes*contr; |
---|
| 104 | //now the shell |
---|
| 105 | qr=x*(rcore+thick); |
---|
| 106 | contr = rhoshel-rhosolv; |
---|
| 107 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 108 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 109 | f += vol*bes*contr; |
---|
| 110 | |
---|
| 111 | // normalize to the particle volume and rescale from [A-1] to [cm-1] |
---|
| 112 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
| 113 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
| 114 | f2 = f*f/vol*1.0e8; |
---|
| 115 | |
---|
| 116 | //scale if desired |
---|
| 117 | f2 *= scale; |
---|
| 118 | // then add in the background |
---|
| 119 | f2 += bkg; |
---|
| 120 | |
---|
| 121 | return(f2); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
| 126 | // |
---|
| 127 | double |
---|
| 128 | PolyCoreForm(double dp[], double q) |
---|
| 129 | { |
---|
| 130 | double pi; |
---|
| 131 | double scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
| 132 | double d, g ,h; |
---|
| 133 | double qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
| 134 | double t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
| 135 | double zp3,vpoly; |
---|
| 136 | double s2y, arg1, arg2, arg3, drh1, drh2; |
---|
| 137 | |
---|
| 138 | pi = 4.0*atan(1.0); |
---|
| 139 | qq= q; |
---|
| 140 | scale = dp[0]; |
---|
| 141 | corrad = dp[1]; |
---|
| 142 | sig = dp[2]; |
---|
| 143 | del = dp[3]; |
---|
| 144 | drho1 = dp[4]-dp[5]; //core-shell |
---|
| 145 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
| 146 | bkg = dp[7]; |
---|
| 147 | |
---|
| 148 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
| 149 | |
---|
| 150 | h=qq; |
---|
| 151 | |
---|
| 152 | drh1 = drho1; |
---|
| 153 | drh2 = drho2; |
---|
| 154 | g = drh2 * -1. / drh1; |
---|
| 155 | zp1 = zz + 1.; |
---|
| 156 | zp2 = zz + 2.; |
---|
| 157 | zp3 = zz + 3.; |
---|
| 158 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | // remember that h is the passed in value of q for the calculation |
---|
| 162 | y = h *del; |
---|
| 163 | x = h *corrad; |
---|
| 164 | d = atan(x * 2. / zp1); |
---|
| 165 | arg1 = zp1 * d; |
---|
| 166 | arg2 = zp2 * d; |
---|
| 167 | arg3 = zp3 * d; |
---|
| 168 | sy = sin(y); |
---|
| 169 | cy = cos(y); |
---|
| 170 | s2y = sin(y * 2.); |
---|
| 171 | c2y = cos(y * 2.); |
---|
| 172 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
| 173 | c2 = g * y * (g - cy); |
---|
| 174 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
| 175 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
| 176 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
| 177 | c6 = c3 - g * g * sy * sy; |
---|
| 178 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
| 179 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
| 180 | c9 = g * sy * (1. - g * cy); |
---|
| 181 | |
---|
| 182 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
| 183 | tb1 = exp(zp1 * .5 * tb); |
---|
| 184 | tb2 = exp(zp2 * .5 * tb); |
---|
| 185 | tb3 = exp(zp3 * .5 * tb); |
---|
| 186 | |
---|
| 187 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
| 188 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
| 189 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
| 190 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
| 191 | t5 = t1 + t2 + t3 + t4; |
---|
| 192 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
| 193 | // normalize by the average volume !!! corrected for polydispersity |
---|
| 194 | // and convert to cm-1 |
---|
| 195 | form /= vpoly; |
---|
| 196 | form *= 1.0e8; |
---|
| 197 | //Scale |
---|
| 198 | form *= scale; |
---|
| 199 | // then add in the background |
---|
| 200 | form += bkg; |
---|
| 201 | |
---|
| 202 | return(form); |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 206 | // structure factor effects are explicitly and correctly included. |
---|
| 207 | // |
---|
| 208 | double |
---|
| 209 | PolyHardSphereIntensity(double dp[], double q) |
---|
| 210 | { |
---|
| 211 | double pi; |
---|
| 212 | double rad,z2,phi,cont,bkg,sigma; //my local names |
---|
| 213 | double mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
| 214 | double ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
| 215 | double ka,zz,v1,v2,p1,p2; |
---|
| 216 | double h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
| 217 | double capl,capl1,capmu,capmu1,r3,pq; |
---|
| 218 | double ka2,r1,heff; |
---|
| 219 | double hh,k; |
---|
| 220 | |
---|
| 221 | pi = 4.0*atan(1.0); |
---|
| 222 | k= q; |
---|
| 223 | |
---|
| 224 | rad = dp[0]; // radius (A) |
---|
| 225 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
| 226 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
| 227 | cont = dp[3]*1.0e4; // contrast (odd units) |
---|
| 228 | bkg = dp[4]; |
---|
| 229 | sigma = 2*rad; |
---|
| 230 | |
---|
| 231 | zz=1.0/(z2*z2)-1.0; |
---|
| 232 | bb = sigma/(zz+1.0); |
---|
| 233 | cc = zz+1.0; |
---|
| 234 | |
---|
| 235 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
| 236 | r1 = sigma/2.0; |
---|
| 237 | r3 = r1*r1*r1; |
---|
| 238 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
