[ae3ce4e] | 1 | /* SimpleFit.c |
---|
| 2 | |
---|
| 3 | A simplified project designed to act as a template for your curve fitting function. |
---|
| 4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
| 8 | #include "GaussWeights.h" |
---|
| 9 | #include "libSphere.h" |
---|
| 10 | |
---|
| 11 | // scattering from a sphere - hardly needs to be an XOP... |
---|
| 12 | double |
---|
| 13 | SphereForm(double dp[], double q) |
---|
| 14 | { |
---|
[6e93a02] | 15 | double scale,radius,delrho,bkg,sldSph,sldSolv; //my local names |
---|
[975ec8e] | 16 | double bes,f,vol,f2,pi,qr; |
---|
| 17 | |
---|
[ae3ce4e] | 18 | pi = 4.0*atan(1.0); |
---|
| 19 | scale = dp[0]; |
---|
| 20 | radius = dp[1]; |
---|
[6e93a02] | 21 | sldSph = dp[2]; |
---|
| 22 | sldSolv = dp[3]; |
---|
| 23 | bkg = dp[4]; |
---|
| 24 | |
---|
| 25 | delrho = sldSph - sldSolv; |
---|
| 26 | //handle qr==0 separately |
---|
[975ec8e] | 27 | qr = q*radius; |
---|
[6e93a02] | 28 | if(qr == 0.0){ |
---|
[975ec8e] | 29 | bes = 1.0; |
---|
| 30 | }else{ |
---|
| 31 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
[ae3ce4e] | 32 | } |
---|
[6e93a02] | 33 | |
---|
[ae3ce4e] | 34 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
| 35 | f = vol*bes*delrho; // [=] A-1 |
---|
| 36 | // normalize to single particle volume, convert to 1/cm |
---|
| 37 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
[6e93a02] | 38 | |
---|
[ae3ce4e] | 39 | return(scale*f2+bkg); //scale, and add in the background |
---|
| 40 | } |
---|
| 41 | |
---|
| 42 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
| 43 | double |
---|
| 44 | CoreShellForm(double dp[], double q) |
---|
| 45 | { |
---|
| 46 | double x,pi; |
---|
| 47 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 48 | double bes,f,vol,qr,contr,f2; |
---|
[6e93a02] | 49 | |
---|
[ae3ce4e] | 50 | pi = 4.0*atan(1.0); |
---|
| 51 | x=q; |
---|
[6e93a02] | 52 | |
---|
[ae3ce4e] | 53 | scale = dp[0]; |
---|
| 54 | rcore = dp[1]; |
---|
| 55 | thick = dp[2]; |
---|
| 56 | rhocore = dp[3]; |
---|
| 57 | rhoshel = dp[4]; |
---|
| 58 | rhosolv = dp[5]; |
---|
| 59 | bkg = dp[6]; |
---|
| 60 | // core first, then add in shell |
---|
| 61 | qr=x*rcore; |
---|
| 62 | contr = rhocore-rhoshel; |
---|
[6e93a02] | 63 | if(qr == 0.0){ |
---|
[975ec8e] | 64 | bes = 1.0; |
---|
| 65 | }else{ |
---|
| 66 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 67 | } |
---|
[ae3ce4e] | 68 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 69 | f = vol*bes*contr; |
---|
| 70 | //now the shell |
---|
| 71 | qr=x*(rcore+thick); |
---|
| 72 | contr = rhoshel-rhosolv; |
---|
[6e93a02] | 73 | if(qr == 0.0){ |
---|
[975ec8e] | 74 | bes = 1.0; |
---|
| 75 | }else{ |
---|
| 76 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 77 | } |
---|
[ae3ce4e] | 78 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 79 | f += vol*bes*contr; |
---|
[975ec8e] | 80 | |
---|
[ae3ce4e] | 81 | // normalize to particle volume and rescale from [A-1] to [cm-1] |
---|
| 82 | f2 = f*f/vol*1.0e8; |
---|
[6e93a02] | 83 | |
---|
[ae3ce4e] | 84 | //scale if desired |
---|
| 85 | f2 *= scale; |
---|
| 86 | // then add in the background |
---|
| 87 | f2 += bkg; |
---|
[6e93a02] | 88 | |
---|
[ae3ce4e] | 89 | return(f2); |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
| 93 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
| 94 | double |
---|
| 95 | VesicleForm(double dp[], double q) |
---|
| 96 | { |
---|
| 97 | double x,pi; |
---|
| 98 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 99 | double bes,f,vol,qr,contr,f2; |
---|
| 100 | pi = 4.0*atan(1.0); |
---|
| 101 | x= q; |
---|
[6e93a02] | 102 | |
---|
[ae3ce4e] | 103 | scale = dp[0]; |
---|
| 104 | rcore = dp[1]; |
---|
| 105 | thick = dp[2]; |
---|
| 106 | rhocore = dp[3]; |
---|
| 107 | rhosolv = rhocore; |
---|
| 108 | rhoshel = dp[4]; |
---|
| 109 | bkg = dp[5]; |
---|
| 110 | // core first, then add in shell |
---|
| 111 | qr=x*rcore; |
---|
| 112 | contr = rhocore-rhoshel; |
---|
[975ec8e] | 113 | if(qr == 0){ |
---|
| 114 | bes = 1.0; |
---|
| 115 | }else{ |
---|
| 116 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 117 | } |
---|
[ae3ce4e] | 118 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 119 | f = vol*bes*contr; |
---|
| 120 | //now the shell |
---|
| 121 | qr=x*(rcore+thick); |
---|
| 122 | contr = rhoshel-rhosolv; |
---|
[6e93a02] | 123 | if(qr == 0.0){ |
---|
[975ec8e] | 124 | bes = 1.0; |
---|
| 125 | }else{ |
---|
| 126 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 127 | } |
---|
[ae3ce4e] | 128 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 129 | f += vol*bes*contr; |
---|
[975ec8e] | 130 | |
---|
[ae3ce4e] | 131 | // normalize to the particle volume and rescale from [A-1] to [cm-1] |
---|
| 132 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
| 133 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
| 134 | f2 = f*f/vol*1.0e8; |
---|
[6e93a02] | 135 | |
---|
[ae3ce4e] | 136 | //scale if desired |
---|
| 137 | f2 *= scale; |
---|
| 138 | // then add in the background |
---|
| 139 | f2 += bkg; |
---|
[6e93a02] | 140 | |
---|
[ae3ce4e] | 141 | return(f2); |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
| 146 | // |
---|
| 147 | double |
---|
| 148 | PolyCoreForm(double dp[], double q) |
---|
| 149 | { |
---|
| 150 | double pi; |
---|
| 151 | double scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
| 152 | double d, g ,h; |
---|
| 153 | double qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
| 154 | double t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
| 155 | double zp3,vpoly; |
---|
| 156 | double s2y, arg1, arg2, arg3, drh1, drh2; |
---|
[6e93a02] | 157 | |
---|
[ae3ce4e] | 158 | pi = 4.0*atan(1.0); |
---|
| 159 | qq= q; |
---|
| 160 | scale = dp[0]; |
---|
| 161 | corrad = dp[1]; |
---|
| 162 | sig = dp[2]; |
---|
| 163 | del = dp[3]; |
---|
| 164 | drho1 = dp[4]-dp[5]; //core-shell |
---|
| 165 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
| 166 | bkg = dp[7]; |
---|
[6e93a02] | 167 | |
---|
| 168 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
| 169 | |
---|
[ae3ce4e] | 170 | h=qq; |
---|
[6e93a02] | 171 | |
---|
[ae3ce4e] | 172 | drh1 = drho1; |
---|
| 173 | drh2 = drho2; |
---|
| 174 | g = drh2 * -1. / drh1; |
---|
| 175 | zp1 = zz + 1.; |
---|
| 176 | zp2 = zz + 2.; |
---|
| 177 | zp3 = zz + 3.; |
---|
| 178 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
[6e93a02] | 179 | |
---|
| 180 | |
---|
[ae3ce4e] | 181 | // remember that h is the passed in value of q for the calculation |
---|
| 182 | y = h *del; |
---|
| 183 | x = h *corrad; |
---|
| 184 | d = atan(x * 2. / zp1); |
---|
| 185 | arg1 = zp1 * d; |
---|
| 186 | arg2 = zp2 * d; |
---|
| 187 | arg3 = zp3 * d; |
---|
| 188 | sy = sin(y); |
---|
| 189 | cy = cos(y); |
---|
| 190 | s2y = sin(y * 2.); |
---|
| 191 | c2y = cos(y * 2.); |
---|
| 192 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
| 193 | c2 = g * y * (g - cy); |
---|
| 194 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
| 195 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
| 196 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
| 197 | c6 = c3 - g * g * sy * sy; |
---|
| 198 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
| 199 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
| 200 | c9 = g * sy * (1. - g * cy); |
---|
[6e93a02] | 201 | |
---|
[ae3ce4e] | 202 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
| 203 | tb1 = exp(zp1 * .5 * tb); |
---|
| 204 | tb2 = exp(zp2 * .5 * tb); |
---|
| 205 | tb3 = exp(zp3 * .5 * tb); |
---|
[6e93a02] | 206 | |
---|
[ae3ce4e] | 207 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
| 208 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
| 209 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
| 210 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
| 211 | t5 = t1 + t2 + t3 + t4; |
---|
| 212 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
| 213 | // normalize by the average volume !!! corrected for polydispersity |
---|
| 214 | // and convert to cm-1 |
---|
| 215 | form /= vpoly; |
---|
| 216 | form *= 1.0e8; |
---|
| 217 | //Scale |
---|
| 218 | form *= scale; |
---|
| 219 | // then add in the background |
---|
| 220 | form += bkg; |
---|
[6e93a02] | 221 | |
---|
[ae3ce4e] | 222 | return(form); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 226 | // structure factor effects are explicitly and correctly included. |
---|
| 227 | // |
---|
| 228 | double |
---|
| 229 | PolyHardSphereIntensity(double dp[], double q) |
---|
| 230 | { |
---|
| 231 | double pi; |
---|
| 232 | double rad,z2,phi,cont,bkg,sigma; //my local names |
---|
| 233 | double mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
| 234 | double ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
| 235 | double ka,zz,v1,v2,p1,p2; |
---|
| 236 | double h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
| 237 | double capl,capl1,capmu,capmu1,r3,pq; |
---|
| 238 | double ka2,r1,heff; |
---|
[6e93a02] | 239 | double hh,k,slds,sld; |
---|
| 240 | |
---|
[ae3ce4e] | 241 | pi = 4.0*atan(1.0); |
---|
| 242 | k= q; |
---|
[6e93a02] | 243 | |
---|
[ae3ce4e] | 244 | rad = dp[0]; // radius (A) |
---|
| 245 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
| 246 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
[6e93a02] | 247 | slds = dp[3]; |
---|
| 248 | sld = dp[4]; |
---|
| 249 | cont = (slds - sld)*1.0e4; // contrast (odd units) |
---|
| 250 | bkg = dp[5]; |
---|
[ae3ce4e] | 251 | sigma = 2*rad; |
---|
[6e93a02] | 252 | |
---|
[ae3ce4e] | 253 | zz=1.0/(z2*z2)-1.0; |
---|
| 254 | bb = sigma/(zz+1.0); |
---|
| 255 | cc = zz+1.0; |
---|
[6e93a02] | 256 | |
---|
[ae3ce4e] | 257 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
| 258 | r1 = sigma/2.0; |
---|
| 259 | r3 = r1*r1*r1; |
---|
| 260 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
| 261 | rho=phi/(1.3333333333*pi*r3); |
---|
| 262 | t1 = rho*bb*cc; |
---|
| 263 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
| 264 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
| 265 | capd = 1.0-pi*t3/6.0; |
---|
| 266 | //************ |
---|
| 267 | v1=1.0/(1.0+bb*bb*k*k); |
---|
| 268 | v2=1.0/(4.0+bb*bb*k*k); |
---|
| 269 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
| 270 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
| 271 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
| 272 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
| 273 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
| 274 | s1=bb*cc; |
---|
| 275 | s2=cc*(cc+1.0)*bb*bb; |
---|
| 276 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
| 277 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
| 278 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
| 279 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
| 280 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
| 281 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
| 282 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
| 283 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
| 284 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
