[ae3ce4e] | 1 | /* SimpleFit.c |
---|
| 2 | |
---|
| 3 | A simplified project designed to act as a template for your curve fitting function. |
---|
| 4 | The fitting function is a simple polynomial. It works but is of no practical use. |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
| 8 | #include "GaussWeights.h" |
---|
| 9 | #include "libSphere.h" |
---|
| 10 | |
---|
[5f0dcab] | 11 | |
---|
| 12 | static double |
---|
| 13 | gammln(double xx) { |
---|
| 14 | double x,y,tmp,ser; |
---|
| 15 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
| 16 | 24.01409824083091,-1.231739572450155, |
---|
| 17 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
| 18 | int j; |
---|
| 19 | |
---|
| 20 | y=x=xx; |
---|
| 21 | tmp=x+5.5; |
---|
| 22 | tmp -= (x+0.5)*log(tmp); |
---|
| 23 | ser=1.000000000190015; |
---|
| 24 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
| 25 | return -tmp+log(2.5066282746310005*ser/x); |
---|
| 26 | } |
---|
| 27 | |
---|
| 28 | static double |
---|
| 29 | LogNormal_distr(double sig, double mu, double pt) |
---|
| 30 | { |
---|
| 31 | double retval,pi; |
---|
| 32 | |
---|
| 33 | pi = 4.0*atan(1.0); |
---|
| 34 | retval = (1.0/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
| 35 | return(retval); |
---|
| 36 | } |
---|
| 37 | |
---|
| 38 | static double |
---|
| 39 | Gauss_distr(double sig, double avg, double pt) |
---|
| 40 | { |
---|
| 41 | double retval,Pi; |
---|
| 42 | |
---|
| 43 | Pi = 4.0*atan(1.0); |
---|
| 44 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
| 45 | return(retval); |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | static double SchulzPoint(double x, double avg, double zz) { |
---|
| 49 | double dr; |
---|
| 50 | dr = zz*log(x) - gammln(zz+1.0)+(zz+1.0)*log((zz+1.0)/avg)-(x/avg*(zz+1.0)); |
---|
| 51 | return (exp(dr)); |
---|
| 52 | }; |
---|
| 53 | |
---|
| 54 | |
---|
[ae3ce4e] | 55 | // scattering from a sphere - hardly needs to be an XOP... |
---|
| 56 | double |
---|
| 57 | SphereForm(double dp[], double q) |
---|
| 58 | { |
---|
[6e93a02] | 59 | double scale,radius,delrho,bkg,sldSph,sldSolv; //my local names |
---|
[975ec8e] | 60 | double bes,f,vol,f2,pi,qr; |
---|
| 61 | |
---|
[ae3ce4e] | 62 | pi = 4.0*atan(1.0); |
---|
| 63 | scale = dp[0]; |
---|
| 64 | radius = dp[1]; |
---|
[6e93a02] | 65 | sldSph = dp[2]; |
---|
| 66 | sldSolv = dp[3]; |
---|
| 67 | bkg = dp[4]; |
---|
| 68 | |
---|
| 69 | delrho = sldSph - sldSolv; |
---|
| 70 | //handle qr==0 separately |
---|
[975ec8e] | 71 | qr = q*radius; |
---|
[6e93a02] | 72 | if(qr == 0.0){ |
---|
[975ec8e] | 73 | bes = 1.0; |
---|
| 74 | }else{ |
---|
| 75 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
[ae3ce4e] | 76 | } |
---|
[6e93a02] | 77 | |
---|
[ae3ce4e] | 78 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
| 79 | f = vol*bes*delrho; // [=] A-1 |
---|
| 80 | // normalize to single particle volume, convert to 1/cm |
---|
| 81 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
[6e93a02] | 82 | |
---|
[ae3ce4e] | 83 | return(scale*f2+bkg); //scale, and add in the background |
---|
| 84 | } |
---|
| 85 | |
---|
| 86 | // scattering from a monodisperse core-shell sphere - hardly needs to be an XOP... |
---|
| 87 | double |
---|
| 88 | CoreShellForm(double dp[], double q) |
---|
| 89 | { |
---|
| 90 | double x,pi; |
---|
| 91 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 92 | double bes,f,vol,qr,contr,f2; |
---|
[6e93a02] | 93 | |
---|
[ae3ce4e] | 94 | pi = 4.0*atan(1.0); |
---|
| 95 | x=q; |
---|
[6e93a02] | 96 | |
---|
[ae3ce4e] | 97 | scale = dp[0]; |
---|
| 98 | rcore = dp[1]; |
---|
| 99 | thick = dp[2]; |
---|
| 100 | rhocore = dp[3]; |
---|
| 101 | rhoshel = dp[4]; |
---|
| 102 | rhosolv = dp[5]; |
---|
| 103 | bkg = dp[6]; |
---|
| 104 | // core first, then add in shell |
---|
| 105 | qr=x*rcore; |
---|
| 106 | contr = rhocore-rhoshel; |
---|
[6e93a02] | 107 | if(qr == 0.0){ |
---|