| 239 | rho=phi/(1.3333333333*pi*r3); |
---|
| 240 | t1 = rho*bb*cc; |
---|
| 241 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
| 242 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
| 243 | capd = 1.0-pi*t3/6.0; |
---|
| 244 | //************ |
---|
| 245 | v1=1.0/(1.0+bb*bb*k*k); |
---|
| 246 | v2=1.0/(4.0+bb*bb*k*k); |
---|
| 247 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
| 248 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
| 249 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
| 250 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
| 251 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
| 252 | s1=bb*cc; |
---|
| 253 | s2=cc*(cc+1.0)*bb*bb; |
---|
| 254 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
| 255 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
| 256 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
| 257 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
| 258 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
| 259 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
| 260 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
| 261 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
| 262 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
| 263 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
| 264 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
| 265 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
| 266 | |
---|
| 267 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
| 268 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
| 269 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
| 270 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
| 271 | |
---|
| 272 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
| 273 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
| 274 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
| 275 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
| 276 | |
---|
| 277 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
| 278 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
| 279 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
| 280 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
| 281 | |
---|
| 282 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
| 283 | |
---|
| 284 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
| 285 | |
---|
| 286 | //* This part computes the first integral in equation (1). It also |
---|
| 287 | // generates the KC approximated effective structure factor.*/ |
---|
| 288 | |
---|
| 289 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
| 290 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
| 291 | |
---|
| 292 | ka=k*(sigma/2.0); |
---|
| 293 | // |
---|
| 294 | hh=hint1+hint2; // this is the model intensity |
---|
| 295 | // |
---|
| 296 | heff=1.0+hint1/hint2; |
---|
| 297 | ka2=ka*ka; |
---|
| 298 | //* |
---|
| 299 | // heff is PY analytical solution for intensity divided by the |
---|
| 300 | // form factor. happ is the KC approximated effective S(q) |
---|
| 301 | |
---|
| 302 | //******************* |
---|
| 303 | // add in the background then return the intensity value |
---|
| 304 | |
---|
| 305 | return(hh+bkg); //scale, and add in the background |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
| 309 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
| 310 | // |
---|
| 311 | double |
---|
| 312 | BimodalSchulzSpheres(double dp[], double q) |
---|
| 313 | { |
---|
| 314 | double x,pq; |
---|
| 315 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
| 316 | double scale2,ravg2,pd2,rho2; //my local names |
---|
| 317 | |
---|
| 318 | x= q; |
---|
| 319 | |
---|
| 320 | scale = dp[0]; |
---|
| 321 | ravg = dp[1]; |
---|
| 322 | pd = dp[2]; |
---|
| 323 | rho = dp[3]; |
---|
| 324 | scale2 = dp[4]; |
---|
| 325 | ravg2 = dp[5]; |
---|
| 326 | pd2 = dp[6]; |
---|
| 327 | rho2 = dp[7]; |
---|
| 328 | rhos = dp[8]; |
---|
| 329 | bkg = dp[9]; |
---|
| 330 | |
---|
| 331 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 332 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
| 333 | // add in the background |
---|
| 334 | pq += bkg; |
---|
| 335 | |
---|
| 336 | return (pq); |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 340 | // |
---|
| 341 | double |
---|
| 342 | SchulzSpheres(double dp[], double q) |
---|
| 343 | { |
---|
| 344 | double x,pq; |
---|
| 345 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
| 346 | |
---|
| 347 | x= q; |
---|
| 348 | |
---|
| 349 | scale = dp[0]; |
---|
| 350 | ravg = dp[1]; |
---|
| 351 | pd = dp[2]; |
---|
| 352 | rho = dp[3]; |
---|
| 353 | rhos = dp[4]; |
---|
| 354 | bkg = dp[5]; |
---|
| 355 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 356 | // add in the background |
---|
| 357 | pq += bkg; |
---|
| 358 | |
---|
| 359 | return(pq); |
---|
| 360 | } |
---|
| 361 | |
---|
| 362 | // calculates everything but the background |
---|
| 363 | double |
---|
| 364 | SchulzSphere_Fn(double scale, double ravg, double pd, double rho, double rhos, double x) |