| 285 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
| 286 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
| 287 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
[6e93a02] | 288 | |
---|
[ae3ce4e] | 289 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
| 290 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
| 291 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
[6e93a02] | 292 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
| 293 | |
---|
[ae3ce4e] | 294 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
| 295 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
| 296 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
| 297 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
[6e93a02] | 298 | |
---|
[ae3ce4e] | 299 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
| 300 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
| 301 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
| 302 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
[6e93a02] | 303 | |
---|
[ae3ce4e] | 304 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
[6e93a02] | 305 | |
---|
[ae3ce4e] | 306 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
[6e93a02] | 307 | |
---|
[ae3ce4e] | 308 | //* This part computes the first integral in equation (1). It also |
---|
| 309 | // generates the KC approximated effective structure factor.*/ |
---|
[6e93a02] | 310 | |
---|
[ae3ce4e] | 311 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
| 312 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
[6e93a02] | 313 | |
---|
[ae3ce4e] | 314 | ka=k*(sigma/2.0); |
---|
| 315 | // |
---|
| 316 | hh=hint1+hint2; // this is the model intensity |
---|
| 317 | // |
---|
| 318 | heff=1.0+hint1/hint2; |
---|
| 319 | ka2=ka*ka; |
---|
| 320 | //* |
---|
[6e93a02] | 321 | // heff is PY analytical solution for intensity divided by the |
---|
[ae3ce4e] | 322 | // form factor. happ is the KC approximated effective S(q) |
---|
[6e93a02] | 323 | |
---|
[ae3ce4e] | 324 | //******************* |
---|
| 325 | // add in the background then return the intensity value |
---|
[6e93a02] | 326 | |
---|
[ae3ce4e] | 327 | return(hh+bkg); //scale, and add in the background |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
| 331 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
| 332 | // |
---|
| 333 | double |
---|
| 334 | BimodalSchulzSpheres(double dp[], double q) |
---|
| 335 | { |
---|
| 336 | double x,pq; |
---|
| 337 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
| 338 | double scale2,ravg2,pd2,rho2; //my local names |
---|
[6e93a02] | 339 | |
---|
[ae3ce4e] | 340 | x= q; |
---|
[6e93a02] | 341 | |
---|
[ae3ce4e] | 342 | scale = dp[0]; |
---|
| 343 | ravg = dp[1]; |
---|
| 344 | pd = dp[2]; |
---|
| 345 | rho = dp[3]; |
---|
| 346 | scale2 = dp[4]; |
---|
| 347 | ravg2 = dp[5]; |
---|
| 348 | pd2 = dp[6]; |
---|
| 349 | rho2 = dp[7]; |
---|
| 350 | rhos = dp[8]; |
---|
| 351 | bkg = dp[9]; |
---|
[6e93a02] | 352 | |
---|
[ae3ce4e] | 353 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 354 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
| 355 | // add in the background |
---|
| 356 | pq += bkg; |
---|
[6e93a02] | 357 | |
---|
[ae3ce4e] | 358 | return (pq); |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 362 | // |
---|
| 363 | double |
---|
| 364 | SchulzSpheres(double dp[], double q) |
---|
| 365 | { |
---|
| 366 | double x,pq; |
---|
| 367 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
[6e93a02] | 368 | |
---|
[ae3ce4e] | 369 | x= q; |
---|
[6e93a02] | 370 | |
---|
[ae3ce4e] | 371 | scale = dp[0]; |
---|
| 372 | ravg = dp[1]; |
---|
| 373 | pd = dp[2]; |
---|
| 374 | rho = dp[3]; |
---|
| 375 | rhos = dp[4]; |
---|
| 376 | bkg = dp[5]; |
---|
| 377 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 378 | // add in the background |
---|
| 379 | pq += bkg; |
---|
[6e93a02] | 380 | |
---|
[ae3ce4e] | 381 | return(pq); |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | // calculates everything but the background |
---|
| 385 | double |
---|
| 386 | SchulzSphere_Fn(double scale, double ravg, double pd, double rho, double rhos, double x) |
---|
| 387 | { |
---|
| 388 | double zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
| 389 | double aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
| 390 | double v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
[6e93a02] | 391 | double i_zero,Rg2,zp8; |
---|
| 392 | |
---|
[ae3ce4e] | 393 | pi = 4.0*atan(1.0); |
---|
| 394 | delrho = rho-rhos; |
---|
[6e93a02] | 395 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 396 | |
---|
[ae3ce4e] | 397 | zp1 = zz + 1.0; |
---|
| 398 | zp2 = zz + 2.0; |
---|
| 399 | zp3 = zz + 3.0; |
---|
| 400 | zp4 = zz + 4.0; |
---|
| 401 | zp5 = zz + 5.0; |
---|
| 402 | zp6 = zz + 6.0; |
---|
| 403 | zp7 = zz + 7.0; |
---|
| 404 | // |
---|
[6e93a02] | 405 | |
---|
| 406 | //small QR limit - use Guinier approx |
---|
| 407 | zp8 = zz+8.0; |
---|
| 408 | if(x*ravg < 0.1) { |
---|
| 409 | i_zero = scale*delrho*delrho*1.e8*4.*pi/3.*pow(ravg,3); |
---|
| 410 | i_zero *= zp6*zp5*zp4/zp1/zp1/zp1; //6th moment / 3rd moment |
---|
| 411 | Rg2 = 3.*zp8*zp7/5./(zp1*zp1)*ravg*ravg; |
---|
| 412 | pq = i_zero*exp(-x*x*Rg2/3.); |
---|
| 413 | //pq += bkg; //unlike the Igor code, the backgorund is added in the wrapper (above) |
---|
| 414 | return(pq); |
---|
| 415 | } |
---|
| 416 | // |
---|
[975ec8e] | 417 | |
---|
[6e93a02] | 418 | aa = (zz+1.0)/x/ravg; |
---|
| 419 | |
---|
[ae3ce4e] | 420 | at1 = atan(1.0/aa); |
---|
| 421 | at2 = atan(2.0/aa); |
---|
| 422 | // |
---|
| 423 | // calculations are performed to avoid large # errors |
---|
| 424 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
[6e93a02] | 425 | // |
---|
[ae3ce4e] | 426 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
| 427 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
| 428 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
| 429 | // print t1,t2,t3 |
---|
| 430 | rt1 = pow(10,t1); |
---|
| 431 | rt2 = pow(10,t2); |
---|
| 432 | rt3 = pow(10,t3); |
---|
| 433 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
| 434 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
| 435 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
| 436 | g1 = (v1+v2+v3); |
---|
[6e93a02] | 437 | |
---|
[ae3ce4e] | 438 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
[6e93a02] | 439 | pq = pow(10,pq)*8.0*pi*pi*delrho*delrho; |
---|
| 440 | |
---|
[ae3ce4e] | 441 | // |
---|
[6e93a02] | 442 | // beta factor is not used here, but could be for the |
---|
[ae3ce4e] | 443 | // decoupling approximation |
---|
[6e93a02] | 444 | // |
---|
[ae3ce4e] | 445 | // g11 = g1 |
---|
| 446 | // gd = -zp7*log(aa) |
---|
| 447 | // g1 = log(g11) + gd |
---|
[6e93a02] | 448 | // |
---|
[ae3ce4e] | 449 | // t1 = zp1*at1 |
---|
| 450 | // t2 = zp2*at1 |
---|
| 451 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
| 452 | // g22 = g2*g2 |
---|
[6e93a02] | 453 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
[ae3ce4e] | 454 | // beta = 2*alog(beta) |
---|
[6e93a02] | 455 | |
---|
[ae3ce4e] | 456 | //re-normalize by the average volume |
---|
| 457 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
| 458 | pq /= vpoly; |
---|
| 459 | //scale, convert to cm^-1 |
---|
| 460 | pq *= scale * 1.0e8; |
---|
[6e93a02] | 461 | |
---|
[ae3ce4e] | 462 | return(pq); |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | // scattering from a uniform sphere with a rectangular size distribution |
---|
| 466 | // |
---|
| 467 | double |
---|
| 468 | PolyRectSpheres(double dp[], double q) |
---|
| 469 | { |
---|
| 470 | double pi,x; |
---|
| 471 | double scale,rad,pd,cont,bkg; //my local names |
---|
[6e93a02] | 472 | double inten,h1,qw,qr,width,sig,averad3,Rg2,slds,sld; |
---|
| 473 | |
---|
[ae3ce4e] | 474 | pi = 4.0*atan(1.0); |
---|
| 475 | x= q; |
---|
[6e93a02] | 476 | |
---|
[ae3ce4e] | 477 | scale = dp[0]; |
---|
| 478 | rad = dp[1]; // radius (A) |
---|
| 479 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
[6e93a02] | 480 | slds = dp[3]; |
---|
| 481 | sld = dp[4]; |
---|
| 482 | cont = slds - sld; // contrast (A^-2) |
---|
| 483 | bkg = dp[5]; |
---|
| 484 | |
---|
[ae3ce4e] | 485 | // as usual, poly = sig/ravg |
---|
| 486 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
| 487 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
[6e93a02] | 488 | |
---|
[ae3ce4e] | 489 | sig = pd*rad; |
---|
| 490 | width = sqrt(3.0)*sig; |
---|
[6e93a02] | 491 | |
---|
[ae3ce4e] | 492 | //x is the q-value |
---|
| 493 | qw = x*width; |
---|
| 494 | qr = x*rad; |
---|
[6e93a02] | 495 | |
---|
| 496 | // as for the numerical inatabilities at low QR, the function is calculating the sines and cosines |
---|
| 497 | // just fine - the problem seems to be that the |
---|
| 498 | // leading terms nearly cancel with the last term (the -6*qr... term), to within machine |
---|
| 499 | // precision - the difference is on the order of 10^-20 |
---|
| 500 | // so just use the limiting Guiner value |
---|
| 501 | if(qr<0.1) { |
---|
| 502 | h1 = scale*cont*cont*1.e8*4.*pi/3.0*pow(rad,3); |
---|
| 503 | h1 *= (1. + 15.*pow(pd,2) + 27.*pow(pd,4) +27./7.*pow(pd,6) ); //6th moment |
---|
| 504 | h1 /= (1.+3.*pd*pd); //3rd moment |
---|
| 505 | Rg2 = 3.0/5.0*rad*rad*( 1.+28.*pow(pd,2)+126.*pow(pd,4)+108.*pow(pd,6)+27.*pow(pd,8) ); |
---|
| 506 | Rg2 /= (1.+15.*pow(pd,2)+27.*pow(pd,4)+27./7.*pow(pd,6)); |
---|
| 507 | h1 *= exp(-1./3.*Rg2*x*x); |
---|
| 508 | h1 += bkg; |
---|
| 509 | return(h1); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | // normal calculation |
---|
[ae3ce4e] | 513 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
[6e93a02] | 514 | h1 -= 5.0/2.0*cos(2.0*qr)*sin(qw)*cos(qw); |
---|
| 515 | h1 += 0.5*qr*qr*cos(2.0*qr)*sin(2.0*qw); |
---|
| 516 | h1 += 0.5*qw*qw*cos(2.0*qr)*sin(2.0*qw); |
---|
| 517 | h1 += qw*qr*sin(2.0*qr)*cos(2.0*qw); |
---|
[ae3ce4e] | 518 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
| 519 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
| 520 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
[6e93a02] | 521 | |
---|
[ae3ce4e] | 522 | // calculate P(q) = <f^2> |
---|
| 523 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
[6e93a02] | 524 | |
---|
[ae3ce4e] | 525 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
[6e93a02] | 526 | // with |
---|
[ae3ce4e] | 527 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
[6e93a02] | 528 | |
---|
[ae3ce4e] | 529 | // normalize to the average volume |
---|
| 530 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
| 531 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
[6e93a02] | 532 | |
---|
[ae3ce4e] | 533 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
| 534 | inten /= 4.0*pi/3.0*averad3; |
---|
| 535 | //resacle to 1/cm |
---|
| 536 | inten *= 1.0e8; |
---|
| 537 | //scale the result |
---|
| 538 | inten *= scale; |
---|
| 539 | // then add in the background |
---|
| 540 | inten += bkg; |
---|
[6e93a02] | 541 | |
---|
[ae3ce4e] | 542 | return(inten); |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
| 547 | // |
---|
| 548 | double |