[975ec8e] | 108 | bes = 1.0; |
---|
| 109 | }else{ |
---|
| 110 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 111 | } |
---|
[ae3ce4e] | 112 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 113 | f = vol*bes*contr; |
---|
| 114 | //now the shell |
---|
| 115 | qr=x*(rcore+thick); |
---|
| 116 | contr = rhoshel-rhosolv; |
---|
[6e93a02] | 117 | if(qr == 0.0){ |
---|
[975ec8e] | 118 | bes = 1.0; |
---|
| 119 | }else{ |
---|
| 120 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 121 | } |
---|
[ae3ce4e] | 122 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 123 | f += vol*bes*contr; |
---|
[975ec8e] | 124 | |
---|
[ae3ce4e] | 125 | // normalize to particle volume and rescale from [A-1] to [cm-1] |
---|
| 126 | f2 = f*f/vol*1.0e8; |
---|
[6e93a02] | 127 | |
---|
[ae3ce4e] | 128 | //scale if desired |
---|
| 129 | f2 *= scale; |
---|
| 130 | // then add in the background |
---|
| 131 | f2 += bkg; |
---|
[6e93a02] | 132 | |
---|
[ae3ce4e] | 133 | return(f2); |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | // scattering from a unilamellar vesicle - hardly needs to be an XOP... |
---|
| 137 | // same functional form as the core-shell sphere, but more intuitive for a vesicle |
---|
| 138 | double |
---|
| 139 | VesicleForm(double dp[], double q) |
---|
| 140 | { |
---|
| 141 | double x,pi; |
---|
| 142 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 143 | double bes,f,vol,qr,contr,f2; |
---|
| 144 | pi = 4.0*atan(1.0); |
---|
| 145 | x= q; |
---|
[6e93a02] | 146 | |
---|
[ae3ce4e] | 147 | scale = dp[0]; |
---|
| 148 | rcore = dp[1]; |
---|
| 149 | thick = dp[2]; |
---|
| 150 | rhocore = dp[3]; |
---|
| 151 | rhosolv = rhocore; |
---|
| 152 | rhoshel = dp[4]; |
---|
| 153 | bkg = dp[5]; |
---|
| 154 | // core first, then add in shell |
---|
| 155 | qr=x*rcore; |
---|
| 156 | contr = rhocore-rhoshel; |
---|
[975ec8e] | 157 | if(qr == 0){ |
---|
| 158 | bes = 1.0; |
---|
| 159 | }else{ |
---|
| 160 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 161 | } |
---|
[ae3ce4e] | 162 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 163 | f = vol*bes*contr; |
---|
| 164 | //now the shell |
---|
| 165 | qr=x*(rcore+thick); |
---|
| 166 | contr = rhoshel-rhosolv; |
---|
[6e93a02] | 167 | if(qr == 0.0){ |
---|
[975ec8e] | 168 | bes = 1.0; |
---|
| 169 | }else{ |
---|
| 170 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 171 | } |
---|
[ae3ce4e] | 172 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 173 | f += vol*bes*contr; |
---|
[975ec8e] | 174 | |
---|
[ae3ce4e] | 175 | // normalize to the particle volume and rescale from [A-1] to [cm-1] |
---|
| 176 | //note that for the vesicle model, the volume is ONLY the shell volume |
---|
| 177 | vol = 4.0*pi/3.0*(pow((rcore+thick),3)-pow(rcore,3)); |
---|
| 178 | f2 = f*f/vol*1.0e8; |
---|
[6e93a02] | 179 | |
---|
[ae3ce4e] | 180 | //scale if desired |
---|
| 181 | f2 *= scale; |
---|
| 182 | // then add in the background |
---|
| 183 | f2 += bkg; |
---|
[6e93a02] | 184 | |
---|
[ae3ce4e] | 185 | return(f2); |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant shell thickness |
---|
| 190 | // |
---|
| 191 | double |
---|
| 192 | PolyCoreForm(double dp[], double q) |
---|
| 193 | { |
---|
| 194 | double pi; |
---|
| 195 | double scale,corrad,sig,zz,del,drho1,drho2,form,bkg; //my local names |
---|
| 196 | double d, g ,h; |
---|
| 197 | double qq, x, y, c1, c2, c3, c4, c5, c6, c7, c8, c9, t1, t2, t3; |
---|
| 198 | double t4, t5, tb, cy, sy, tb1, tb2, tb3, c2y, zp1, zp2; |
---|
| 199 | double zp3,vpoly; |
---|
| 200 | double s2y, arg1, arg2, arg3, drh1, drh2; |
---|
[6e93a02] | 201 | |
---|
[ae3ce4e] | 202 | pi = 4.0*atan(1.0); |
---|
| 203 | qq= q; |
---|
| 204 | scale = dp[0]; |
---|
| 205 | corrad = dp[1]; |
---|
| 206 | sig = dp[2]; |
---|
| 207 | del = dp[3]; |
---|
| 208 | drho1 = dp[4]-dp[5]; //core-shell |
---|
| 209 | drho2 = dp[5]-dp[6]; //shell-solvent |
---|
| 210 | bkg = dp[7]; |