---|
| 365 | { |
---|
| 366 | double zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
| 367 | double aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
| 368 | double v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
| 369 | |
---|
| 370 | pi = 4.0*atan(1.0); |
---|
| 371 | delrho = rho-rhos; |
---|
| 372 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 373 | |
---|
| 374 | zp1 = zz + 1.0; |
---|
| 375 | zp2 = zz + 2.0; |
---|
| 376 | zp3 = zz + 3.0; |
---|
| 377 | zp4 = zz + 4.0; |
---|
| 378 | zp5 = zz + 5.0; |
---|
| 379 | zp6 = zz + 6.0; |
---|
| 380 | zp7 = zz + 7.0; |
---|
| 381 | // |
---|
| 382 | aa = (zz+1)/x/ravg; |
---|
| 383 | |
---|
| 384 | at1 = atan(1.0/aa); |
---|
| 385 | at2 = atan(2.0/aa); |
---|
| 386 | // |
---|
| 387 | // calculations are performed to avoid large # errors |
---|
| 388 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
| 389 | // |
---|
| 390 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
| 391 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
| 392 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
| 393 | // print t1,t2,t3 |
---|
| 394 | rt1 = pow(10,t1); |
---|
| 395 | rt2 = pow(10,t2); |
---|
| 396 | rt3 = pow(10,t3); |
---|
| 397 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
| 398 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
| 399 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
| 400 | g1 = (v1+v2+v3); |
---|
| 401 | |
---|
| 402 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
| 403 | pq = pow(10,pq)*8*pi*pi*delrho*delrho; |
---|
| 404 | |
---|
| 405 | // |
---|
| 406 | // beta factor is not used here, but could be for the |
---|
| 407 | // decoupling approximation |
---|
| 408 | // |
---|
| 409 | // g11 = g1 |
---|
| 410 | // gd = -zp7*log(aa) |
---|
| 411 | // g1 = log(g11) + gd |
---|
| 412 | // |
---|
| 413 | // t1 = zp1*at1 |
---|
| 414 | // t2 = zp2*at1 |
---|
| 415 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
| 416 | // g22 = g2*g2 |
---|
| 417 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
| 418 | // beta = 2*alog(beta) |
---|
| 419 | |
---|
| 420 | //re-normalize by the average volume |
---|
| 421 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
| 422 | pq /= vpoly; |
---|
| 423 | //scale, convert to cm^-1 |
---|
| 424 | pq *= scale * 1.0e8; |
---|
| 425 | |
---|
| 426 | return(pq); |
---|
| 427 | } |
---|
| 428 | |
---|
| 429 | // scattering from a uniform sphere with a rectangular size distribution |
---|
| 430 | // |
---|
| 431 | double |
---|
| 432 | PolyRectSpheres(double dp[], double q) |
---|
| 433 | { |
---|
| 434 | double pi,x; |
---|
| 435 | double scale,rad,pd,cont,bkg; //my local names |
---|
| 436 | double inten,h1,qw,qr,width,sig,averad3; |
---|
| 437 | |
---|
| 438 | pi = 4.0*atan(1.0); |
---|
| 439 | x= q; |
---|
| 440 | |
---|
| 441 | scale = dp[0]; |
---|
| 442 | rad = dp[1]; // radius (A) |
---|
| 443 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
| 444 | cont = dp[3]; // contrast (A^-2) |
---|
| 445 | bkg = dp[4]; |
---|
| 446 | |
---|
| 447 | // as usual, poly = sig/ravg |
---|
| 448 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
| 449 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
| 450 | |
---|
| 451 | sig = pd*rad; |
---|
| 452 | width = sqrt(3.0)*sig; |
---|
| 453 | |
---|
| 454 | //x is the q-value |
---|
| 455 | qw = x*width; |
---|
| 456 | qr = x*rad; |
---|
| 457 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
| 458 | h1 -= 5.0/2.0*cos(2*qr)*sin(qw)*cos(qw); |
---|
| 459 | h1 += 0.5*qr*qr*cos(2*qr)*sin(2*qw); |
---|
| 460 | h1 += 0.5*qw*qw*cos(2*qr)*sin(2*qw); |
---|
| 461 | h1 += qw*qr*sin(2*qr)*cos(2*qw); |
---|
| 462 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
| 463 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
| 464 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
| 465 | |
---|
| 466 | // calculate P(q) = <f^2> |
---|
| 467 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
| 468 | |
---|
| 469 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
| 470 | // with |
---|
| 471 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
| 472 | |
---|
| 473 | // normalize to the average volume |
---|
| 474 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
| 475 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
| 476 | |
---|
| 477 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
| 478 | inten /= 4.0*pi/3.0*averad3; |
---|
| 479 | //resacle to 1/cm |
---|
| 480 | inten *= 1.0e8; |
---|
| 481 | //scale the result |
---|
| 482 | inten *= scale; |
---|
| 483 | // then add in the background |
---|
| 484 | inten += bkg; |
---|
| 485 | |
---|
| 486 | return(inten); |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | |
---|
| 490 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
| 491 | // |
---|
| 492 | double |
---|
| 493 | GaussPolySphere(double dp[], double q) |
---|
| 494 | { |
---|
| 495 | double pi,x; |
---|
| 496 | double scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
| 497 | double va,vb,zi,yy,summ,inten; |
---|