---|
| 549 | GaussPolySphere(double dp[], double q) |
---|
| 550 | { |
---|
| 551 | double pi,x; |
---|
| 552 | double scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
| 553 | double va,vb,zi,yy,summ,inten; |
---|
| 554 | int nord=20,ii; |
---|
[6e93a02] | 555 | |
---|
[ae3ce4e] | 556 | pi = 4.0*atan(1.0); |
---|
| 557 | x= q; |
---|
[6e93a02] | 558 | |
---|
[ae3ce4e] | 559 | scale=dp[0]; |
---|
| 560 | rad=dp[1]; |
---|
| 561 | pd=dp[2]; |
---|
| 562 | sig=pd*rad; |
---|
| 563 | rho=dp[3]; |
---|
| 564 | rhos=dp[4]; |
---|
| 565 | delrho=rho-rhos; |
---|
| 566 | bkg=dp[5]; |
---|
[6e93a02] | 567 | |
---|
[ae3ce4e] | 568 | va = -4.0*sig + rad; |
---|
[6e93a02] | 569 | if (va<0.0) { |
---|
| 570 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
[ae3ce4e] | 571 | } |
---|
| 572 | vb = 4.0*sig +rad; |
---|
[6e93a02] | 573 | |
---|
[ae3ce4e] | 574 | summ = 0.0; // initialize integral |
---|
| 575 | for(ii=0;ii<nord;ii+=1) { |
---|
| 576 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 577 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 578 | // calculate sphere scattering |
---|
| 579 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 580 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 581 | yy *= yy; |
---|
| 582 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
[6e93a02] | 583 | |
---|
[ae3ce4e] | 584 | summ += yy; //add to the running total of the quadrature |
---|
| 585 | } |
---|
| 586 | // calculate value of integral to return |
---|
| 587 | inten = (vb-va)/2.0*summ; |
---|
[6e93a02] | 588 | |
---|
[ae3ce4e] | 589 | //re-normalize by polydisperse sphere volume |
---|
| 590 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
[6e93a02] | 591 | |
---|
[ae3ce4e] | 592 | inten *= 1.0e8; |
---|
| 593 | inten *= scale; |
---|
| 594 | inten += bkg; |
---|
[6e93a02] | 595 | |
---|
[ae3ce4e] | 596 | return(inten); //scale, and add in the background |
---|
| 597 | } |
---|
| 598 | |
---|
| 599 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
| 600 | // |
---|
| 601 | double |
---|
| 602 | LogNormalPolySphere(double dp[], double q) |
---|
| 603 | { |
---|
| 604 | double pi,x; |
---|
| 605 | double scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
| 606 | double va,vb,zi,yy,summ,inten; |
---|
| 607 | int nord=76,ii; |
---|
[6e93a02] | 608 | |
---|
[ae3ce4e] | 609 | pi = 4.0*atan(1.0); |
---|
| 610 | x= q; |
---|
[6e93a02] | 611 | |
---|
[ae3ce4e] | 612 | scale=dp[0]; |
---|
| 613 | rad=dp[1]; //rad is the median radius |
---|
| 614 | mu = log(dp[1]); |
---|
| 615 | sig=dp[2]; |
---|
| 616 | rho=dp[3]; |
---|
| 617 | rhos=dp[4]; |
---|
| 618 | delrho=rho-rhos; |
---|
| 619 | bkg=dp[5]; |
---|
[6e93a02] | 620 | |
---|
[ae3ce4e] | 621 | va = -3.5*sig + mu; |
---|
| 622 | va = exp(va); |
---|
[6e93a02] | 623 | if (va<0.0) { |
---|
| 624 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
[ae3ce4e] | 625 | } |
---|
| 626 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
| 627 | vb = exp(vb); |
---|
[6e93a02] | 628 | |
---|
[ae3ce4e] | 629 | summ = 0.0; // initialize integral |
---|
| 630 | for(ii=0;ii<nord;ii+=1) { |
---|
| 631 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 632 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 633 | // calculate sphere scattering |
---|
| 634 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 635 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 636 | yy *= yy; |
---|
| 637 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
[6e93a02] | 638 | |
---|
[ae3ce4e] | 639 | summ += yy; //add to the running total of the quadrature |
---|
| 640 | } |
---|
| 641 | // calculate value of integral to return |
---|
| 642 | inten = (vb-va)/2.0*summ; |
---|
[6e93a02] | 643 | |
---|
[ae3ce4e] | 644 | //re-normalize by polydisperse sphere volume |
---|
| 645 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
| 646 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
[6e93a02] | 647 | |
---|
[ae3ce4e] | 648 | inten *= 1.0e8; |
---|
| 649 | inten *= scale; |
---|
| 650 | inten += bkg; |
---|
[6e93a02] | 651 | |
---|
[ae3ce4e] | 652 | return(inten); |
---|
| 653 | } |
---|
| 654 | |
---|
| 655 | static double |
---|
| 656 | LogNormal_distr(double sig, double mu, double pt) |
---|
[6e93a02] | 657 | { |
---|
[ae3ce4e] | 658 | double retval,pi; |
---|
[6e93a02] | 659 | |
---|
[ae3ce4e] | 660 | pi = 4.0*atan(1.0); |
---|
[6e93a02] | 661 | retval = (1.0/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
[ae3ce4e] | 662 | return(retval); |
---|
| 663 | } |
---|
| 664 | |
---|
| 665 | static double |
---|
| 666 | Gauss_distr(double sig, double avg, double pt) |
---|
[6e93a02] | 667 | { |
---|
[ae3ce4e] | 668 | double retval,Pi; |
---|
[6e93a02] | 669 | |
---|
[ae3ce4e] | 670 | Pi = 4.0*atan(1.0); |
---|
| 671 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
| 672 | return(retval); |
---|
| 673 | } |
---|
| 674 | |
---|
| 675 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
| 676 | // - the polydispersity is of the WHOLE sphere |
---|
| 677 | // |
---|
| 678 | double |
---|
| 679 | PolyCoreShellRatio(double dp[], double q) |
---|
| 680 | { |
---|
| 681 | double pi,x; |
---|
| 682 | double scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
| 683 | double sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
| 684 | double pi43,c1,c2,form,volume,arg1,arg2; |
---|
[6e93a02] | 685 | |
---|
[ae3ce4e] | 686 | pi = 4.0*atan(1.0); |
---|
| 687 | x= q; |
---|
[6e93a02] | 688 | |
---|
[ae3ce4e] | 689 | scale = dp[0]; |
---|
| 690 | corrad = dp[1]; |
---|
| 691 | thick = dp[2]; |
---|
| 692 | sig = dp[3]; |
---|
| 693 | sld1 = dp[4]; |
---|
| 694 | sld2 = dp[5]; |
---|
| 695 | sld3 = dp[6]; |
---|
| 696 | bkg = dp[7]; |
---|
[6e93a02] | 697 | |
---|
| 698 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
[ae3ce4e] | 699 | shlrad = corrad + thick; |
---|
| 700 | drho1 = sld1-sld2; //core-shell |
---|
| 701 | drho2 = sld2-sld3; //shell-solvent |
---|
| 702 | zp1 = zz + 1.; |
---|
| 703 | zp2 = zz + 2.; |
---|
| 704 | zp3 = zz + 3.; |
---|
| 705 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
[6e93a02] | 706 | |
---|
[ae3ce4e] | 707 | // the beta factor is not calculated |
---|
| 708 | // the calculated form factor <f^2> has units [length^2] |
---|
| 709 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
| 710 | // conversion to get to absolute scale |
---|
[6e93a02] | 711 | |
---|
[ae3ce4e] | 712 | pi43=4.0/3.0*pi; |
---|
| 713 | pp=corrad/shlrad; |
---|
| 714 | volume=pi43*shlrad*shlrad*shlrad; |
---|
| 715 | c1=drho1*volume; |
---|
| 716 | c2=drho2*volume; |
---|
[6e93a02] | 717 | |
---|
[ae3ce4e] | 718 | arg1 = x*shlrad*pp; |
---|
| 719 | arg2 = x*shlrad; |
---|
[6e93a02] | 720 | |
---|
[ae3ce4e] | 721 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
| 722 | form += c2*c2*fnt2(arg2,zz); |
---|
| 723 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
[6e93a02] | 724 | |
---|
[ae3ce4e] | 725 | //convert the result to [cm^-1] |
---|
[6e93a02] | 726 | |
---|
[ae3ce4e] | 727 | //scale the result |
---|
| 728 | // - divide by the polydisperse volume, mult by 10^8 |
---|
| 729 | form /= vpoly; |
---|
| 730 | form *= 1.0e8; |
---|
| 731 | form *= scale; |
---|
[6e93a02] | 732 | |
---|
[ae3ce4e] | 733 | //add in the background |
---|
| 734 | form += bkg; |
---|
[6e93a02] | 735 | |
---|
[ae3ce4e] | 736 | return(form); |
---|
| 737 | } |
---|
| 738 | |
---|
| 739 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 740 | //c |
---|
| 741 | //c function fnt2(y,z) |
---|
| 742 | //c |
---|
| 743 | double |
---|
| 744 | fnt2(double yy, double zz) |
---|
| 745 | { |
---|
| 746 | double z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
[6e93a02] | 747 | |
---|
[ae3ce4e] | 748 | z1=zz+1.0; |
---|
| 749 | z2=zz+2.0; |
---|
| 750 | z3=zz+3.0; |
---|
| 751 | u=yy/z1; |
---|
| 752 | ww=atan(2.0*u); |
---|
| 753 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
| 754 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
| 755 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
| 756 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
[6e93a02] | 757 | |
---|
[ae3ce4e] | 758 | return(ans); |
---|
| 759 | } |
---|
| 760 | |
---|
| 761 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 762 | //c |
---|
| 763 | //c function fnt3(y,p,z) |
---|
| 764 | //c |
---|
| 765 | double |
---|
| 766 | fnt3(double yy, double pp, double zz) |
---|
[6e93a02] | 767 | { |
---|
[ae3ce4e] | 768 | double z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
[6e93a02] | 769 | |
---|
[ae3ce4e] | 770 | z1=zz+1.0; |
---|
| 771 | z2=zz+2.0; |
---|
| 772 | z3=zz+3.0; |
---|
| 773 | yp=(1.0+pp)*yy; |
---|
| 774 | yn=(1.0-pp)*yy; |
---|
| 775 | up=yp/z1; |
---|
| 776 | un=yn/z1; |
---|
| 777 | vp=atan(up); |
---|
| 778 | vn=atan(un); |
---|
| 779 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
| 780 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
| 781 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
| 782 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
| 783 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
| 784 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
| 785 | ans=4.5/z1/pow(yy,6); |
---|
| 786 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
[6e93a02] | 787 | |
---|
[ae3ce4e] | 788 | return(ans); |
---|
| 789 | } |
---|
| 790 | |
---|
| 791 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
| 792 | // are properly accounted for... |
---|
| 793 | // Input (fitting) variables are: |
---|
| 794 | // larger sphere radius(angstroms) = guess[0] |
---|
| 795 | // smaller sphere radius (A) = w[1] |
---|
| 796 | // number fraction of larger spheres = guess[2] |
---|
| 797 | // total volume fraction of spheres = guess[3] |
---|
| 798 | // size ratio, alpha(0<a<1) = derived |
---|
| 799 | // SLD(A-2) of larger particle = guess[4] |
---|
| 800 | // SLD(A-2) of smaller particle = guess[5] |
---|
| 801 | // SLD(A-2) of the solvent = guess[6] |
---|
| 802 | // background = guess[7] |
---|
| 803 | double |
---|
| 804 | BinaryHS(double dp[], double q) |
---|
| 805 | { |
---|
| 806 | double x,pi; |
---|
| 807 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
| 808 | double psf11,psf12,psf22; |
---|
| 809 | double phi1,phi2,phr,a3; |
---|
[975ec8e] | 810 | double v1,v2,n1,n2,qr1,qr2,b1,b2,sc1,sc2; |
---|
[ae3ce4e] | 811 | int err; |
---|
[6e93a02] | 812 | |
---|
[ae3ce4e] | 813 | pi = 4.0*atan(1.0); |
---|
| 814 | x= q; |
---|
| 815 | r2 = dp[0]; |
---|
| 816 | r1 = dp[1]; |
---|
| 817 | phi2 = dp[2]; |
---|
| 818 | phi1 = dp[3]; |
---|
| 819 | rho2 = dp[4]; |
---|
| 820 | rho1 = dp[5]; |
---|
| 821 | rhos = dp[6]; |
---|
| 822 | bgd = dp[7]; |
---|
[6e93a02] | 823 | |
---|
| 824 | |
---|
[ae3ce4e] | 825 | phi = phi1 + phi2; |
---|
| 826 | aa = r1/r2; |
---|
| 827 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 828 | a3=aa*aa*aa; |
---|
| 829 | phr=phi2/phi; |
---|
| 830 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 831 | // calculate the PSF's here |
---|
| 832 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 833 | |
---|
[ae3ce4e] | 834 | // /* do form factor calculations */ |