---|
[6e93a02] | 211 | |
---|
| 212 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
| 213 | |
---|
[ae3ce4e] | 214 | h=qq; |
---|
[6e93a02] | 215 | |
---|
[ae3ce4e] | 216 | drh1 = drho1; |
---|
| 217 | drh2 = drho2; |
---|
| 218 | g = drh2 * -1. / drh1; |
---|
| 219 | zp1 = zz + 1.; |
---|
| 220 | zp2 = zz + 2.; |
---|
| 221 | zp3 = zz + 3.; |
---|
| 222 | vpoly = 4*pi/3*zp3*zp2/zp1/zp1*pow((corrad+del),3); |
---|
[6e93a02] | 223 | |
---|
| 224 | |
---|
[ae3ce4e] | 225 | // remember that h is the passed in value of q for the calculation |
---|
| 226 | y = h *del; |
---|
| 227 | x = h *corrad; |
---|
| 228 | d = atan(x * 2. / zp1); |
---|
| 229 | arg1 = zp1 * d; |
---|
| 230 | arg2 = zp2 * d; |
---|
| 231 | arg3 = zp3 * d; |
---|
| 232 | sy = sin(y); |
---|
| 233 | cy = cos(y); |
---|
| 234 | s2y = sin(y * 2.); |
---|
| 235 | c2y = cos(y * 2.); |
---|
| 236 | c1 = .5 - g * (cy + y * sy) + g * g * .5 * (y * y + 1.); |
---|
| 237 | c2 = g * y * (g - cy); |
---|
| 238 | c3 = (g * g + 1.) * .5 - g * cy; |
---|
| 239 | c4 = g * g * (y * cy - sy) * (y * cy - sy) - c1; |
---|
| 240 | c5 = g * 2. * sy * (1. - g * (y * sy + cy)) + c2; |
---|
| 241 | c6 = c3 - g * g * sy * sy; |
---|
| 242 | c7 = g * sy - g * .5 * g * (y * y + 1.) * s2y - c5; |
---|
| 243 | c8 = c4 - .5 + g * cy - g * .5 * g * (y * y + 1.) * c2y; |
---|
| 244 | c9 = g * sy * (1. - g * cy); |
---|
[6e93a02] | 245 | |
---|
[ae3ce4e] | 246 | tb = log(zp1 * zp1 / (zp1 * zp1 + x * 4. * x)); |
---|
| 247 | tb1 = exp(zp1 * .5 * tb); |
---|
| 248 | tb2 = exp(zp2 * .5 * tb); |
---|
| 249 | tb3 = exp(zp3 * .5 * tb); |
---|
[6e93a02] | 250 | |
---|
[ae3ce4e] | 251 | t1 = c1 + c2 * x + c3 * x * x * zp2 / zp1; |
---|
| 252 | t2 = tb1 * (c4 * cos(arg1) + c7 * sin(arg1)); |
---|
| 253 | t3 = x * tb2 * (c5 * cos(arg2) + c8 * sin(arg2)); |
---|
| 254 | t4 = zp2 / zp1 * x * x * tb3 * (c6 * cos(arg3) + c9 * sin(arg3)); |
---|
| 255 | t5 = t1 + t2 + t3 + t4; |
---|
| 256 | form = t5 * 16. * pi * pi * drh1 * drh1 / pow(qq,6); |
---|
| 257 | // normalize by the average volume !!! corrected for polydispersity |
---|
| 258 | // and convert to cm-1 |
---|
| 259 | form /= vpoly; |
---|
| 260 | form *= 1.0e8; |
---|
| 261 | //Scale |
---|
| 262 | form *= scale; |
---|
| 263 | // then add in the background |
---|
| 264 | form += bkg; |
---|
[6e93a02] | 265 | |
---|
[ae3ce4e] | 266 | return(form); |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 270 | // structure factor effects are explicitly and correctly included. |
---|
| 271 | // |
---|
| 272 | double |
---|
| 273 | PolyHardSphereIntensity(double dp[], double q) |
---|
| 274 | { |
---|
| 275 | double pi; |
---|
| 276 | double rad,z2,phi,cont,bkg,sigma; //my local names |
---|
| 277 | double mu,mu1,d1,d2,d3,d4,d5,d6,capd,rho; |
---|
| 278 | double ll,l1,bb,cc,chi,chi1,chi2,ee,t1,t2,t3,pp; |
---|
| 279 | double ka,zz,v1,v2,p1,p2; |
---|
| 280 | double h1,h2,h3,h4,e1,yy,y1,s1,s2,s3,hint1,hint2; |
---|
| 281 | double capl,capl1,capmu,capmu1,r3,pq; |
---|
| 282 | double ka2,r1,heff; |
---|
[6e93a02] | 283 | double hh,k,slds,sld; |
---|
| 284 | |
---|
[ae3ce4e] | 285 | pi = 4.0*atan(1.0); |
---|
| 286 | k= q; |
---|
[6e93a02] | 287 | |
---|
[ae3ce4e] | 288 | rad = dp[0]; // radius (A) |
---|
| 289 | z2 = dp[1]; //polydispersity (0<z2<1) |
---|
| 290 | phi = dp[2]; // volume fraction (0<phi<1) |
---|
[6e93a02] | 291 | slds = dp[3]; |
---|
| 292 | sld = dp[4]; |
---|
| 293 | cont = (slds - sld)*1.0e4; // contrast (odd units) |
---|
| 294 | bkg = dp[5]; |
---|
[ae3ce4e] | 295 | sigma = 2*rad; |
---|
[6e93a02] | 296 | |
---|
[ae3ce4e] | 297 | zz=1.0/(z2*z2)-1.0; |
---|
| 298 | bb = sigma/(zz+1.0); |
---|
| 299 | cc = zz+1.0; |
---|
[6e93a02] | 300 | |
---|
[ae3ce4e] | 301 | //*c Compute the number density by <r-cubed>, not <r> cubed*/ |
---|
| 302 | r1 = sigma/2.0; |
---|
| 303 | r3 = r1*r1*r1; |
---|
| 304 | r3 *= (zz+2.0)*(zz+3.0)/((zz+1.0)*(zz+1.0)); |
---|