| 498 | int nord=20,ii; |
---|
| 499 | |
---|
| 500 | pi = 4.0*atan(1.0); |
---|
| 501 | x= q; |
---|
| 502 | |
---|
| 503 | scale=dp[0]; |
---|
| 504 | rad=dp[1]; |
---|
| 505 | pd=dp[2]; |
---|
| 506 | sig=pd*rad; |
---|
| 507 | rho=dp[3]; |
---|
| 508 | rhos=dp[4]; |
---|
| 509 | delrho=rho-rhos; |
---|
| 510 | bkg=dp[5]; |
---|
| 511 | |
---|
| 512 | va = -4.0*sig + rad; |
---|
| 513 | if (va<0) { |
---|
| 514 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
| 515 | } |
---|
| 516 | vb = 4.0*sig +rad; |
---|
| 517 | |
---|
| 518 | summ = 0.0; // initialize integral |
---|
| 519 | for(ii=0;ii<nord;ii+=1) { |
---|
| 520 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 521 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 522 | // calculate sphere scattering |
---|
| 523 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 524 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 525 | yy *= yy; |
---|
| 526 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
| 527 | |
---|
| 528 | summ += yy; //add to the running total of the quadrature |
---|
| 529 | } |
---|
| 530 | // calculate value of integral to return |
---|
| 531 | inten = (vb-va)/2.0*summ; |
---|
| 532 | |
---|
| 533 | //re-normalize by polydisperse sphere volume |
---|
| 534 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
| 535 | |
---|
| 536 | inten *= 1.0e8; |
---|
| 537 | inten *= scale; |
---|
| 538 | inten += bkg; |
---|
| 539 | |
---|
| 540 | return(inten); //scale, and add in the background |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
| 544 | // |
---|
| 545 | double |
---|
| 546 | LogNormalPolySphere(double dp[], double q) |
---|
| 547 | { |
---|
| 548 | double pi,x; |
---|
| 549 | double scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
| 550 | double va,vb,zi,yy,summ,inten; |
---|
| 551 | int nord=76,ii; |
---|
| 552 | |
---|
| 553 | pi = 4.0*atan(1.0); |
---|
| 554 | x= q; |
---|
| 555 | |
---|
| 556 | scale=dp[0]; |
---|
| 557 | rad=dp[1]; //rad is the median radius |
---|
| 558 | mu = log(dp[1]); |
---|
| 559 | sig=dp[2]; |
---|
| 560 | rho=dp[3]; |
---|
| 561 | rhos=dp[4]; |
---|
| 562 | delrho=rho-rhos; |
---|
| 563 | bkg=dp[5]; |
---|
| 564 | |
---|
| 565 | va = -3.5*sig + mu; |
---|
| 566 | va = exp(va); |
---|
| 567 | if (va<0) { |
---|
| 568 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
| 569 | } |
---|
| 570 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
| 571 | vb = exp(vb); |
---|
| 572 | |
---|
| 573 | summ = 0.0; // initialize integral |
---|
| 574 | for(ii=0;ii<nord;ii+=1) { |
---|
| 575 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 576 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 577 | // calculate sphere scattering |
---|
| 578 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 579 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 580 | yy *= yy; |
---|
| 581 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
| 582 | |
---|
| 583 | summ += yy; //add to the running total of the quadrature |
---|
| 584 | } |
---|
| 585 | // calculate value of integral to return |
---|
| 586 | inten = (vb-va)/2.0*summ; |
---|
| 587 | |
---|
| 588 | //re-normalize by polydisperse sphere volume |
---|
| 589 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
| 590 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
| 591 | |
---|
| 592 | inten *= 1.0e8; |
---|
| 593 | inten *= scale; |
---|
| 594 | inten += bkg; |
---|
| 595 | |
---|
| 596 | return(inten); |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | static double |
---|
| 600 | LogNormal_distr(double sig, double mu, double pt) |
---|
| 601 | { |
---|
| 602 | double retval,pi; |
---|
| 603 | |
---|
| 604 | pi = 4.0*atan(1.0); |
---|
| 605 | retval = (1/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
| 606 | return(retval); |
---|
| 607 | } |
---|
| 608 | |
---|
| 609 | static double |
---|
| 610 | Gauss_distr(double sig, double avg, double pt) |
---|
| 611 | { |
---|
| 612 | double retval,Pi; |
---|
| 613 | |
---|
| 614 | Pi = 4.0*atan(1.0); |
---|
| 615 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
| 616 | return(retval); |
---|
| 617 | } |
---|
| 618 | |
---|
| 619 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
| 620 | // - the polydispersity is of the WHOLE sphere |
---|
| 621 | // |
---|
| 622 | double |
---|
| 623 | PolyCoreShellRatio(double dp[], double q) |
---|
| 624 | { |
---|
| 625 | double pi,x; |
---|
| 626 | double scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
| 627 | double sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
| 628 | double pi43,c1,c2,form,volume,arg1,arg2; |
---|
| 629 | |
---|
| 630 | pi = 4.0*atan(1.0); |
---|
| 631 | x= q; |
---|
| 632 | |
---|
| 633 | scale = dp[0]; |
---|
| 634 | corrad = dp[1]; |
---|
| 635 | thick = dp[2]; |
---|
| 636 | sig = dp[3]; |
---|
| 637 | sld1 = dp[4]; |
---|
| 638 | sld2 = dp[5]; |
---|
| 639 | sld3 = dp[6]; |
---|
| 640 | bkg = dp[7]; |
---|
| 641 | |
---|
| 642 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
| 643 | shlrad = corrad + thick; |
---|