---|
[6e93a02] | 835 | |
---|
[ae3ce4e] | 836 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
| 837 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
[6e93a02] | 838 | |
---|
[ae3ce4e] | 839 | n1 = phi1/v1; |
---|
| 840 | n2 = phi2/v2; |
---|
[6e93a02] | 841 | |
---|
[ae3ce4e] | 842 | qr1 = r1*x; |
---|
| 843 | qr2 = r2*x; |
---|
[975ec8e] | 844 | |
---|
| 845 | if (qr1 == 0){ |
---|
| 846 | sc1 = 1.0/3.0; |
---|
| 847 | }else{ |
---|
| 848 | sc1 = (sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
| 849 | } |
---|
| 850 | if (qr2 == 0){ |
---|
| 851 | sc2 = 1.0/3.0; |
---|
| 852 | }else{ |
---|
| 853 | sc2 = (sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
| 854 | } |
---|
| 855 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*sc1; |
---|
| 856 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*sc2; |
---|
[ae3ce4e] | 857 | inten = n1*b1*b1*psf11; |
---|
| 858 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
| 859 | inten += n2*b2*b2*psf22; |
---|
| 860 | ///* convert I(1/A) to (1/cm) */ |
---|
| 861 | inten *= 1.0e8; |
---|
[6e93a02] | 862 | |
---|
[ae3ce4e] | 863 | inten += bgd; |
---|
[6e93a02] | 864 | |
---|
[ae3ce4e] | 865 | return(inten); |
---|
| 866 | } |
---|
| 867 | |
---|
| 868 | double |
---|
| 869 | BinaryHS_PSF11(double dp[], double q) |
---|
| 870 | { |
---|
| 871 | double x,pi; |
---|
| 872 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 873 | double psf11,psf12,psf22; |
---|
| 874 | double phi1,phi2,phr,a3; |
---|
| 875 | int err; |
---|
[6e93a02] | 876 | |
---|
[ae3ce4e] | 877 | pi = 4.0*atan(1.0); |
---|
| 878 | x= q; |
---|
| 879 | r2 = dp[0]; |
---|
| 880 | r1 = dp[1]; |
---|
| 881 | phi2 = dp[2]; |
---|
| 882 | phi1 = dp[3]; |
---|
| 883 | rho2 = dp[4]; |
---|
| 884 | rho1 = dp[5]; |
---|
| 885 | rhos = dp[6]; |
---|
| 886 | bgd = dp[7]; |
---|
| 887 | phi = phi1 + phi2; |
---|
| 888 | aa = r1/r2; |
---|
| 889 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 890 | a3=aa*aa*aa; |
---|
| 891 | phr=phi2/phi; |
---|
| 892 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 893 | // calculate the PSF's here |
---|
| 894 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 895 | |
---|
[ae3ce4e] | 896 | return(psf11); //scale, and add in the background |
---|
| 897 | } |
---|
| 898 | |
---|
| 899 | double |
---|
| 900 | BinaryHS_PSF12(double dp[], double q) |
---|
| 901 | { |
---|
| 902 | double x,pi; |
---|
| 903 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 904 | double psf11,psf12,psf22; |
---|
| 905 | double phi1,phi2,phr,a3; |
---|
| 906 | int err; |
---|
[6e93a02] | 907 | |
---|
[ae3ce4e] | 908 | pi = 4.0*atan(1.0); |
---|
| 909 | x= q; |
---|
| 910 | r2 = dp[0]; |
---|
| 911 | r1 = dp[1]; |
---|
| 912 | phi2 = dp[2]; |
---|
| 913 | phi1 = dp[3]; |
---|
| 914 | rho2 = dp[4]; |
---|
| 915 | rho1 = dp[5]; |
---|
| 916 | rhos = dp[6]; |
---|
| 917 | bgd = dp[7]; |
---|
| 918 | phi = phi1 + phi2; |
---|
| 919 | aa = r1/r2; |
---|
| 920 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 921 | a3=aa*aa*aa; |
---|
| 922 | phr=phi2/phi; |
---|
| 923 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 924 | // calculate the PSF's here |
---|
| 925 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 926 | |
---|
[ae3ce4e] | 927 | return(psf12); //scale, and add in the background |
---|
| 928 | } |
---|
| 929 | |
---|
| 930 | double |
---|
| 931 | BinaryHS_PSF22(double dp[], double q) |
---|
| 932 | { |
---|
| 933 | double x,pi; |
---|
| 934 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 935 | double psf11,psf12,psf22; |
---|
| 936 | double phi1,phi2,phr,a3; |
---|
| 937 | int err; |
---|
[6e93a02] | 938 | |
---|
[ae3ce4e] | 939 | pi = 4.0*atan(1.0); |
---|
| 940 | x= q; |
---|
[6e93a02] | 941 | |
---|
[ae3ce4e] | 942 | r2 = dp[0]; |
---|
| 943 | r1 = dp[1]; |
---|
| 944 | phi2 = dp[2]; |
---|
| 945 | phi1 = dp[3]; |
---|
| 946 | rho2 = dp[4]; |
---|
| 947 | rho1 = dp[5]; |
---|
| 948 | rhos = dp[6]; |
---|
| 949 | bgd = dp[7]; |
---|
| 950 | phi = phi1 + phi2; |
---|
| 951 | aa = r1/r2; |
---|
| 952 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 953 | a3=aa*aa*aa; |
---|
| 954 | phr=phi2/phi; |
---|
| 955 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 956 | // calculate the PSF's here |
---|
| 957 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 958 | |
---|
[ae3ce4e] | 959 | return(psf22); //scale, and add in the background |
---|
| 960 | } |
---|
| 961 | |
---|
| 962 | int |
---|
| 963 | ashcroft(double qval, double r2, double nf2, double aa, double phi, double *s11, double *s22, double *s12) |
---|
| 964 | { |
---|
| 965 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
[6e93a02] | 966 | |
---|
[ae3ce4e] | 967 | // calculate constant terms |
---|
| 968 | double s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
| 969 | double a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
[6e93a02] | 970 | double err=0.0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
[ae3ce4e] | 971 | double c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
| 972 | double t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
[6e93a02] | 973 | |
---|
[ae3ce4e] | 974 | s2 = 2.0*r2; |
---|
| 975 | s1 = aa*s2; |
---|
| 976 | v = phi; |
---|
| 977 | a3 = aa*aa*aa; |
---|
| 978 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
| 979 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
| 980 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
| 981 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
| 982 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
| 983 | wmv = 1/(1.-v); |
---|
| 984 | wmv3 = wmv*wmv*wmv; |
---|
| 985 | wmv4 = wmv*wmv3; |
---|
| 986 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 987 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 988 | a2=a2i/a3; |
---|
| 989 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
| 990 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
| 991 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
| 992 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
| 993 | gm12=2.*gm1*(1.-aa)/aa; |
---|
[6e93a02] | 994 | //c |
---|
[ae3ce4e] | 995 | //c calculate the direct correlation functions and print results |
---|
| 996 | //c |
---|
| 997 | // do 20 j=1,npts |
---|
[6e93a02] | 998 | |
---|
[ae3ce4e] | 999 | yy=qval*s2; |
---|
| 1000 | //c calculate direct correlation functions |
---|
| 1001 | //c ----c11 |
---|
| 1002 | ay=aa*yy; |
---|
| 1003 | ay2 = ay*ay; |
---|
| 1004 | ay3 = ay*ay*ay; |
---|
| 1005 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
| 1006 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
| 1007 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
| 1008 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
[6e93a02] | 1009 | |
---|
[ae3ce4e] | 1010 | //c ------c22 |
---|
| 1011 | y2=yy*yy; |
---|
| 1012 | y3=yy*y2; |
---|
| 1013 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
| 1014 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
| 1015 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
| 1016 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
[6e93a02] | 1017 | |
---|
[ae3ce4e] | 1018 | //c -----c12 |
---|
| 1019 | yl=.5*yy*(1.-aa); |
---|
| 1020 | yl3=yl*yl*yl; |
---|
| 1021 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
| 1022 | y1=aa*yy; |
---|
| 1023 | y13 = y1*y1*y1; |
---|
| 1024 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
| 1025 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
| 1026 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
| 1027 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
| 1028 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
| 1029 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
| 1030 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
| 1031 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
| 1032 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
| 1033 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
| 1034 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
| 1035 | ttt4=a1*(t41+t42)/y1; |
---|
| 1036 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
[6e93a02] | 1037 | |
---|
[ae3ce4e] | 1038 | c11=f11; |
---|
| 1039 | c22=f22; |
---|
| 1040 | c12=f12; |
---|
| 1041 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
[6e93a02] | 1042 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
| 1043 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
| 1044 | |
---|
[ae3ce4e] | 1045 | return(err); |
---|
| 1046 | } |
---|
| 1047 | |
---|
| 1048 | |
---|
| 1049 | |
---|
| 1050 | /* |
---|
| 1051 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
| 1052 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 1053 | //must always be a surfactant layer on the outside |
---|
| 1054 | // |
---|
| 1055 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 1056 | // resolution smeared version gives he most appropriate view of the model |
---|
[6e93a02] | 1057 | |
---|
[ae3ce4e] | 1058 | Warning: |
---|
| 1059 | The call to WaveData() below returns a pointer to the middle |
---|
| 1060 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 1061 | calculations could cause memory to move, you should copy the coefficient |
---|
| 1062 | values to local variables or an array before such operations. |
---|
| 1063 | */ |
---|
| 1064 | double |
---|
| 1065 | MultiShell(double dp[], double q) |
---|
| 1066 | { |
---|
| 1067 | double x; |
---|
| 1068 | double scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
| 1069 | int ii; |
---|
| 1070 | double fval,voli,ri,sldi; |
---|
| 1071 | double pi; |
---|
[6e93a02] | 1072 | |
---|
[ae3ce4e] | 1073 | pi = 4.0*atan(1.0); |
---|
[6e93a02] | 1074 | |
---|
[ae3ce4e] | 1075 | x= q; |
---|
| 1076 | scale = dp[0]; |
---|
| 1077 | rcore = dp[1]; |
---|
| 1078 | ts = dp[2]; |
---|
| 1079 | tw = dp[3]; |
---|
| 1080 | rhocore = dp[4]; |
---|
| 1081 | rhoshel = dp[5]; |
---|
| 1082 | num = dp[6]; |
---|
| 1083 | bkg = dp[7]; |
---|
[6e93a02] | 1084 | |
---|
[ae3ce4e] | 1085 | //calculate with a loop, two shells at a time |
---|
[6e93a02] | 1086 | |
---|
[ae3ce4e] | 1087 | ii=0; |
---|
[6e93a02] | 1088 | fval=0.0; |
---|
| 1089 | |
---|
[ae3ce4e] | 1090 | do { |
---|
| 1091 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
[6e93a02] | 1092 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1093 | sldi = rhocore-rhoshel; |
---|
| 1094 | fval += voli*sldi*F_func(ri*x); |
---|
| 1095 | ri += ts; |
---|
[6e93a02] | 1096 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1097 | sldi = rhoshel-rhocore; |
---|
| 1098 | fval += voli*sldi*F_func(ri*x); |
---|
| 1099 | ii+=1; //do 2 layers at a time |
---|
| 1100 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
[6e93a02] | 1101 | |
---|
[ae3ce4e] | 1102 | fval *= fval; //square it |
---|
| 1103 | fval /= voli; //normalize by the overall volume |
---|
[6e93a02] | 1104 | fval *= scale*1.0e8; |
---|
[ae3ce4e] | 1105 | fval += bkg; |
---|
[6e93a02] | 1106 | |
---|
[ae3ce4e] | 1107 | return(fval); |
---|
| 1108 | } |
---|
| 1109 | |
---|
| 1110 | /* |
---|
| 1111 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