| 305 | rho=phi/(1.3333333333*pi*r3); |
---|
| 306 | t1 = rho*bb*cc; |
---|
| 307 | t2 = rho*bb*bb*cc*(cc+1.0); |
---|
| 308 | t3 = rho*bb*bb*bb*cc*(cc+1.0)*(cc+2.0); |
---|
| 309 | capd = 1.0-pi*t3/6.0; |
---|
| 310 | //************ |
---|
| 311 | v1=1.0/(1.0+bb*bb*k*k); |
---|
| 312 | v2=1.0/(4.0+bb*bb*k*k); |
---|
| 313 | pp=pow(v1,(cc/2.0))*sin(cc*atan(bb*k)); |
---|
| 314 | p1=bb*cc*pow(v1,((cc+1.0)/2.0))*sin((cc+1.0)*atan(bb*k)); |
---|
| 315 | p2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*sin((cc+2.0)*atan(bb*k)); |
---|
| 316 | mu=pow(2,cc)*pow(v2,(cc/2.0))*sin(cc*atan(bb*k/2.0)); |
---|
| 317 | mu1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*sin((cc+1.0)*atan(k*bb/2.0)); |
---|
| 318 | s1=bb*cc; |
---|
| 319 | s2=cc*(cc+1.0)*bb*bb; |
---|
| 320 | s3=cc*(cc+1.0)*(cc+2.0)*bb*bb*bb; |
---|
| 321 | chi=pow(v1,(cc/2.0))*cos(cc*atan(bb*k)); |
---|
| 322 | chi1=bb*cc*pow(v1,((cc+1.0)/2.0))*cos((cc+1.0)*atan(bb*k)); |
---|
| 323 | chi2=cc*(cc+1.0)*bb*bb*pow(v1,((cc+2.0)/2.0))*cos((cc+2.0)*atan(bb*k)); |
---|
| 324 | ll=pow(2,cc)*pow(v2,(cc/2.0))*cos(cc*atan(bb*k/2.0)); |
---|
| 325 | l1=pow(2,(cc+1.0))*bb*cc*pow(v2,((cc+1.0)/2.0))*cos((cc+1.0)*atan(k*bb/2.0)); |
---|
| 326 | d1=(pi/capd)*(2.0+(pi/capd)*(t3-(rho/k)*(k*s3-p2))); |
---|
| 327 | d2=pow((pi/capd),2)*(rho/k)*(k*s2-p1); |
---|
| 328 | d3=(-1.0)*pow((pi/capd),2)*(rho/k)*(k*s1-pp); |
---|
| 329 | d4=(pi/capd)*(k-(pi/capd)*(rho/k)*(chi1-s1)); |
---|
| 330 | d5=pow((pi/capd),2)*((rho/k)*(chi-1.0)+0.5*k*t2); |
---|
| 331 | d6=pow((pi/capd),2)*(rho/k)*(chi2-s2); |
---|
[6e93a02] | 332 | |
---|
[ae3ce4e] | 333 | e1=pow((pi/capd),2)*pow((rho/k/k),2)*((chi-1.0)*(chi2-s2)-(chi1-s1)*(chi1-s1)-(k*s1-pp)*(k*s3-p2)+pow((k*s2-p1),2)); |
---|
| 334 | ee=1.0-(2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(k*s1-pp)-(2.0*pi/capd)*rho/k/k*((chi1-s1)+(0.25*pi*t2/capd)*(chi2-s2))-e1; |
---|
| 335 | y1=pow((pi/capd),2)*pow((rho/k/k),2)*((k*s1-pp)*(chi2-s2)-2.0*(k*s2-p1)*(chi1-s1)+(k*s3-p2)*(chi-1.0)); |
---|
[6e93a02] | 336 | yy = (2.0*pi/capd)*(1.0+0.5*pi*t3/capd)*(rho/k/k/k)*(chi+0.5*k*k*s2-1.0)-(2.0*pi*rho/capd/k/k)*(k*s2-p1+(0.25*pi*t2/capd)*(k*s3-p2))-y1; |
---|
| 337 | |
---|
[ae3ce4e] | 338 | capl=2.0*pi*cont*rho/k/k/k*(pp-0.5*k*(s1+chi1)); |
---|
| 339 | capl1=2.0*pi*cont*rho/k/k/k*(p1-0.5*k*(s2+chi2)); |
---|
| 340 | capmu=2.0*pi*cont*rho/k/k/k*(1.0-chi-0.5*k*p1); |
---|
| 341 | capmu1=2.0*pi*cont*rho/k/k/k*(s1-chi1-0.5*k*p2); |
---|
[6e93a02] | 342 | |
---|
[ae3ce4e] | 343 | h1=capl*(capl*(yy*d1-ee*d6)+capl1*(yy*d2-ee*d4)+capmu*(ee*d1+yy*d6)+capmu1*(ee*d2+yy*d4)); |
---|
| 344 | h2=capl1*(capl*(yy*d2-ee*d4)+capl1*(yy*d3-ee*d5)+capmu*(ee*d2+yy*d4)+capmu1*(ee*d3+yy*d5)); |
---|
| 345 | h3=capmu*(capl*(ee*d1+yy*d6)+capl1*(ee*d2+yy*d4)+capmu*(ee*d6-yy*d1)+capmu1*(ee*d4-yy*d2)); |
---|
| 346 | h4=capmu1*(capl*(ee*d2+yy*d4)+capl1*(ee*d3+yy*d5)+capmu*(ee*d4-yy*d2)+capmu1*(ee*d5-yy*d3)); |
---|
[6e93a02] | 347 | |
---|
[ae3ce4e] | 348 | //* This part computes the second integral in equation (1) of the paper.*/ |
---|
[6e93a02] | 349 | |
---|
[ae3ce4e] | 350 | hint1 = -2.0*(h1+h2+h3+h4)/(k*k*k*(ee*ee+yy*yy)); |
---|
[6e93a02] | 351 | |
---|
[ae3ce4e] | 352 | //* This part computes the first integral in equation (1). It also |
---|
| 353 | // generates the KC approximated effective structure factor.*/ |
---|
[6e93a02] | 354 | |
---|
[ae3ce4e] | 355 | pq=4.0*pi*cont*(sin(k*sigma/2.0)-0.5*k*sigma*cos(k*sigma/2.0)); |
---|
| 356 | hint2=8.0*pi*pi*rho*cont*cont/(k*k*k*k*k*k)*(1.0-chi-k*p1+0.25*k*k*(s2+chi2)); |
---|
[6e93a02] | 357 | |
---|
[ae3ce4e] | 358 | ka=k*(sigma/2.0); |
---|
| 359 | // |
---|
| 360 | hh=hint1+hint2; // this is the model intensity |
---|
| 361 | // |
---|
| 362 | heff=1.0+hint1/hint2; |
---|
| 363 | ka2=ka*ka; |
---|
| 364 | //* |
---|
[6e93a02] | 365 | // heff is PY analytical solution for intensity divided by the |
---|
[ae3ce4e] | 366 | // form factor. happ is the KC approximated effective S(q) |