| 644 | drho1 = sld1-sld2; //core-shell |
---|
| 645 | drho2 = sld2-sld3; //shell-solvent |
---|
| 646 | zp1 = zz + 1.; |
---|
| 647 | zp2 = zz + 2.; |
---|
| 648 | zp3 = zz + 3.; |
---|
| 649 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
| 650 | |
---|
| 651 | // the beta factor is not calculated |
---|
| 652 | // the calculated form factor <f^2> has units [length^2] |
---|
| 653 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
| 654 | // conversion to get to absolute scale |
---|
| 655 | |
---|
| 656 | pi43=4.0/3.0*pi; |
---|
| 657 | pp=corrad/shlrad; |
---|
| 658 | volume=pi43*shlrad*shlrad*shlrad; |
---|
| 659 | c1=drho1*volume; |
---|
| 660 | c2=drho2*volume; |
---|
| 661 | |
---|
| 662 | arg1 = x*shlrad*pp; |
---|
| 663 | arg2 = x*shlrad; |
---|
| 664 | |
---|
| 665 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
| 666 | form += c2*c2*fnt2(arg2,zz); |
---|
| 667 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
| 668 | |
---|
| 669 | //convert the result to [cm^-1] |
---|
| 670 | |
---|
| 671 | //scale the result |
---|
| 672 | // - divide by the polydisperse volume, mult by 10^8 |
---|
| 673 | form /= vpoly; |
---|
| 674 | form *= 1.0e8; |
---|
| 675 | form *= scale; |
---|
| 676 | |
---|
| 677 | //add in the background |
---|
| 678 | form += bkg; |
---|
| 679 | |
---|
| 680 | return(form); |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 684 | //c |
---|
| 685 | //c function fnt2(y,z) |
---|
| 686 | //c |
---|
| 687 | double |
---|
| 688 | fnt2(double yy, double zz) |
---|
| 689 | { |
---|
| 690 | double z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
| 691 | |
---|
| 692 | z1=zz+1.0; |
---|
| 693 | z2=zz+2.0; |
---|
| 694 | z3=zz+3.0; |
---|
| 695 | u=yy/z1; |
---|
| 696 | ww=atan(2.0*u); |
---|
| 697 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
| 698 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
| 699 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
| 700 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
| 701 | |
---|
| 702 | return(ans); |
---|
| 703 | } |
---|
| 704 | |
---|
| 705 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 706 | //c |
---|
| 707 | //c function fnt3(y,p,z) |
---|
| 708 | //c |
---|
| 709 | double |
---|
| 710 | fnt3(double yy, double pp, double zz) |
---|
| 711 | { |
---|
| 712 | double z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
| 713 | |
---|
| 714 | z1=zz+1.0; |
---|
| 715 | z2=zz+2.0; |
---|
| 716 | z3=zz+3.0; |
---|
| 717 | yp=(1.0+pp)*yy; |
---|
| 718 | yn=(1.0-pp)*yy; |
---|
| 719 | up=yp/z1; |
---|
| 720 | un=yn/z1; |
---|
| 721 | vp=atan(up); |
---|
| 722 | vn=atan(un); |
---|
| 723 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
| 724 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
| 725 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
| 726 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
| 727 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
| 728 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
| 729 | ans=4.5/z1/pow(yy,6); |
---|
| 730 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
| 731 | |
---|
| 732 | return(ans); |
---|
| 733 | } |
---|
| 734 | |
---|
| 735 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
| 736 | // are properly accounted for... |
---|
| 737 | // Input (fitting) variables are: |
---|
| 738 | // larger sphere radius(angstroms) = guess[0] |
---|
| 739 | // smaller sphere radius (A) = w[1] |
---|
| 740 | // number fraction of larger spheres = guess[2] |
---|
| 741 | // total volume fraction of spheres = guess[3] |
---|
| 742 | // size ratio, alpha(0<a<1) = derived |
---|
| 743 | // SLD(A-2) of larger particle = guess[4] |
---|
| 744 | // SLD(A-2) of smaller particle = guess[5] |
---|
| 745 | // SLD(A-2) of the solvent = guess[6] |
---|
| 746 | // background = guess[7] |
---|
| 747 | double |
---|
| 748 | BinaryHS(double dp[], double q) |
---|
| 749 | { |
---|
| 750 | double x,pi; |
---|
| 751 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
| 752 | double psf11,psf12,psf22; |
---|
| 753 | double phi1,phi2,phr,a3; |
---|
| 754 | double v1,v2,n1,n2,qr1,qr2,b1,b2; |
---|
| 755 | int err; |
---|
| 756 | |
---|
| 757 | pi = 4.0*atan(1.0); |
---|
| 758 | x= q; |
---|
| 759 | r2 = dp[0]; |
---|
| 760 | r1 = dp[1]; |
---|
| 761 | phi2 = dp[2]; |
---|
| 762 | phi1 = dp[3]; |
---|
| 763 | rho2 = dp[4]; |
---|
| 764 | rho1 = dp[5]; |
---|
| 765 | rhos = dp[6]; |
---|
| 766 | bgd = dp[7]; |
---|
| 767 | |
---|
| 768 | |
---|
| 769 | phi = phi1 + phi2; |
---|
| 770 | aa = r1/r2; |
---|
| 771 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 772 | a3=aa*aa*aa; |
---|
| 773 | phr=phi2/phi; |
---|
| 774 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 775 | // calculate the PSF's here |
---|
| 776 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
| 777 | |
---|
| 778 | // /* do form factor calculations */ |
---|
| 779 | |
---|
| 780 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
| 781 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
| 782 | |
---|
| 783 | n1 = phi1/v1; |
---|