| 1112 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 1113 | //must always be a surfactant layer on the outside |
---|
| 1114 | // |
---|
| 1115 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 1116 | // resolution smeared version gives he most appropriate view of the model |
---|
| 1117 | // |
---|
| 1118 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
| 1119 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
| 1120 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
| 1121 | // |
---|
| 1122 | Warning: |
---|
| 1123 | The call to WaveData() below returns a pointer to the middle |
---|
| 1124 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 1125 | calculations could cause memory to move, you should copy the coefficient |
---|
| 1126 | values to local variables or an array before such operations. |
---|
| 1127 | */ |
---|
| 1128 | double |
---|
| 1129 | PolyMultiShell(double dp[], double q) |
---|
| 1130 | { |
---|
| 1131 | double x; |
---|
| 1132 | double scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
| 1133 | int ii,minPairs,maxPairs,first; |
---|
| 1134 | double fval,ri,pi; |
---|
| 1135 | double avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
[6e93a02] | 1136 | |
---|
| 1137 | pi = 4.0*atan(1.0); |
---|
[ae3ce4e] | 1138 | x= q; |
---|
[6e93a02] | 1139 | |
---|
[ae3ce4e] | 1140 | scale = dp[0]; |
---|
| 1141 | avg = dp[1]; // average (total) outer radius |
---|
| 1142 | pd = dp[2]; |
---|
| 1143 | rcore = dp[3]; |
---|
| 1144 | ts = dp[4]; |
---|
| 1145 | tw = dp[5]; |
---|
| 1146 | rhocore = dp[6]; |
---|
| 1147 | rhoshel = dp[7]; |
---|
| 1148 | bkg = dp[8]; |
---|
[6e93a02] | 1149 | |
---|
[ae3ce4e] | 1150 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
[6e93a02] | 1151 | |
---|
[ae3ce4e] | 1152 | //max radius set to be 5 std deviations past mean |
---|
| 1153 | hi = avg + pd*avg*5.0; |
---|
| 1154 | lo = avg - pd*avg*5.0; |
---|
[6e93a02] | 1155 | |
---|
[ae3ce4e] | 1156 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
| 1157 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
| 1158 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
[6e93a02] | 1159 | |
---|
[ae3ce4e] | 1160 | ii=minPairs; |
---|
[6e93a02] | 1161 | fval=0.0; |
---|
| 1162 | d1 = 0.0; |
---|
| 1163 | d2 = 0.0; |
---|
| 1164 | r1 = 0.0; |
---|
| 1165 | r2 = 0.0; |
---|
| 1166 | distr = 0.0; |
---|
| 1167 | first = 1.0; |
---|
[ae3ce4e] | 1168 | do { |
---|
| 1169 | //make the current values old |
---|
| 1170 | r1 = r2; |
---|
| 1171 | d1 = d2; |
---|
[6e93a02] | 1172 | |
---|
[ae3ce4e] | 1173 | ri = (double)ii*(ts+tw) - tw + rcore; |
---|
| 1174 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
| 1175 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
| 1176 | r2 = ri; |
---|
| 1177 | d2 = SchulzPoint(ri,avg,zz); |
---|
| 1178 | if( !first ) { |
---|
| 1179 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
| 1180 | } |
---|
| 1181 | ii+=1; |
---|
| 1182 | first = 0; |
---|
| 1183 | } while(ii<=maxPairs); |
---|
[6e93a02] | 1184 | |
---|
| 1185 | fval /= 4.0*pi/3.0*avg*avg*avg; //normalize by the overall volume |
---|
[ae3ce4e] | 1186 | fval /= distr; |
---|
| 1187 | fval *= scale; |
---|
| 1188 | fval += bkg; |
---|
[6e93a02] | 1189 | |
---|
[ae3ce4e] | 1190 | return(fval); |
---|
| 1191 | } |
---|
| 1192 | |
---|
| 1193 | double |
---|
| 1194 | MultiShellGuts(double x,double rcore,double ts,double tw,double rhocore,double rhoshel,int num) { |
---|
[6e93a02] | 1195 | |
---|
[ae3ce4e] | 1196 | double ri,sldi,fval,voli,pi; |
---|
| 1197 | int ii; |
---|
[6e93a02] | 1198 | |
---|
[ae3ce4e] | 1199 | pi = 4.0*atan(1.0); |
---|
| 1200 | ii=0; |
---|
[6e93a02] | 1201 | fval=0.0; |
---|
| 1202 | |
---|
[ae3ce4e] | 1203 | do { |
---|
| 1204 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
[6e93a02] | 1205 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1206 | sldi = rhocore-rhoshel; |
---|
| 1207 | fval += voli*sldi*F_func(ri*x); |
---|
| 1208 | ri += ts; |
---|
[6e93a02] | 1209 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1210 | sldi = rhoshel-rhocore; |
---|
| 1211 | fval += voli*sldi*F_func(ri*x); |
---|
| 1212 | ii+=1; //do 2 layers at a time |
---|
| 1213 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
[6e93a02] | 1214 | |
---|
[ae3ce4e] | 1215 | fval *= fval; |
---|
| 1216 | fval /= voli; |
---|
[6e93a02] | 1217 | fval *= 1.0e8; |
---|
| 1218 | |
---|
[ae3ce4e] | 1219 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
| 1220 | } |
---|
| 1221 | |
---|
| 1222 | static double |
---|
| 1223 | SchulzPoint(double x, double avg, double zz) { |
---|
[6e93a02] | 1224 | |
---|
[ae3ce4e] | 1225 | double dr; |
---|
[6e93a02] | 1226 | |
---|
| 1227 | dr = zz*log(x) - gammln(zz+1.0)+(zz+1.0)*log((zz+1.0)/avg)-(x/avg*(zz+1.0)); |
---|
[ae3ce4e] | 1228 | return (exp(dr)); |
---|
| 1229 | } |
---|
| 1230 | |
---|
| 1231 | static double |
---|
| 1232 | gammln(double xx) { |
---|
[6e93a02] | 1233 | |
---|
[ae3ce4e] | 1234 | double x,y,tmp,ser; |
---|
| 1235 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
| 1236 | 24.01409824083091,-1.231739572450155, |
---|
| 1237 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
| 1238 | int j; |
---|
[6e93a02] | 1239 | |
---|
[ae3ce4e] | 1240 | y=x=xx; |
---|
| 1241 | tmp=x+5.5; |
---|
| 1242 | tmp -= (x+0.5)*log(tmp); |
---|
| 1243 | ser=1.000000000190015; |
---|
| 1244 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
| 1245 | return -tmp+log(2.5066282746310005*ser/x); |
---|
| 1246 | } |
---|
| 1247 | |
---|
| 1248 | double |
---|
| 1249 | F_func(double qr) { |
---|
[975ec8e] | 1250 | double sc; |
---|
[6e93a02] | 1251 | if (qr == 0.0){ |
---|
[975ec8e] | 1252 | sc = 1.0; |
---|
| 1253 | }else{ |
---|
[6e93a02] | 1254 | sc=(3.0*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
[975ec8e] | 1255 | } |
---|
| 1256 | return sc; |
---|
[ae3ce4e] | 1257 | } |
---|
| 1258 | |
---|
[6e93a02] | 1259 | double |
---|
| 1260 | OneShell(double dp[], double q) |
---|
| 1261 | { |
---|
| 1262 | // variables are: |
---|
| 1263 | //[0] scale factor |
---|
| 1264 | //[1] radius of core [] |
---|
| 1265 | //[2] SLD of the core [-2] |
---|
| 1266 | //[3] thickness of the shell [] |
---|
| 1267 | //[4] SLD of the shell |
---|
| 1268 | //[5] SLD of the solvent |
---|
| 1269 | //[6] background [cm-1] |
---|
| 1270 | |
---|
| 1271 | double x,pi; |
---|
| 1272 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 1273 | double bes,f,vol,qr,contr,f2; |
---|
| 1274 | |
---|
| 1275 | pi = 4.0*atan(1.0); |
---|
| 1276 | x=q; |
---|
| 1277 | |
---|
| 1278 | scale = dp[0]; |
---|
| 1279 | rcore = dp[1]; |
---|
| 1280 | rhocore = dp[2]; |
---|
| 1281 | thick = dp[3]; |
---|
| 1282 | rhoshel = dp[4]; |
---|
| 1283 | rhosolv = dp[5]; |
---|
| 1284 | bkg = dp[6]; |
---|
| 1285 | |
---|
| 1286 | // core first, then add in shell |
---|
| 1287 | qr=x*rcore; |
---|
| 1288 | contr = rhocore-rhoshel; |
---|
| 1289 | if(qr == 0){ |
---|
| 1290 | bes = 1.0; |
---|
| 1291 | }else{ |
---|
| 1292 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1293 | } |
---|
| 1294 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1295 | f = vol*bes*contr; |
---|
| 1296 | //now the shell |
---|
| 1297 | qr=x*(rcore+thick); |
---|
| 1298 | contr = rhoshel-rhosolv; |
---|
| 1299 | if(qr == 0){ |
---|
| 1300 | bes = 1.0; |
---|
| 1301 | }else{ |
---|
| 1302 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1303 | } |
---|
| 1304 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 1305 | f += vol*bes*contr; |
---|
| 1306 | |
---|
| 1307 | // normalize to particle volume and rescale from [-1] to [cm-1] |
---|
| 1308 | f2 = f*f/vol*1.0e8; |
---|
| 1309 | |
---|
| 1310 | //scale if desired |
---|
| 1311 | f2 *= scale; |
---|
| 1312 | // then add in the background |
---|
| 1313 | f2 += bkg; |
---|
| 1314 | |
---|
| 1315 | return(f2); |
---|
| 1316 | } |
---|
| 1317 | |
---|
| 1318 | double |
---|
| 1319 | TwoShell(double dp[], double q) |
---|
| 1320 | { |
---|
| 1321 | // variables are: |
---|
| 1322 | //[0] scale factor |
---|
| 1323 | //[1] radius of core [] |
---|
| 1324 | //[2] SLD of the core [-2] |
---|
| 1325 | //[3] thickness of shell 1 [] |
---|
| 1326 | //[4] SLD of shell 1 |
---|
| 1327 | //[5] thickness of shell 2 [] |
---|
| 1328 | //[6] SLD of shell 2 |
---|
| 1329 | //[7] SLD of the solvent |
---|
| 1330 | //[8] background [cm-1] |
---|
| 1331 | |
---|
| 1332 | double x,pi; |
---|
| 1333 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1334 | double bes,f,vol,qr,contr,f2; |
---|
| 1335 | double rhoshel2,thick2; |
---|
| 1336 | |
---|
| 1337 | pi = 4.0*atan(1.0); |
---|
| 1338 | x=q; |
---|
| 1339 | |
---|
| 1340 | scale = dp[0]; |
---|
| 1341 | rcore = dp[1]; |
---|
| 1342 | rhocore = dp[2]; |
---|
| 1343 | thick1 = dp[3]; |
---|
| 1344 | rhoshel1 = dp[4]; |
---|
| 1345 | thick2 = dp[5]; |
---|
| 1346 | rhoshel2 = dp[6]; |
---|
| 1347 | rhosolv = dp[7]; |
---|
| 1348 | bkg = dp[8]; |
---|
| 1349 | // core first, then add in shells |
---|
| 1350 | qr=x*rcore; |
---|
| 1351 | contr = rhocore-rhoshel1; |
---|
| 1352 | if(qr == 0){ |
---|
| 1353 | bes = 1.0; |
---|
| 1354 | }else{ |
---|
| 1355 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1356 | } |
---|
| 1357 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1358 | f = vol*bes*contr; |
---|
| 1359 | //now the shell (1) |
---|
| 1360 | qr=x*(rcore+thick1); |
---|
| 1361 | contr = rhoshel1-rhoshel2; |
---|
| 1362 | if(qr == 0){ |
---|
| 1363 | bes = 1.0; |
---|
| 1364 | }else{ |
---|
| 1365 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1366 | } |
---|
| 1367 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1368 | f += vol*bes*contr; |
---|
| 1369 | //now the shell (2) |
---|
| 1370 | qr=x*(rcore+thick1+thick2); |
---|
| 1371 | contr = rhoshel2-rhosolv; |
---|
| 1372 | if(qr == 0){ |
---|
| 1373 | bes = 1.0; |
---|
| 1374 | }else{ |
---|
| 1375 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1376 | } |
---|
| 1377 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1378 | f += vol*bes*contr; |
---|
| 1379 | |
---|
| 1380 | |
---|
| 1381 | // normalize to particle volume and rescale from [-1] to [cm-1] |
---|
| 1382 | f2 = f*f/vol*1.0e8; |
---|
| 1383 | |
---|
| 1384 | //scale if desired |
---|
| 1385 | f2 *= scale; |
---|
| 1386 | // then add in the background |
---|
| 1387 | f2 += bkg; |
---|
| 1388 | |
---|
| 1389 | return(f2); |
---|
| 1390 | } |
---|
| 1391 | |
---|
| 1392 | double |
---|
| 1393 | ThreeShell(double dp[], double q) |
---|
| 1394 | { |
---|
| 1395 | // variables are: |
---|
| 1396 | //[0] scale factor |
---|
| 1397 | //[1] radius of core [] |
---|
| 1398 | //[2] SLD of the core [-2] |
---|
| 1399 | //[3] thickness of shell 1 [] |
---|
| 1400 | //[4] SLD of shell 1 |
---|
| 1401 | //[5] thickness of shell 2 [] |
---|
| 1402 | //[6] SLD of shell 2 |
---|
| 1403 | //[7] thickness of shell 3 |
---|
| 1404 | //[8] SLD of shell 3 |
---|
| 1405 | //[9] SLD of solvent |
---|
| 1406 | //[10] background [cm-1] |
---|
| 1407 | |
---|
| 1408 | double x,pi; |
---|
| 1409 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1410 | double bes,f,vol,qr,contr,f2; |