---|
[6e93a02] | 367 | |
---|
[ae3ce4e] | 368 | //******************* |
---|
| 369 | // add in the background then return the intensity value |
---|
[6e93a02] | 370 | |
---|
[ae3ce4e] | 371 | return(hh+bkg); //scale, and add in the background |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | // scattering from a uniform sphere with a (Schulz) size distribution, bimodal population |
---|
| 375 | // NO CROSS TERM IS ACCOUNTED FOR == DILUTE SOLUTION!! |
---|
| 376 | // |
---|
| 377 | double |
---|
| 378 | BimodalSchulzSpheres(double dp[], double q) |
---|
| 379 | { |
---|
| 380 | double x,pq; |
---|
| 381 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
| 382 | double scale2,ravg2,pd2,rho2; //my local names |
---|
[6e93a02] | 383 | |
---|
[ae3ce4e] | 384 | x= q; |
---|
[6e93a02] | 385 | |
---|
[ae3ce4e] | 386 | scale = dp[0]; |
---|
| 387 | ravg = dp[1]; |
---|
| 388 | pd = dp[2]; |
---|
| 389 | rho = dp[3]; |
---|
| 390 | scale2 = dp[4]; |
---|
| 391 | ravg2 = dp[5]; |
---|
| 392 | pd2 = dp[6]; |
---|
| 393 | rho2 = dp[7]; |
---|
| 394 | rhos = dp[8]; |
---|
| 395 | bkg = dp[9]; |
---|
[6e93a02] | 396 | |
---|
[ae3ce4e] | 397 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 398 | pq += SchulzSphere_Fn( scale2, ravg2, pd2, rho2, rhos, x); |
---|
| 399 | // add in the background |
---|
| 400 | pq += bkg; |
---|
[6e93a02] | 401 | |
---|
[ae3ce4e] | 402 | return (pq); |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | // scattering from a uniform sphere with a (Schulz) size distribution |
---|
| 406 | // |
---|
| 407 | double |
---|
| 408 | SchulzSpheres(double dp[], double q) |
---|
| 409 | { |
---|
| 410 | double x,pq; |
---|
| 411 | double scale,ravg,pd,bkg,rho,rhos; //my local names |
---|
[6e93a02] | 412 | |
---|
[ae3ce4e] | 413 | x= q; |
---|
[6e93a02] | 414 | |
---|
[ae3ce4e] | 415 | scale = dp[0]; |
---|
| 416 | ravg = dp[1]; |
---|
| 417 | pd = dp[2]; |
---|
| 418 | rho = dp[3]; |
---|
| 419 | rhos = dp[4]; |
---|
| 420 | bkg = dp[5]; |
---|
| 421 | pq = SchulzSphere_Fn( scale, ravg, pd, rho, rhos, x); |
---|
| 422 | // add in the background |
---|
| 423 | pq += bkg; |
---|
[6e93a02] | 424 | |
---|
[ae3ce4e] | 425 | return(pq); |
---|
| 426 | } |
---|
| 427 | |
---|
| 428 | // calculates everything but the background |
---|
| 429 | double |
---|
| 430 | SchulzSphere_Fn(double scale, double ravg, double pd, double rho, double rhos, double x) |
---|
| 431 | { |
---|
| 432 | double zp1,zp2,zp3,zp4,zp5,zp6,zp7,vpoly; |
---|
| 433 | double aa,at1,at2,rt1,rt2,rt3,t1,t2,t3; |
---|
| 434 | double v1,v2,v3,g1,pq,pi,delrho,zz; |
---|
[6e93a02] | 435 | double i_zero,Rg2,zp8; |
---|
| 436 | |
---|
[ae3ce4e] | 437 | pi = 4.0*atan(1.0); |
---|
| 438 | delrho = rho-rhos; |
---|
[6e93a02] | 439 | zz = (1.0/pd)*(1.0/pd) - 1.0; |
---|
| 440 | |
---|
[ae3ce4e] | 441 | zp1 = zz + 1.0; |
---|
| 442 | zp2 = zz + 2.0; |
---|
| 443 | zp3 = zz + 3.0; |
---|
| 444 | zp4 = zz + 4.0; |
---|
| 445 | zp5 = zz + 5.0; |
---|
| 446 | zp6 = zz + 6.0; |
---|
| 447 | zp7 = zz + 7.0; |
---|
| 448 | // |
---|
[6e93a02] | 449 | |
---|
| 450 | //small QR limit - use Guinier approx |
---|
| 451 | zp8 = zz+8.0; |
---|
| 452 | if(x*ravg < 0.1) { |
---|
| 453 | i_zero = scale*delrho*delrho*1.e8*4.*pi/3.*pow(ravg,3); |
---|
| 454 | i_zero *= zp6*zp5*zp4/zp1/zp1/zp1; //6th moment / 3rd moment |
---|
| 455 | Rg2 = 3.*zp8*zp7/5./(zp1*zp1)*ravg*ravg; |
---|
| 456 | pq = i_zero*exp(-x*x*Rg2/3.); |
---|
| 457 | //pq += bkg; //unlike the Igor code, the backgorund is added in the wrapper (above) |
---|
| 458 | return(pq); |
---|
| 459 | } |
---|
| 460 | // |
---|
[975ec8e] | 461 | |
---|
[6e93a02] | 462 | aa = (zz+1.0)/x/ravg; |
---|
| 463 | |
---|
[ae3ce4e] | 464 | at1 = atan(1.0/aa); |
---|
| 465 | at2 = atan(2.0/aa); |
---|
| 466 | // |
---|
| 467 | // calculations are performed to avoid large # errors |
---|
| 468 | // - trick is to propogate the a^(z+7) term through the g1 |