| 784 | n2 = phi2/v2; |
---|
| 785 | |
---|
| 786 | qr1 = r1*x; |
---|
| 787 | qr2 = r2*x; |
---|
| 788 | |
---|
| 789 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*(sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
| 790 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*(sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
| 791 | inten = n1*b1*b1*psf11; |
---|
| 792 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
| 793 | inten += n2*b2*b2*psf22; |
---|
| 794 | ///* convert I(1/A) to (1/cm) */ |
---|
| 795 | inten *= 1.0e8; |
---|
| 796 | |
---|
| 797 | inten += bgd; |
---|
| 798 | |
---|
| 799 | return(inten); |
---|
| 800 | } |
---|
| 801 | |
---|
| 802 | double |
---|
| 803 | BinaryHS_PSF11(double dp[], double q) |
---|
| 804 | { |
---|
| 805 | double x,pi; |
---|
| 806 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 807 | double psf11,psf12,psf22; |
---|
| 808 | double phi1,phi2,phr,a3; |
---|
| 809 | int err; |
---|
| 810 | |
---|
| 811 | pi = 4.0*atan(1.0); |
---|
| 812 | x= q; |
---|
| 813 | r2 = dp[0]; |
---|
| 814 | r1 = dp[1]; |
---|
| 815 | phi2 = dp[2]; |
---|
| 816 | phi1 = dp[3]; |
---|
| 817 | rho2 = dp[4]; |
---|
| 818 | rho1 = dp[5]; |
---|
| 819 | rhos = dp[6]; |
---|
| 820 | bgd = dp[7]; |
---|
| 821 | phi = phi1 + phi2; |
---|
| 822 | aa = r1/r2; |
---|
| 823 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 824 | a3=aa*aa*aa; |
---|
| 825 | phr=phi2/phi; |
---|
| 826 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 827 | // calculate the PSF's here |
---|
| 828 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
| 829 | |
---|
| 830 | return(psf11); //scale, and add in the background |
---|
| 831 | } |
---|
| 832 | |
---|
| 833 | double |
---|
| 834 | BinaryHS_PSF12(double dp[], double q) |
---|
| 835 | { |
---|
| 836 | double x,pi; |
---|
| 837 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 838 | double psf11,psf12,psf22; |
---|
| 839 | double phi1,phi2,phr,a3; |
---|
| 840 | int err; |
---|
| 841 | |
---|
| 842 | pi = 4.0*atan(1.0); |
---|
| 843 | x= q; |
---|
| 844 | r2 = dp[0]; |
---|
| 845 | r1 = dp[1]; |
---|
| 846 | phi2 = dp[2]; |
---|
| 847 | phi1 = dp[3]; |
---|
| 848 | rho2 = dp[4]; |
---|
| 849 | rho1 = dp[5]; |
---|
| 850 | rhos = dp[6]; |
---|
| 851 | bgd = dp[7]; |
---|
| 852 | phi = phi1 + phi2; |
---|
| 853 | aa = r1/r2; |
---|
| 854 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 855 | a3=aa*aa*aa; |
---|
| 856 | phr=phi2/phi; |
---|
| 857 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 858 | // calculate the PSF's here |
---|
| 859 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
| 860 | |
---|
| 861 | return(psf12); //scale, and add in the background |
---|
| 862 | } |
---|
| 863 | |
---|
| 864 | double |
---|
| 865 | BinaryHS_PSF22(double dp[], double q) |
---|
| 866 | { |
---|
| 867 | double x,pi; |
---|
| 868 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 869 | double psf11,psf12,psf22; |
---|
| 870 | double phi1,phi2,phr,a3; |
---|
| 871 | int err; |
---|
| 872 | |
---|
| 873 | pi = 4.0*atan(1.0); |
---|
| 874 | x= q; |
---|
| 875 | |
---|
| 876 | r2 = dp[0]; |
---|
| 877 | r1 = dp[1]; |
---|
| 878 | phi2 = dp[2]; |
---|
| 879 | phi1 = dp[3]; |
---|
| 880 | rho2 = dp[4]; |
---|
| 881 | rho1 = dp[5]; |
---|
| 882 | rhos = dp[6]; |
---|
| 883 | bgd = dp[7]; |
---|
| 884 | phi = phi1 + phi2; |
---|
| 885 | aa = r1/r2; |
---|
| 886 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 887 | a3=aa*aa*aa; |
---|
| 888 | phr=phi2/phi; |
---|
| 889 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 890 | // calculate the PSF's here |
---|
| 891 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
| 892 | |
---|
| 893 | return(psf22); //scale, and add in the background |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | int |
---|
| 897 | ashcroft(double qval, double r2, double nf2, double aa, double phi, double *s11, double *s22, double *s12) |
---|
| 898 | { |
---|
| 899 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
| 900 | |
---|
| 901 | // calculate constant terms |
---|
| 902 | double s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
| 903 | double a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
| 904 | double err=0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
| 905 | double c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
| 906 | double t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
| 907 | |
---|
| 908 | s2 = 2.0*r2; |
---|
| 909 | s1 = aa*s2; |
---|
| 910 | v = phi; |
---|
| 911 | a3 = aa*aa*aa; |
---|
| 912 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
| 913 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
| 914 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
| 915 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
| 916 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
| 917 | wmv = 1/(1.-v); |
---|
| 918 | wmv3 = wmv*wmv*wmv; |
---|
| 919 | wmv4 = wmv*wmv3; |
---|
| 920 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 921 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 922 | a2=a2i/a3; |