---|
| 1411 | double rhoshel2,thick2,rhoshel3,thick3; |
---|
| 1412 | |
---|
| 1413 | pi = 4.0*atan(1.0); |
---|
| 1414 | x=q; |
---|
| 1415 | |
---|
| 1416 | scale = dp[0]; |
---|
| 1417 | rcore = dp[1]; |
---|
| 1418 | rhocore = dp[2]; |
---|
| 1419 | thick1 = dp[3]; |
---|
| 1420 | rhoshel1 = dp[4]; |
---|
| 1421 | thick2 = dp[5]; |
---|
| 1422 | rhoshel2 = dp[6]; |
---|
| 1423 | thick3 = dp[7]; |
---|
| 1424 | rhoshel3 = dp[8]; |
---|
| 1425 | rhosolv = dp[9]; |
---|
| 1426 | bkg = dp[10]; |
---|
| 1427 | |
---|
| 1428 | // core first, then add in shells |
---|
| 1429 | qr=x*rcore; |
---|
| 1430 | contr = rhocore-rhoshel1; |
---|
| 1431 | if(qr == 0){ |
---|
| 1432 | bes = 1.0; |
---|
| 1433 | }else{ |
---|
| 1434 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1435 | } |
---|
| 1436 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1437 | f = vol*bes*contr; |
---|
| 1438 | //now the shell (1) |
---|
| 1439 | qr=x*(rcore+thick1); |
---|
| 1440 | contr = rhoshel1-rhoshel2; |
---|
| 1441 | if(qr == 0){ |
---|
| 1442 | bes = 1.0; |
---|
| 1443 | }else{ |
---|
| 1444 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1445 | } |
---|
| 1446 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1447 | f += vol*bes*contr; |
---|
| 1448 | //now the shell (2) |
---|
| 1449 | qr=x*(rcore+thick1+thick2); |
---|
| 1450 | contr = rhoshel2-rhoshel3; |
---|
| 1451 | if(qr == 0){ |
---|
| 1452 | bes = 1.0; |
---|
| 1453 | }else{ |
---|
| 1454 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1455 | } |
---|
| 1456 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1457 | f += vol*bes*contr; |
---|
| 1458 | //now the shell (3) |
---|
| 1459 | qr=x*(rcore+thick1+thick2+thick3); |
---|
| 1460 | contr = rhoshel3-rhosolv; |
---|
| 1461 | if(qr == 0){ |
---|
| 1462 | bes = 1.0; |
---|
| 1463 | }else{ |
---|
| 1464 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1465 | } |
---|
| 1466 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
| 1467 | f += vol*bes*contr; |
---|
| 1468 | |
---|
| 1469 | // normalize to particle volume and rescale from [-1] to [cm-1] |
---|
| 1470 | f2 = f*f/vol*1.0e8; |
---|
| 1471 | |
---|
| 1472 | //scale if desired |
---|
| 1473 | f2 *= scale; |
---|
| 1474 | // then add in the background |
---|
| 1475 | f2 += bkg; |
---|
| 1476 | |
---|
| 1477 | return(f2); |
---|
| 1478 | } |
---|
| 1479 | |
---|
| 1480 | double |
---|
| 1481 | FourShell(double dp[], double q) |
---|
| 1482 | { |
---|
| 1483 | // variables are: |
---|
| 1484 | //[0] scale factor |
---|
| 1485 | //[1] radius of core [] |
---|
| 1486 | //[2] SLD of the core [-2] |
---|
| 1487 | //[3] thickness of shell 1 [] |
---|
| 1488 | //[4] SLD of shell 1 |
---|
| 1489 | //[5] thickness of shell 2 [] |
---|
| 1490 | //[6] SLD of shell 2 |
---|
| 1491 | //[7] thickness of shell 3 |
---|
| 1492 | //[8] SLD of shell 3 |
---|
| 1493 | //[9] thickness of shell 3 |
---|
| 1494 | //[10] SLD of shell 3 |
---|
| 1495 | //[11] SLD of solvent |
---|
| 1496 | //[12] background [cm-1] |
---|
| 1497 | |
---|
| 1498 | double x,pi; |
---|
| 1499 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1500 | double bes,f,vol,qr,contr,f2; |
---|
| 1501 | double rhoshel2,thick2,rhoshel3,thick3,rhoshel4,thick4; |
---|
| 1502 | |
---|
| 1503 | pi = 4.0*atan(1.0); |
---|
| 1504 | x=q; |
---|
| 1505 | |
---|
| 1506 | scale = dp[0]; |
---|
| 1507 | rcore = dp[1]; |
---|
| 1508 | rhocore = dp[2]; |
---|
| 1509 | thick1 = dp[3]; |
---|
| 1510 | rhoshel1 = dp[4]; |
---|
| 1511 | thick2 = dp[5]; |
---|
| 1512 | rhoshel2 = dp[6]; |
---|
| 1513 | thick3 = dp[7]; |
---|
| 1514 | rhoshel3 = dp[8]; |
---|
| 1515 | thick4 = dp[9]; |
---|
| 1516 | rhoshel4 = dp[10]; |
---|
| 1517 | rhosolv = dp[11]; |
---|
| 1518 | bkg = dp[12]; |
---|
| 1519 | |
---|
| 1520 | // core first, then add in shells |
---|
| 1521 | qr=x*rcore; |
---|
| 1522 | contr = rhocore-rhoshel1; |
---|
| 1523 | if(qr == 0){ |
---|
| 1524 | bes = 1.0; |
---|
| 1525 | }else{ |
---|
| 1526 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1527 | } |
---|
| 1528 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1529 | f = vol*bes*contr; |
---|
| 1530 | //now the shell (1) |
---|
| 1531 | qr=x*(rcore+thick1); |
---|
| 1532 | contr = rhoshel1-rhoshel2; |
---|
| 1533 | if(qr == 0){ |
---|
| 1534 | bes = 1.0; |
---|
| 1535 | }else{ |
---|
| 1536 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1537 | } |
---|
| 1538 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1539 | f += vol*bes*contr; |
---|
| 1540 | //now the shell (2) |
---|
| 1541 | qr=x*(rcore+thick1+thick2); |
---|
| 1542 | contr = rhoshel2-rhoshel3; |
---|
| 1543 | if(qr == 0){ |
---|
| 1544 | bes = 1.0; |
---|
| 1545 | }else{ |
---|
| 1546 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1547 | } |
---|
| 1548 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1549 | f += vol*bes*contr; |
---|
| 1550 | //now the shell (3) |
---|
| 1551 | qr=x*(rcore+thick1+thick2+thick3); |
---|
| 1552 | contr = rhoshel3-rhoshel4; |
---|
| 1553 | if(qr == 0){ |
---|
| 1554 | bes = 1.0; |
---|
| 1555 | }else{ |
---|
| 1556 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1557 | } |
---|
| 1558 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
| 1559 | f += vol*bes*contr; |
---|
| 1560 | //now the shell (4) |
---|
| 1561 | qr=x*(rcore+thick1+thick2+thick3+thick4); |
---|
| 1562 | contr = rhoshel4-rhosolv; |
---|
| 1563 | if(qr == 0){ |
---|
| 1564 | bes = 1.0; |
---|
| 1565 | }else{ |
---|
| 1566 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1567 | } |
---|
| 1568 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4); |
---|
| 1569 | f += vol*bes*contr; |
---|
| 1570 | |
---|
| 1571 | |
---|
| 1572 | // normalize to particle volume and rescale from [-1] to [cm-1] |
---|
| 1573 | f2 = f*f/vol*1.0e8; |
---|
| 1574 | |
---|
| 1575 | //scale if desired |
---|
| 1576 | f2 *= scale; |
---|
| 1577 | // then add in the background |
---|
| 1578 | f2 += bkg; |
---|
| 1579 | |
---|
| 1580 | return(f2); |
---|
| 1581 | } |
---|
| 1582 | |
---|
| 1583 | double |
---|
| 1584 | PolyOneShell(double dp[], double x) |
---|
| 1585 | { |
---|
| 1586 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg,pd,zz; //my local names |
---|
| 1587 | double va,vb,summ,yyy,zi; |
---|
| 1588 | double answer,zp1,zp2,zp3,vpoly,range,temp_1sf[7],pi; |
---|
| 1589 | int nord=76,ii; |
---|
| 1590 | |
---|
| 1591 | pi = 4.0*atan(1.0); |
---|
| 1592 | |
---|
| 1593 | scale = dp[0]; |
---|
| 1594 | rcore = dp[1]; |
---|
| 1595 | pd = dp[2]; |
---|
| 1596 | rhocore = dp[3]; |
---|
| 1597 | thick = dp[4]; |
---|
| 1598 | rhoshel = dp[5]; |
---|
| 1599 | rhosolv = dp[6]; |
---|
| 1600 | bkg = dp[7]; |
---|
| 1601 | |
---|
| 1602 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1603 | |
---|
| 1604 | range = 8.0; //std deviations for the integration |
---|
| 1605 | va = rcore*(1.0-range*pd); |
---|
| 1606 | if (va<0.0) { |
---|
| 1607 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1608 | } |
---|
| 1609 | if (pd>0.3) { |
---|
| 1610 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1611 | } |
---|
| 1612 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1613 | |
---|
| 1614 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1615 | temp_1sf[0] = 1.0; |
---|
| 1616 | temp_1sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1617 | temp_1sf[2] = dp[3]; |
---|
| 1618 | temp_1sf[3] = dp[4]; |
---|
| 1619 | temp_1sf[4] = dp[5]; |
---|
| 1620 | temp_1sf[5] = dp[6]; |
---|
| 1621 | temp_1sf[6] = 0.0; |
---|
| 1622 | |
---|
| 1623 | summ = 0.0; // initialize integral |
---|
| 1624 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1625 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1626 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1627 | temp_1sf[1] = zi; |
---|
| 1628 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * OneShell(temp_1sf,x); |
---|
| 1629 | //un-normalize by volume |
---|
| 1630 | yyy *= 4.0*pi/3.0*pow((zi+thick),3); |
---|
| 1631 | summ += yyy; //add to the running total of the quadrature |
---|
| 1632 | } |
---|
| 1633 | // calculate value of integral to return |
---|
| 1634 | answer = (vb-va)/2.0*summ; |
---|
| 1635 | |
---|
| 1636 | //re-normalize by the average volume |
---|
| 1637 | zp1 = zz + 1.0; |
---|
| 1638 | zp2 = zz + 2.0; |
---|
| 1639 | zp3 = zz + 3.0; |
---|
| 1640 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick),3); |
---|
| 1641 | answer /= vpoly; |
---|
| 1642 | //scale |
---|
| 1643 | answer *= scale; |
---|
| 1644 | // add in the background |
---|
| 1645 | answer += bkg; |
---|
| 1646 | |
---|
| 1647 | return(answer); |
---|
| 1648 | } |
---|
| 1649 | |
---|
| 1650 | double |
---|
| 1651 | PolyTwoShell(double dp[], double x) |
---|
| 1652 | { |
---|
| 1653 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1654 | double va,vb,summ,yyy,zi; |
---|
| 1655 | double answer,zp1,zp2,zp3,vpoly,range,temp_2sf[9],pi; |
---|
| 1656 | int nord=76,ii; |
---|
| 1657 | double thick1,thick2; |
---|
| 1658 | double rhoshel1,rhoshel2; |
---|
| 1659 | |
---|
| 1660 | scale = dp[0]; |
---|
| 1661 | rcore = dp[1]; |
---|
| 1662 | pd = dp[2]; |
---|
| 1663 | rhocore = dp[3]; |
---|
| 1664 | thick1 = dp[4]; |
---|
| 1665 | rhoshel1 = dp[5]; |
---|
| 1666 | thick2 = dp[6]; |
---|
| 1667 | rhoshel2 = dp[7]; |
---|
| 1668 | rhosolv = dp[8]; |
---|
| 1669 | bkg = dp[9]; |
---|
| 1670 | |
---|
| 1671 | pi = 4.0*atan(1.0); |
---|
| 1672 | |
---|
| 1673 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1674 | |
---|
| 1675 | range = 8.0; //std deviations for the integration |
---|
| 1676 | va = rcore*(1.0-range*pd); |
---|
| 1677 | if (va<0.0) { |
---|
| 1678 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1679 | } |
---|
| 1680 | if (pd>0.3) { |
---|
| 1681 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1682 | } |
---|
| 1683 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1684 | |
---|
| 1685 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1686 | temp_2sf[0] = 1.0; |
---|
| 1687 | temp_2sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1688 | temp_2sf[2] = dp[3]; |
---|
| 1689 | temp_2sf[3] = dp[4]; |
---|
| 1690 | temp_2sf[4] = dp[5]; |
---|
| 1691 | temp_2sf[5] = dp[6]; |
---|
| 1692 | temp_2sf[6] = dp[7]; |
---|
| 1693 | temp_2sf[7] = dp[8]; |
---|
| 1694 | temp_2sf[8] = 0.0; |
---|
| 1695 | |
---|
| 1696 | summ = 0.0; // initialize integral |
---|
| 1697 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1698 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1699 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1700 | temp_2sf[1] = zi; |
---|
| 1701 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * TwoShell(temp_2sf,x); |
---|
| 1702 | //un-normalize by volume |
---|
| 1703 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2),3); |
---|
| 1704 | summ += yyy; //add to the running total of the quadrature |
---|
| 1705 | } |
---|
| 1706 | // calculate value of integral to return |
---|
| 1707 | answer = (vb-va)/2.0*summ; |
---|
| 1708 | |
---|
| 1709 | //re-normalize by the average volume |
---|
| 1710 | zp1 = zz + 1.0; |
---|
| 1711 | zp2 = zz + 2.0; |