---|
[6e93a02] | 469 | // |
---|
[ae3ce4e] | 470 | t1 = zp7*log10(aa) - zp1/2.0*log10(aa*aa+4.0); |
---|
| 471 | t2 = zp7*log10(aa) - zp3/2.0*log10(aa*aa+4.0); |
---|
| 472 | t3 = zp7*log10(aa) - zp2/2.0*log10(aa*aa+4.0); |
---|
| 473 | // print t1,t2,t3 |
---|
| 474 | rt1 = pow(10,t1); |
---|
| 475 | rt2 = pow(10,t2); |
---|
| 476 | rt3 = pow(10,t3); |
---|
| 477 | v1 = pow(aa,6) - rt1*cos(zp1*at2); |
---|
| 478 | v2 = zp1*zp2*( pow(aa,4) + rt2*cos(zp3*at2) ); |
---|
| 479 | v3 = -2.0*zp1*rt3*sin(zp2*at2); |
---|
| 480 | g1 = (v1+v2+v3); |
---|
[6e93a02] | 481 | |
---|
[ae3ce4e] | 482 | pq = log10(g1) - 6.0*log10(zp1) + 6.0*log10(ravg); |
---|
[6e93a02] | 483 | pq = pow(10,pq)*8.0*pi*pi*delrho*delrho; |
---|
| 484 | |
---|
[ae3ce4e] | 485 | // |
---|
[6e93a02] | 486 | // beta factor is not used here, but could be for the |
---|
[ae3ce4e] | 487 | // decoupling approximation |
---|
[6e93a02] | 488 | // |
---|
[ae3ce4e] | 489 | // g11 = g1 |
---|
| 490 | // gd = -zp7*log(aa) |
---|
| 491 | // g1 = log(g11) + gd |
---|
[6e93a02] | 492 | // |
---|
[ae3ce4e] | 493 | // t1 = zp1*at1 |
---|
| 494 | // t2 = zp2*at1 |
---|
| 495 | // g2 = sin( t1 ) - zp1/sqrt(aa*aa+1)*cos( t2 ) |
---|
| 496 | // g22 = g2*g2 |
---|
[6e93a02] | 497 | // beta = zp1*log(aa) - zp1*log(aa*aa+1) - g1 + log(g22) |
---|
[ae3ce4e] | 498 | // beta = 2*alog(beta) |
---|
[6e93a02] | 499 | |
---|
[ae3ce4e] | 500 | //re-normalize by the average volume |
---|
| 501 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*ravg*ravg*ravg; |
---|
| 502 | pq /= vpoly; |
---|
| 503 | //scale, convert to cm^-1 |
---|
| 504 | pq *= scale * 1.0e8; |
---|
[6e93a02] | 505 | |
---|
[ae3ce4e] | 506 | return(pq); |
---|
| 507 | } |
---|
| 508 | |
---|
| 509 | // scattering from a uniform sphere with a rectangular size distribution |
---|
| 510 | // |
---|
| 511 | double |
---|
| 512 | PolyRectSpheres(double dp[], double q) |
---|
| 513 | { |
---|
| 514 | double pi,x; |
---|
| 515 | double scale,rad,pd,cont,bkg; //my local names |
---|
[6e93a02] | 516 | double inten,h1,qw,qr,width,sig,averad3,Rg2,slds,sld; |
---|
| 517 | |
---|
[ae3ce4e] | 518 | pi = 4.0*atan(1.0); |
---|
| 519 | x= q; |
---|
[6e93a02] | 520 | |
---|
[ae3ce4e] | 521 | scale = dp[0]; |
---|
| 522 | rad = dp[1]; // radius (A) |
---|
| 523 | pd = dp[2]; //polydispersity of rectangular distribution |
---|
[6e93a02] | 524 | slds = dp[3]; |
---|
| 525 | sld = dp[4]; |
---|
| 526 | cont = slds - sld; // contrast (A^-2) |
---|
| 527 | bkg = dp[5]; |
---|
| 528 | |
---|
[ae3ce4e] | 529 | // as usual, poly = sig/ravg |
---|
| 530 | // for the rectangular distribution, sig = width/sqrt(3) |
---|
| 531 | // width is the HALF- WIDTH of the rectangular distrubution |
---|
[6e93a02] | 532 | |
---|
[ae3ce4e] | 533 | sig = pd*rad; |
---|
| 534 | width = sqrt(3.0)*sig; |
---|
[6e93a02] | 535 | |
---|
[ae3ce4e] | 536 | //x is the q-value |
---|
| 537 | qw = x*width; |
---|
| 538 | qr = x*rad; |
---|
[6e93a02] | 539 | |
---|
| 540 | // as for the numerical inatabilities at low QR, the function is calculating the sines and cosines |
---|
| 541 | // just fine - the problem seems to be that the |
---|
| 542 | // leading terms nearly cancel with the last term (the -6*qr... term), to within machine |
---|
| 543 | // precision - the difference is on the order of 10^-20 |
---|
| 544 | // so just use the limiting Guiner value |
---|
| 545 | if(qr<0.1) { |
---|
| 546 | h1 = scale*cont*cont*1.e8*4.*pi/3.0*pow(rad,3); |
---|
| 547 | h1 *= (1. + 15.*pow(pd,2) + 27.*pow(pd,4) +27./7.*pow(pd,6) ); //6th moment |
---|
| 548 | h1 /= (1.+3.*pd*pd); //3rd moment |
---|
| 549 | Rg2 = 3.0/5.0*rad*rad*( 1.+28.*pow(pd,2)+126.*pow(pd,4)+108.*pow(pd,6)+27.*pow(pd,8) ); |
---|
| 550 | Rg2 /= (1.+15.*pow(pd,2)+27.*pow(pd,4)+27./7.*pow(pd,6)); |
---|
| 551 | h1 *= exp(-1./3.*Rg2*x*x); |
---|
| 552 | h1 += bkg; |
---|
| 553 | return(h1); |
---|
| 554 | } |
---|
| 555 | |
---|