---|
| 923 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
| 924 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
| 925 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
| 926 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
| 927 | gm12=2.*gm1*(1.-aa)/aa; |
---|
| 928 | //c |
---|
| 929 | //c calculate the direct correlation functions and print results |
---|
| 930 | //c |
---|
| 931 | // do 20 j=1,npts |
---|
| 932 | |
---|
| 933 | yy=qval*s2; |
---|
| 934 | //c calculate direct correlation functions |
---|
| 935 | //c ----c11 |
---|
| 936 | ay=aa*yy; |
---|
| 937 | ay2 = ay*ay; |
---|
| 938 | ay3 = ay*ay*ay; |
---|
| 939 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
| 940 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
| 941 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
| 942 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
| 943 | |
---|
| 944 | //c ------c22 |
---|
| 945 | y2=yy*yy; |
---|
| 946 | y3=yy*y2; |
---|
| 947 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
| 948 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
| 949 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
| 950 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
| 951 | |
---|
| 952 | //c -----c12 |
---|
| 953 | yl=.5*yy*(1.-aa); |
---|
| 954 | yl3=yl*yl*yl; |
---|
| 955 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
| 956 | y1=aa*yy; |
---|
| 957 | y13 = y1*y1*y1; |
---|
| 958 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
| 959 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
| 960 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
| 961 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
| 962 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
| 963 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
| 964 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
| 965 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
| 966 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
| 967 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
| 968 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
| 969 | ttt4=a1*(t41+t42)/y1; |
---|
| 970 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
| 971 | |
---|
| 972 | c11=f11; |
---|
| 973 | c22=f22; |
---|
| 974 | c12=f12; |
---|
| 975 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
| 976 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
| 977 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
| 978 | |
---|
| 979 | return(err); |
---|
| 980 | } |
---|
| 981 | |
---|
| 982 | |
---|
| 983 | |
---|
| 984 | /* |
---|
| 985 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
| 986 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 987 | //must always be a surfactant layer on the outside |
---|
| 988 | // |
---|
| 989 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 990 | // resolution smeared version gives he most appropriate view of the model |
---|
| 991 | |
---|
| 992 | Warning: |
---|
| 993 | The call to WaveData() below returns a pointer to the middle |
---|
| 994 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 995 | calculations could cause memory to move, you should copy the coefficient |
---|
| 996 | values to local variables or an array before such operations. |
---|
| 997 | */ |
---|
| 998 | double |
---|
| 999 | MultiShell(double dp[], double q) |
---|
| 1000 | { |
---|
| 1001 | double x; |
---|
| 1002 | double scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
| 1003 | int ii; |
---|
| 1004 | double fval,voli,ri,sldi; |
---|
| 1005 | double pi; |
---|
| 1006 | |
---|
| 1007 | pi = 4.0*atan(1.0); |
---|
| 1008 | |
---|
| 1009 | x= q; |
---|
| 1010 | scale = dp[0]; |
---|
| 1011 | rcore = dp[1]; |
---|
| 1012 | ts = dp[2]; |
---|
| 1013 | tw = dp[3]; |
---|
| 1014 | rhocore = dp[4]; |
---|
| 1015 | rhoshel = dp[5]; |
---|
| 1016 | num = dp[6]; |
---|
| 1017 | bkg = dp[7]; |
---|
| 1018 | |
---|
| 1019 | //calculate with a loop, two shells at a time |
---|
| 1020 | |
---|
| 1021 | ii=0; |
---|
| 1022 | fval=0; |
---|
| 1023 | |
---|
| 1024 | do { |
---|
| 1025 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
| 1026 | voli = 4*pi/3*ri*ri*ri; |
---|
| 1027 | sldi = rhocore-rhoshel; |
---|
| 1028 | fval += voli*sldi*F_func(ri*x); |
---|
| 1029 | ri += ts; |
---|
| 1030 | voli = 4*pi/3*ri*ri*ri; |
---|
| 1031 | sldi = rhoshel-rhocore; |
---|
| 1032 | fval += voli*sldi*F_func(ri*x); |
---|
| 1033 | ii+=1; //do 2 layers at a time |
---|
| 1034 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
| 1035 | |
---|
| 1036 | fval *= fval; //square it |
---|
| 1037 | fval /= voli; //normalize by the overall volume |
---|
| 1038 | fval *= scale*1e8; |
---|
| 1039 | fval += bkg; |
---|
| 1040 | |
---|
| 1041 | return(fval); |
---|
| 1042 | } |
---|
| 1043 | |
---|
| 1044 | /* |
---|
| 1045 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
| 1046 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 1047 | //must always be a surfactant layer on the outside |
---|
| 1048 | // |
---|