---|
| 1712 | zp3 = zz + 3.0; |
---|
| 1713 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2),3); |
---|
| 1714 | answer /= vpoly; |
---|
| 1715 | //scale |
---|
| 1716 | answer *= scale; |
---|
| 1717 | // add in the background |
---|
| 1718 | answer += bkg; |
---|
| 1719 | |
---|
| 1720 | return(answer); |
---|
| 1721 | } |
---|
| 1722 | |
---|
| 1723 | double |
---|
| 1724 | PolyThreeShell(double dp[], double x) |
---|
| 1725 | { |
---|
| 1726 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1727 | double va,vb,summ,yyy,zi; |
---|
| 1728 | double answer,zp1,zp2,zp3,vpoly,range,temp_3sf[11],pi; |
---|
| 1729 | int nord=76,ii; |
---|
| 1730 | double thick1,thick2,thick3; |
---|
| 1731 | double rhoshel1,rhoshel2,rhoshel3; |
---|
| 1732 | |
---|
| 1733 | scale = dp[0]; |
---|
| 1734 | rcore = dp[1]; |
---|
| 1735 | pd = dp[2]; |
---|
| 1736 | rhocore = dp[3]; |
---|
| 1737 | thick1 = dp[4]; |
---|
| 1738 | rhoshel1 = dp[5]; |
---|
| 1739 | thick2 = dp[6]; |
---|
| 1740 | rhoshel2 = dp[7]; |
---|
| 1741 | thick3 = dp[8]; |
---|
| 1742 | rhoshel3 = dp[9]; |
---|
| 1743 | rhosolv = dp[10]; |
---|
| 1744 | bkg = dp[11]; |
---|
| 1745 | |
---|
| 1746 | pi = 4.0*atan(1.0); |
---|
| 1747 | |
---|
| 1748 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1749 | |
---|
| 1750 | range = 8.0; //std deviations for the integration |
---|
| 1751 | va = rcore*(1.0-range*pd); |
---|
| 1752 | if (va<0) { |
---|
| 1753 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1754 | } |
---|
| 1755 | if (pd>0.3) { |
---|
| 1756 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1757 | } |
---|
| 1758 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1759 | |
---|
| 1760 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1761 | temp_3sf[0] = 1.0; |
---|
| 1762 | temp_3sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1763 | temp_3sf[2] = dp[3]; |
---|
| 1764 | temp_3sf[3] = dp[4]; |
---|
| 1765 | temp_3sf[4] = dp[5]; |
---|
| 1766 | temp_3sf[5] = dp[6]; |
---|
| 1767 | temp_3sf[6] = dp[7]; |
---|
| 1768 | temp_3sf[7] = dp[8]; |
---|
| 1769 | temp_3sf[8] = dp[9]; |
---|
| 1770 | temp_3sf[9] = dp[10]; |
---|
| 1771 | temp_3sf[10] = 0.0; |
---|
| 1772 | |
---|
| 1773 | summ = 0.0; // initialize integral |
---|
| 1774 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1775 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1776 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1777 | temp_3sf[1] = zi; |
---|
| 1778 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * ThreeShell(temp_3sf,x); |
---|
| 1779 | //un-normalize by volume |
---|
| 1780 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3),3); |
---|
| 1781 | summ += yyy; //add to the running total of the quadrature |
---|
| 1782 | } |
---|
| 1783 | // calculate value of integral to return |
---|
| 1784 | answer = (vb-va)/2.0*summ; |
---|
| 1785 | |
---|
| 1786 | //re-normalize by the average volume |
---|
| 1787 | zp1 = zz + 1.0; |
---|
| 1788 | zp2 = zz + 2.0; |
---|
| 1789 | zp3 = zz + 3.0; |
---|
| 1790 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3),3); |
---|
| 1791 | answer /= vpoly; |
---|
| 1792 | //scale |
---|
| 1793 | answer *= scale; |
---|
| 1794 | // add in the background |
---|
| 1795 | answer += bkg; |
---|
| 1796 | |
---|
| 1797 | return(answer); |
---|
| 1798 | } |
---|
| 1799 | |
---|
| 1800 | double |
---|
| 1801 | PolyFourShell(double dp[], double x) |
---|
| 1802 | { |
---|
| 1803 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1804 | double va,vb,summ,yyy,zi; |
---|
| 1805 | double answer,zp1,zp2,zp3,vpoly,range,temp_4sf[13],pi; |
---|
| 1806 | int nord=76,ii; |
---|
| 1807 | double thick1,thick2,thick3,thick4; |
---|
| 1808 | double rhoshel1,rhoshel2,rhoshel3,rhoshel4; |
---|
| 1809 | |
---|
| 1810 | scale = dp[0]; |
---|
| 1811 | rcore = dp[1]; |
---|
| 1812 | pd = dp[2]; |
---|
| 1813 | rhocore = dp[3]; |
---|
| 1814 | thick1 = dp[4]; |
---|
| 1815 | rhoshel1 = dp[5]; |
---|
| 1816 | thick2 = dp[6]; |
---|
| 1817 | rhoshel2 = dp[7]; |
---|
| 1818 | thick3 = dp[8]; |
---|
| 1819 | rhoshel3 = dp[9]; |
---|
| 1820 | thick4 = dp[10]; |
---|
| 1821 | rhoshel4 = dp[11]; |
---|
| 1822 | rhosolv = dp[12]; |
---|
| 1823 | bkg = dp[13]; |
---|
| 1824 | |
---|
| 1825 | pi = 4.0*atan(1.0); |
---|
| 1826 | |
---|
| 1827 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1828 | |
---|
| 1829 | range = 8.0; //std deviations for the integration |
---|
| 1830 | va = rcore*(1.0-range*pd); |
---|
| 1831 | if (va<0) { |
---|
| 1832 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1833 | } |
---|
| 1834 | if (pd>0.3) { |
---|
| 1835 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1836 | } |
---|
| 1837 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1838 | |
---|
| 1839 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1840 | temp_4sf[0] = 1.0; |
---|
| 1841 | temp_4sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1842 | temp_4sf[2] = dp[3]; |
---|
| 1843 | temp_4sf[3] = dp[4]; |
---|
| 1844 | temp_4sf[4] = dp[5]; |
---|
| 1845 | temp_4sf[5] = dp[6]; |
---|
| 1846 | temp_4sf[6] = dp[7]; |
---|
| 1847 | temp_4sf[7] = dp[8]; |
---|
| 1848 | temp_4sf[8] = dp[9]; |
---|
| 1849 | temp_4sf[9] = dp[10]; |
---|
| 1850 | temp_4sf[10] = dp[11]; |
---|
| 1851 | temp_4sf[11] = dp[12]; |
---|
| 1852 | temp_4sf[12] = 0.0; |
---|
| 1853 | |
---|
| 1854 | summ = 0.0; // initialize integral |
---|
| 1855 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1856 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1857 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1858 | temp_4sf[1] = zi; |
---|
| 1859 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * FourShell(temp_4sf,x); |
---|
| 1860 | //un-normalize by volume |
---|
| 1861 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3+thick4),3); |
---|
| 1862 | summ += yyy; //add to the running total of the quadrature |
---|
| 1863 | } |
---|
| 1864 | // calculate value of integral to return |
---|
| 1865 | answer = (vb-va)/2.0*summ; |
---|
| 1866 | |
---|
| 1867 | //re-normalize by the average volume |
---|
| 1868 | zp1 = zz + 1.0; |
---|
| 1869 | zp2 = zz + 2.0; |
---|
| 1870 | zp3 = zz + 3.0; |
---|
| 1871 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3+thick4),3); |
---|
| 1872 | answer /= vpoly; |
---|
| 1873 | //scale |
---|
| 1874 | answer *= scale; |
---|
| 1875 | // add in the background |
---|
| 1876 | answer += bkg; |
---|
| 1877 | |
---|
| 1878 | return(answer); |
---|
| 1879 | } |
---|
| 1880 | |
---|
| 1881 | |
---|
| 1882 | /* BCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 1883 | |
---|
| 1884 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 1885 | |
---|
| 1886 | */ |
---|
| 1887 | double |
---|
| 1888 | BCC_ParaCrystal(double w[], double x) |
---|
| 1889 | { |
---|
| 1890 | int i,j; |
---|
| 1891 | double Pi; |
---|
| 1892 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 1893 | int nordi=150; //order of integration |
---|
| 1894 | int nordj=150; |
---|
| 1895 | double va,vb; //upper and lower integration limits |
---|
| 1896 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 1897 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 1898 | |
---|
| 1899 | Pi = 4.0*atan(1.0); |
---|
| 1900 | va = 0.0; |
---|
| 1901 | vb = 2.0*Pi; //orintational average, outer integral |
---|
| 1902 | vaj = 0.0; |
---|
| 1903 | vbj = Pi; //endpoints of inner integral |
---|
| 1904 | |
---|
| 1905 | summ = 0.0; //initialize intergral |
---|
| 1906 | |
---|
| 1907 | scale = w[0]; |
---|
| 1908 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 1909 | gg = w[2]; //Paracrystal distortion factor |
---|
| 1910 | Rad = w[3]; //Sphere radius |
---|
| 1911 | sld = w[4]; |
---|
| 1912 | sldSolv = w[5]; |
---|
| 1913 | background = w[6]; |
---|
| 1914 | |
---|
| 1915 | contrast = sld - sldSolv; |
---|
| 1916 | |
---|
| 1917 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 1918 | latticeScale = 2.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn/sqrt(3.0/4.0),3); |
---|
| 1919 | |
---|
| 1920 | for(i=0;i<nordi;i++) { |
---|
| 1921 | //setup inner integral over the ellipsoidal cross-section |
---|
| 1922 | summj=0.0; |
---|
| 1923 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 1924 | for(j=0;j<nordj;j++) { |
---|
| 1925 | //20 gauss points for the inner integral |
---|
| 1926 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 1927 | yyy = Gauss150Wt[j] * BCC_Integrand(w,x,zi,zij); |
---|
| 1928 | summj += yyy; |
---|
| 1929 | } |
---|
| 1930 | //now calculate the value of the inner integral |
---|
| 1931 | answer = (vbj-vaj)/2.0*summj; |
---|
| 1932 | |
---|
| 1933 | //now calculate outer integral |
---|
| 1934 | yyy = Gauss150Wt[i] * answer; |
---|
| 1935 | summ += yyy; |
---|
| 1936 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 1937 | |
---|
| 1938 | answer = (vb-va)/2.0*summ; |
---|
| 1939 | // Multiply by contrast^2 |
---|
| 1940 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 1941 | // add in the background |
---|
| 1942 | answer += background; |
---|
| 1943 | |
---|
| 1944 | return answer; |
---|
| 1945 | } |
---|
| 1946 | |
---|
| 1947 | // xx is phi (outer) |
---|
| 1948 | // yy is theta (inner) |
---|
| 1949 | double |
---|
| 1950 | BCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 1951 | |
---|
| 1952 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
| 1953 | |
---|
| 1954 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 1955 | gg = w[2]; //Paracrystal distortion factor |
---|
| 1956 | aa = Dnn; |
---|
| 1957 | Da = gg*aa; |
---|
| 1958 | |
---|
| 1959 | Pi = 4.0*atan(1.0); |
---|
| 1960 | temp1 = qq*qq*Da*Da; |
---|
| 1961 | temp3 = qq*aa; |
---|
| 1962 | |
---|
| 1963 | retVal = BCCeval(yy,xx,temp1,temp3); |
---|
| 1964 | retVal /=4.0*Pi; |
---|
| 1965 | |
---|
| 1966 | return(retVal); |
---|
| 1967 | } |
---|
| 1968 | |
---|
| 1969 | double |
---|
| 1970 | BCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
| 1971 | |
---|
| 1972 | double temp6,temp7,temp8,temp9,temp10; |
---|
| 1973 | double result; |
---|
| 1974 | |
---|
| 1975 | temp6 = sin(Theta); |
---|
| 1976 | temp7 = sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 1977 | temp8 = -1.0*sin(Theta)*cos(Phi)-sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 1978 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)-cos(Theta); |
---|
| 1979 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
| 1980 | result = pow(1.0-(temp10*temp10),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
| 1981 | |
---|
| 1982 | return (result); |
---|
| 1983 | } |
---|
| 1984 | |
---|
| 1985 | double |
---|
| 1986 | SphereForm_Paracrystal(double radius, double delrho, double x) { |
---|
| 1987 | |
---|
| 1988 | double bes,f,vol,f2,pi; |
---|
| 1989 | pi = 4.0*atan(1.0); |
---|
| 1990 | // |
---|
| 1991 | //handle q==0 separately |
---|
| 1992 | if(x==0) { |
---|
| 1993 | f = 4.0/3.0*pi*radius*radius*radius*delrho*delrho*1.0e8; |
---|
| 1994 | return(f); |
---|
| 1995 | } |
---|
| 1996 | |
---|
| 1997 | bes = 3.0*(sin(x*radius)-x*radius*cos(x*radius))/(x*x*x)/(radius*radius*radius); |
---|
| 1998 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