| 556 | // normal calculation |
---|
[ae3ce4e] | 557 | h1 = -0.5*qw + qr*qr*qw + (qw*qw*qw)/3.0; |
---|
[6e93a02] | 558 | h1 -= 5.0/2.0*cos(2.0*qr)*sin(qw)*cos(qw); |
---|
| 559 | h1 += 0.5*qr*qr*cos(2.0*qr)*sin(2.0*qw); |
---|
| 560 | h1 += 0.5*qw*qw*cos(2.0*qr)*sin(2.0*qw); |
---|
| 561 | h1 += qw*qr*sin(2.0*qr)*cos(2.0*qw); |
---|
[ae3ce4e] | 562 | h1 += 3.0*qw*(cos(qr)*cos(qw))*(cos(qr)*cos(qw)); |
---|
| 563 | h1+= 3.0*qw*(sin(qr)*sin(qw))*(sin(qr)*sin(qw)); |
---|
| 564 | h1 -= 6.0*qr*cos(qr)*sin(qr)*cos(qw)*sin(qw); |
---|
[6e93a02] | 565 | |
---|
[ae3ce4e] | 566 | // calculate P(q) = <f^2> |
---|
| 567 | inten = 8.0*pi*pi*cont*cont/width/pow(x,7)*h1; |
---|
[6e93a02] | 568 | |
---|
[ae3ce4e] | 569 | // beta(q) would be calculated as 2/width/x/h1*h2*h2 |
---|
[6e93a02] | 570 | // with |
---|
[ae3ce4e] | 571 | // h2 = 2*sin(x*rad)*sin(x*width)-x*rad*cos(x*rad)*sin(x*width)-x*width*sin(x*rad)*cos(x*width) |
---|
[6e93a02] | 572 | |
---|
[ae3ce4e] | 573 | // normalize to the average volume |
---|
| 574 | // <R^3> = ravg^3*(1+3*pd^2) |
---|
| 575 | // or... "zf" = (1 + 3*p^2), which will be greater than one |
---|
[6e93a02] | 576 | |
---|
[ae3ce4e] | 577 | averad3 = rad*rad*rad*(1.0+3.0*pd*pd); |
---|
| 578 | inten /= 4.0*pi/3.0*averad3; |
---|
| 579 | //resacle to 1/cm |
---|
| 580 | inten *= 1.0e8; |
---|
| 581 | //scale the result |
---|
| 582 | inten *= scale; |
---|
| 583 | // then add in the background |
---|
| 584 | inten += bkg; |
---|
[6e93a02] | 585 | |
---|
[ae3ce4e] | 586 | return(inten); |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | |
---|
| 590 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
| 591 | // |
---|
| 592 | double |
---|
| 593 | GaussPolySphere(double dp[], double q) |
---|
| 594 | { |
---|
| 595 | double pi,x; |
---|
| 596 | double scale,rad,pd,sig,rho,rhos,bkg,delrho; //my local names |
---|
| 597 | double va,vb,zi,yy,summ,inten; |
---|
| 598 | int nord=20,ii; |
---|
[6e93a02] | 599 | |
---|
[ae3ce4e] | 600 | pi = 4.0*atan(1.0); |
---|
| 601 | x= q; |
---|
[6e93a02] | 602 | |
---|
[ae3ce4e] | 603 | scale=dp[0]; |
---|
| 604 | rad=dp[1]; |
---|
| 605 | pd=dp[2]; |
---|
| 606 | sig=pd*rad; |
---|
| 607 | rho=dp[3]; |
---|
| 608 | rhos=dp[4]; |
---|
| 609 | delrho=rho-rhos; |
---|
| 610 | bkg=dp[5]; |
---|
[6e93a02] | 611 | |
---|
[ae3ce4e] | 612 | va = -4.0*sig + rad; |
---|
[6e93a02] | 613 | if (va<0.0) { |
---|
| 614 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
[ae3ce4e] | 615 | } |
---|
| 616 | vb = 4.0*sig +rad; |
---|
[6e93a02] | 617 | |
---|
[ae3ce4e] | 618 | summ = 0.0; // initialize integral |
---|
| 619 | for(ii=0;ii<nord;ii+=1) { |
---|
| 620 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 621 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 622 | // calculate sphere scattering |
---|
| 623 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 624 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 625 | yy *= yy; |
---|
| 626 | yy *= Gauss20Wt[ii] * Gauss_distr(sig,rad,zi); |
---|
[6e93a02] | 627 | |
---|
[ae3ce4e] | 628 | summ += yy; //add to the running total of the quadrature |
---|
| 629 | } |
---|
| 630 | // calculate value of integral to return |
---|
| 631 | inten = (vb-va)/2.0*summ; |
---|
[6e93a02] | 632 | |
---|
[ae3ce4e] | 633 | //re-normalize by polydisperse sphere volume |
---|
| 634 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
[6e93a02] | 635 | |
---|
[ae3ce4e] | 636 | inten *= 1.0e8; |
---|
| 637 | inten *= scale; |
---|
| 638 | inten += bkg; |
---|
[6e93a02] | 639 | |
---|
[ae3ce4e] | 640 | return(inten); //scale, and add in the background |
---|
| 641 | } |
---|
| 642 | |
---|
| 643 | // scattering from a uniform sphere with a LogNormal size distribution |
---|
| 644 | // |
---|
| 645 | double |
---|
| 646 | LogNormalPolySphere(double dp[], double q) |
---|
| 647 | { |
---|
| 648 | double pi,x; |
---|
| 649 | double scale,rad,sig,rho,rhos,bkg,delrho,mu,r3; //my local names |