| 1049 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 1050 | // resolution smeared version gives he most appropriate view of the model |
---|
| 1051 | // |
---|
| 1052 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
| 1053 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
| 1054 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
| 1055 | // |
---|
| 1056 | Warning: |
---|
| 1057 | The call to WaveData() below returns a pointer to the middle |
---|
| 1058 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 1059 | calculations could cause memory to move, you should copy the coefficient |
---|
| 1060 | values to local variables or an array before such operations. |
---|
| 1061 | */ |
---|
| 1062 | double |
---|
| 1063 | PolyMultiShell(double dp[], double q) |
---|
| 1064 | { |
---|
| 1065 | double x; |
---|
| 1066 | double scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
| 1067 | int ii,minPairs,maxPairs,first; |
---|
| 1068 | double fval,ri,pi; |
---|
| 1069 | double avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
| 1070 | |
---|
| 1071 | pi = 4.0*atan(1.0); |
---|
| 1072 | x= q; |
---|
| 1073 | |
---|
| 1074 | scale = dp[0]; |
---|
| 1075 | avg = dp[1]; // average (total) outer radius |
---|
| 1076 | pd = dp[2]; |
---|
| 1077 | rcore = dp[3]; |
---|
| 1078 | ts = dp[4]; |
---|
| 1079 | tw = dp[5]; |
---|
| 1080 | rhocore = dp[6]; |
---|
| 1081 | rhoshel = dp[7]; |
---|
| 1082 | bkg = dp[8]; |
---|
| 1083 | |
---|
| 1084 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
| 1085 | |
---|
| 1086 | //max radius set to be 5 std deviations past mean |
---|
| 1087 | hi = avg + pd*avg*5.0; |
---|
| 1088 | lo = avg - pd*avg*5.0; |
---|
| 1089 | |
---|
| 1090 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
| 1091 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
| 1092 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
| 1093 | |
---|
| 1094 | ii=minPairs; |
---|
| 1095 | fval=0; |
---|
| 1096 | d1 = 0; |
---|
| 1097 | d2 = 0; |
---|
| 1098 | r1 = 0; |
---|
| 1099 | r2 = 0; |
---|
| 1100 | distr = 0; |
---|
| 1101 | first = 1; |
---|
| 1102 | do { |
---|
| 1103 | //make the current values old |
---|
| 1104 | r1 = r2; |
---|
| 1105 | d1 = d2; |
---|
| 1106 | |
---|
| 1107 | ri = (double)ii*(ts+tw) - tw + rcore; |
---|
| 1108 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
| 1109 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
| 1110 | r2 = ri; |
---|
| 1111 | d2 = SchulzPoint(ri,avg,zz); |
---|
| 1112 | if( !first ) { |
---|
| 1113 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
| 1114 | } |
---|
| 1115 | ii+=1; |
---|
| 1116 | first = 0; |
---|
| 1117 | } while(ii<=maxPairs); |
---|
| 1118 | |
---|
| 1119 | fval /= 4*pi/3*avg*avg*avg; //normalize by the overall volume |
---|
| 1120 | fval /= distr; |
---|
| 1121 | fval *= scale; |
---|
| 1122 | fval += bkg; |
---|
| 1123 | |
---|
| 1124 | return(fval); |
---|
| 1125 | } |
---|
| 1126 | |
---|
| 1127 | double |
---|
| 1128 | MultiShellGuts(double x,double rcore,double ts,double tw,double rhocore,double rhoshel,int num) { |
---|
| 1129 | |
---|
| 1130 | double ri,sldi,fval,voli,pi; |
---|
| 1131 | int ii; |
---|
| 1132 | |
---|
| 1133 | pi = 4.0*atan(1.0); |
---|
| 1134 | ii=0; |
---|
| 1135 | fval=0; |
---|
| 1136 | |
---|
| 1137 | do { |
---|
| 1138 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
| 1139 | voli = 4*pi/3*ri*ri*ri; |
---|
| 1140 | sldi = rhocore-rhoshel; |
---|
| 1141 | fval += voli*sldi*F_func(ri*x); |
---|
| 1142 | ri += ts; |
---|
| 1143 | voli = 4*pi/3*ri*ri*ri; |
---|
| 1144 | sldi = rhoshel-rhocore; |
---|
| 1145 | fval += voli*sldi*F_func(ri*x); |
---|
| 1146 | ii+=1; //do 2 layers at a time |
---|
| 1147 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
| 1148 | |
---|
| 1149 | fval *= fval; |
---|
| 1150 | fval /= voli; |
---|
| 1151 | fval *= 1e8; |
---|
| 1152 | |
---|
| 1153 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
| 1154 | } |
---|
| 1155 | |
---|
| 1156 | static double |
---|
| 1157 | SchulzPoint(double x, double avg, double zz) { |
---|
| 1158 | |
---|
| 1159 | double dr; |
---|
| 1160 | |
---|
| 1161 | dr = zz*log(x) - gammln(zz+1)+(zz+1)*log((zz+1)/avg)-(x/avg*(zz+1)); |
---|
| 1162 | return (exp(dr)); |
---|
| 1163 | } |
---|
| 1164 | |
---|
| 1165 | static double |
---|
| 1166 | gammln(double xx) { |
---|
| 1167 | |
---|
| 1168 | double x,y,tmp,ser; |
---|
| 1169 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
| 1170 | 24.01409824083091,-1.231739572450155, |
---|
| 1171 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
| 1172 | int j; |
---|
| 1173 | |
---|
| 1174 | y=x=xx; |
---|
| 1175 | tmp=x+5.5; |
---|
| 1176 | tmp -= (x+0.5)*log(tmp); |
---|
| 1177 | ser=1.000000000190015; |
---|
| 1178 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
| 1179 | return -tmp+log(2.5066282746310005*ser/x); |
---|
| 1180 | } |
---|
| 1181 | |
---|
| 1182 | double |
---|
| 1183 | F_func(double qr) { |
---|
| 1184 | return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
| 1185 | } |
---|
| 1186 | |
---|