| 1999 | f = vol*bes*delrho ; // [=] |
---|
| 2000 | // normalize to single particle volume, convert to 1/cm |
---|
| 2001 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
| 2002 | |
---|
| 2003 | return (f2); |
---|
| 2004 | } |
---|
| 2005 | |
---|
| 2006 | /* FCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 2007 | |
---|
| 2008 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 2009 | |
---|
| 2010 | */ |
---|
| 2011 | double |
---|
| 2012 | FCC_ParaCrystal(double w[], double x) |
---|
| 2013 | { |
---|
| 2014 | int i,j; |
---|
| 2015 | double Pi; |
---|
| 2016 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 2017 | int nordi=150; //order of integration |
---|
| 2018 | int nordj=150; |
---|
| 2019 | double va,vb; //upper and lower integration limits |
---|
| 2020 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2021 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2022 | |
---|
| 2023 | Pi = 4.0*atan(1.0); |
---|
| 2024 | va = 0.0; |
---|
| 2025 | vb = 2.0*Pi; //orintational average, outer integral |
---|
| 2026 | vaj = 0.0; |
---|
| 2027 | vbj = Pi; //endpoints of inner integral |
---|
| 2028 | |
---|
| 2029 | summ = 0.0; //initialize intergral |
---|
| 2030 | |
---|
| 2031 | scale = w[0]; |
---|
| 2032 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2033 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2034 | Rad = w[3]; //Sphere radius |
---|
| 2035 | sld = w[4]; |
---|
| 2036 | sldSolv = w[5]; |
---|
| 2037 | background = w[6]; |
---|
| 2038 | |
---|
| 2039 | contrast = sld - sldSolv; |
---|
| 2040 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 2041 | latticeScale = 4.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn*sqrt(2.0),3); |
---|
| 2042 | |
---|
| 2043 | for(i=0;i<nordi;i++) { |
---|
| 2044 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2045 | summj=0.0; |
---|
| 2046 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 2047 | for(j=0;j<nordj;j++) { |
---|
| 2048 | //20 gauss points for the inner integral |
---|
| 2049 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 2050 | yyy = Gauss150Wt[j] * FCC_Integrand(w,x,zi,zij); |
---|
| 2051 | summj += yyy; |
---|
| 2052 | } |
---|
| 2053 | //now calculate the value of the inner integral |
---|
| 2054 | answer = (vbj-vaj)/2.0*summj; |
---|
| 2055 | |
---|
| 2056 | //now calculate outer integral |
---|
| 2057 | yyy = Gauss150Wt[i] * answer; |
---|
| 2058 | summ += yyy; |
---|
| 2059 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2060 | |
---|
| 2061 | answer = (vb-va)/2.0*summ; |
---|
| 2062 | // Multiply by contrast^2 |
---|
| 2063 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 2064 | // add in the background |
---|
| 2065 | answer += background; |
---|
| 2066 | |
---|
| 2067 | return answer; |
---|
| 2068 | } |
---|
| 2069 | |
---|
| 2070 | |
---|
| 2071 | // xx is phi (outer) |
---|
| 2072 | // yy is theta (inner) |
---|
| 2073 | double |
---|
| 2074 | FCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 2075 | |
---|
| 2076 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
| 2077 | |
---|
| 2078 | Pi = 4.0*atan(1.0); |
---|
| 2079 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2080 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2081 | aa = Dnn; |
---|
| 2082 | Da = gg*aa; |
---|
| 2083 | |
---|
| 2084 | temp1 = qq*qq*Da*Da; |
---|
| 2085 | temp3 = qq*aa; |
---|
| 2086 | |
---|
| 2087 | retVal = FCCeval(yy,xx,temp1,temp3); |
---|
| 2088 | retVal /=4*Pi; |
---|
| 2089 | |
---|
| 2090 | return(retVal); |
---|
| 2091 | } |
---|
| 2092 | |
---|
| 2093 | double |
---|
| 2094 | FCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
| 2095 | |
---|
| 2096 | double temp6,temp7,temp8,temp9,temp10; |
---|
| 2097 | double result; |
---|
| 2098 | |
---|
| 2099 | temp6 = sin(Theta); |
---|
| 2100 | temp7 = sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 2101 | temp8 = -1.0*sin(Theta)*cos(Phi)+cos(Theta); |
---|
| 2102 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi); |
---|
| 2103 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
| 2104 | result = pow((1.0-(temp10*temp10)),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
| 2105 | |
---|
| 2106 | return (result); |
---|
| 2107 | } |
---|
| 2108 | |
---|
| 2109 | |
---|
| 2110 | /* SC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 2111 | |
---|
| 2112 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 2113 | |
---|
| 2114 | */ |
---|
| 2115 | double |
---|
| 2116 | SC_ParaCrystal(double w[], double x) |
---|
| 2117 | { |
---|
| 2118 | int i,j; |
---|
| 2119 | double Pi; |
---|
| 2120 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 2121 | int nordi=150; //order of integration |
---|
| 2122 | int nordj=150; |
---|
| 2123 | double va,vb; //upper and lower integration limits |
---|
| 2124 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2125 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2126 | |
---|
| 2127 | Pi = 4.0*atan(1.0); |
---|
| 2128 | va = 0.0; |
---|
| 2129 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2130 | vaj = 0.0; |
---|
| 2131 | vbj = Pi/2.0; //endpoints of inner integral |
---|
| 2132 | |
---|
| 2133 | summ = 0.0; //initialize intergral |
---|
| 2134 | |
---|
| 2135 | scale = w[0]; |
---|
| 2136 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2137 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2138 | Rad = w[3]; //Sphere radius |
---|
| 2139 | sld = w[4]; |
---|
| 2140 | sldSolv = w[5]; |
---|
| 2141 | background = w[6]; |
---|
| 2142 | |
---|
| 2143 | contrast = sld - sldSolv; |
---|
| 2144 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 2145 | latticeScale = (4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn,3); |
---|
| 2146 | |
---|
| 2147 | for(i=0;i<nordi;i++) { |
---|
| 2148 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2149 | summj=0.0; |
---|
| 2150 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 2151 | for(j=0;j<nordj;j++) { |
---|
| 2152 | //20 gauss points for the inner integral |
---|
| 2153 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 2154 | yyy = Gauss150Wt[j] * SC_Integrand(w,x,zi,zij); |
---|
| 2155 | summj += yyy; |
---|
| 2156 | } |
---|
| 2157 | //now calculate the value of the inner integral |
---|
| 2158 | answer = (vbj-vaj)/2.0*summj; |
---|
| 2159 | |
---|
| 2160 | //now calculate outer integral |
---|
| 2161 | yyy = Gauss150Wt[i] * answer; |
---|
| 2162 | summ += yyy; |
---|
| 2163 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2164 | |
---|
| 2165 | answer = (vb-va)/2.0*summ; |
---|
| 2166 | // Multiply by contrast^2 |
---|
| 2167 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 2168 | // add in the background |
---|
| 2169 | answer += background; |
---|
| 2170 | |
---|
| 2171 | return answer; |
---|
| 2172 | } |
---|
| 2173 | |
---|
| 2174 | // xx is phi (outer) |
---|
| 2175 | // yy is theta (inner) |
---|
| 2176 | double |
---|
| 2177 | SC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 2178 | |
---|
| 2179 | double retVal,temp1,temp2,temp3,temp4,temp5,aa,Da,Dnn,gg,Pi; |
---|
| 2180 | |
---|
| 2181 | Pi = 4.0*atan(1.0); |
---|
| 2182 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2183 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2184 | aa = Dnn; |
---|
| 2185 | Da = gg*aa; |
---|
| 2186 | |
---|
| 2187 | temp1 = qq*qq*Da*Da; |
---|
| 2188 | temp2 = pow( 1.0-exp(-1.0*temp1) ,3); |
---|
| 2189 | temp3 = qq*aa; |
---|
| 2190 | temp4 = 2.0*exp(-0.5*temp1); |
---|
| 2191 | temp5 = exp(-1.0*temp1); |
---|
| 2192 | |
---|
| 2193 | |
---|
| 2194 | retVal = temp2*SCeval(yy,xx,temp3,temp4,temp5); |
---|
| 2195 | retVal *= 2.0/Pi; |
---|
| 2196 | |
---|
| 2197 | return(retVal); |
---|
| 2198 | } |
---|
| 2199 | |
---|
| 2200 | double |
---|
| 2201 | SCeval(double Theta, double Phi, double temp3, double temp4, double temp5) { //Function to calculate integrand values for simple cubic structure |
---|
| 2202 | |
---|
| 2203 | double temp6,temp7,temp8,temp9; //Theta and phi dependent parts of the equation |
---|
| 2204 | double result; |
---|
| 2205 | |
---|
| 2206 | temp6 = sin(Theta); |
---|
| 2207 | temp7 = -1.0*temp3*sin(Theta)*cos(Phi); |
---|
| 2208 | temp8 = temp3*sin(Theta)*sin(Phi); |
---|
| 2209 | temp9 = temp3*cos(Theta); |
---|
| 2210 | result = temp6/((1.0-temp4*cos((temp7))+temp5)*(1.0-temp4*cos((temp8))+temp5)*(1.0-temp4*cos((temp9))+temp5)); |
---|
| 2211 | |
---|
| 2212 | return (result); |
---|
| 2213 | } |
---|
| 2214 | |
---|
| 2215 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
| 2216 | // |
---|
| 2217 | double |
---|
| 2218 | FuzzySpheres(double dp[], double q) |
---|
| 2219 | { |
---|
| 2220 | double pi,x; |
---|
| 2221 | double scale,rad,pd,sig,rho,rhos,bkg,delrho,sig_surf,f2,bes,vol,f; //my local names |
---|
| 2222 | double va,vb,zi,yy,summ,inten; |
---|
| 2223 | int nord=20,ii; |
---|
| 2224 | |
---|
| 2225 | pi = 4.0*atan(1.0); |
---|
| 2226 | x= q; |
---|
| 2227 | |
---|
| 2228 | scale=dp[0]; |
---|
| 2229 | rad=dp[1]; |
---|
| 2230 | pd=dp[2]; |
---|
| 2231 | sig=pd*rad; |
---|
| 2232 | sig_surf = dp[3]; |
---|
| 2233 | rho=dp[4]; |
---|
| 2234 | rhos=dp[5]; |
---|
| 2235 | delrho=rho-rhos; |
---|
| 2236 | bkg=dp[6]; |
---|
| 2237 | |
---|
| 2238 | |
---|
| 2239 | va = -4.0*sig + rad; |
---|
| 2240 | if (va<0) { |
---|
| 2241 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
| 2242 | } |
---|
| 2243 | vb = 4.0*sig +rad; |
---|
| 2244 | |
---|
| 2245 | summ = 0.0; // initialize integral |
---|
| 2246 | for(ii=0;ii<nord;ii+=1) { |
---|
| 2247 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 2248 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 2249 | // calculate sphere scattering |
---|
| 2250 | // |
---|
| 2251 | //handle q==0 separately |
---|
| 2252 | if (x==0.0) { |
---|
| 2253 | f2 = 4.0/3.0*pi*zi*zi*zi*delrho*delrho*1.0e8; |
---|
| 2254 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2255 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2256 | } else { |
---|
| 2257 | bes = 3.0*(sin(x*zi)-x*zi*cos(x*zi))/(x*x*x)/(zi*zi*zi); |
---|
| 2258 | vol = 4.0*pi/3.0*zi*zi*zi; |
---|
| 2259 | f = vol*bes*delrho; // [=] A |
---|
| 2260 | f *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2261 | // normalize to single particle volume, convert to 1/cm |
---|
| 2262 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
| 2263 | } |
---|
| 2264 | |
---|
| 2265 | yy = Gauss20Wt[ii] * Gauss_distr(sig,rad,zi) * f2; |
---|
| 2266 | yy *= 4.0*pi/3.0*zi*zi*zi; //un-normalize by current sphere volume |
---|
| 2267 | |
---|
| 2268 | summ += yy; //add to the running total of the quadrature |
---|
| 2269 | |
---|
| 2270 | |
---|
| 2271 | } |
---|
| 2272 | // calculate value of integral to return |
---|
| 2273 | inten = (vb-va)/2.0*summ; |
---|
| 2274 | |
---|
| 2275 | //re-normalize by polydisperse sphere volume |
---|
| 2276 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
| 2277 | |
---|
| 2278 | inten *= scale; |
---|
| 2279 | inten += bkg; |
---|
| 2280 | |
---|
| 2281 | return(inten); //scale, and add in the background |
---|
| 2282 | } |
---|
| 2283 | |
---|
| 2284 | |
---|