---|
| 650 | double va,vb,zi,yy,summ,inten; |
---|
| 651 | int nord=76,ii; |
---|
[6e93a02] | 652 | |
---|
[ae3ce4e] | 653 | pi = 4.0*atan(1.0); |
---|
| 654 | x= q; |
---|
[6e93a02] | 655 | |
---|
[ae3ce4e] | 656 | scale=dp[0]; |
---|
| 657 | rad=dp[1]; //rad is the median radius |
---|
| 658 | mu = log(dp[1]); |
---|
| 659 | sig=dp[2]; |
---|
| 660 | rho=dp[3]; |
---|
| 661 | rhos=dp[4]; |
---|
| 662 | delrho=rho-rhos; |
---|
| 663 | bkg=dp[5]; |
---|
[6e93a02] | 664 | |
---|
[ae3ce4e] | 665 | va = -3.5*sig + mu; |
---|
| 666 | va = exp(va); |
---|
[6e93a02] | 667 | if (va<0.0) { |
---|
| 668 | va=0.0; //to avoid numerical error when va<0 (-ve q-value) |
---|
[ae3ce4e] | 669 | } |
---|
| 670 | vb = 3.5*sig*(1.0+sig) +mu; |
---|
| 671 | vb = exp(vb); |
---|
[6e93a02] | 672 | |
---|
[ae3ce4e] | 673 | summ = 0.0; // initialize integral |
---|
| 674 | for(ii=0;ii<nord;ii+=1) { |
---|
| 675 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 676 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 677 | // calculate sphere scattering |
---|
| 678 | //return(3*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); pass qr |
---|
| 679 | yy = F_func(x*zi)*(4.0*pi/3.0*zi*zi*zi)*delrho; |
---|
| 680 | yy *= yy; |
---|
| 681 | yy *= Gauss76Wt[ii] * LogNormal_distr(sig,mu,zi); |
---|
[6e93a02] | 682 | |
---|
[ae3ce4e] | 683 | summ += yy; //add to the running total of the quadrature |
---|
| 684 | } |
---|
| 685 | // calculate value of integral to return |
---|
| 686 | inten = (vb-va)/2.0*summ; |
---|
[6e93a02] | 687 | |
---|
[ae3ce4e] | 688 | //re-normalize by polydisperse sphere volume |
---|
| 689 | r3 = exp(3.0*mu + 9.0/2.0*sig*sig); // <R^3> directly |
---|
| 690 | inten /= (4.0*pi/3.0*r3); //polydisperse volume |
---|
[6e93a02] | 691 | |
---|
[ae3ce4e] | 692 | inten *= 1.0e8; |
---|
| 693 | inten *= scale; |
---|
| 694 | inten += bkg; |
---|
[6e93a02] | 695 | |
---|
[ae3ce4e] | 696 | return(inten); |
---|
| 697 | } |
---|
| 698 | |
---|
[34c2649] | 699 | /* |
---|
[ae3ce4e] | 700 | static double |
---|
| 701 | LogNormal_distr(double sig, double mu, double pt) |
---|
[6e93a02] | 702 | { |
---|
[ae3ce4e] | 703 | double retval,pi; |
---|
[6e93a02] | 704 | |
---|
[ae3ce4e] | 705 | pi = 4.0*atan(1.0); |
---|
[6e93a02] | 706 | retval = (1.0/ (sig*pt*sqrt(2.0*pi)) )*exp( -0.5*(log(pt) - mu)*(log(pt) - mu)/sig/sig ); |
---|
[ae3ce4e] | 707 | return(retval); |
---|
| 708 | } |
---|
| 709 | |
---|
| 710 | static double |
---|
| 711 | Gauss_distr(double sig, double avg, double pt) |
---|
[6e93a02] | 712 | { |
---|
[ae3ce4e] | 713 | double retval,Pi; |
---|
[6e93a02] | 714 | |
---|
[ae3ce4e] | 715 | Pi = 4.0*atan(1.0); |
---|
| 716 | retval = (1.0/ (sig*sqrt(2.0*Pi)) )*exp(-(avg-pt)*(avg-pt)/sig/sig/2.0); |
---|
| 717 | return(retval); |
---|
| 718 | } |
---|
[34c2649] | 719 | */ |
---|
[ae3ce4e] | 720 | |
---|
| 721 | // scattering from a core shell sphere with a (Schulz) polydisperse core and constant ratio (shell thickness)/(core radius) |
---|
| 722 | // - the polydispersity is of the WHOLE sphere |
---|
| 723 | // |
---|
| 724 | double |
---|
| 725 | PolyCoreShellRatio(double dp[], double q) |
---|
| 726 | { |
---|
| 727 | double pi,x; |
---|
| 728 | double scale,corrad,thick,shlrad,pp,drho1,drho2,sig,zz,bkg; //my local names |
---|
| 729 | double sld1,sld2,sld3,zp1,zp2,zp3,vpoly; |
---|
| 730 | double pi43,c1,c2,form,volume,arg1,arg2; |
---|
[6e93a02] | 731 | |
---|
[ae3ce4e] | 732 | pi = 4.0*atan(1.0); |
---|
| 733 | x= q; |
---|
[6e93a02] | 734 | |
---|
[ae3ce4e] | 735 | scale = dp[0]; |
---|
| 736 | corrad = dp[1]; |
---|
| 737 | thick = dp[2]; |
---|
| 738 | sig = dp[3]; |
---|
| 739 | sld1 = dp[4]; |
---|
| 740 | sld2 = dp[5]; |
---|
| 741 | sld3 = dp[6]; |
---|
| 742 | bkg = dp[7]; |
---|
[6e93a02] | 743 | |
---|
| 744 | zz = (1.0/sig)*(1.0/sig) - 1.0; |
---|
[ae3ce4e] | 745 | shlrad = corrad + thick; |
---|
| 746 | drho1 = sld1-sld2; //core-shell |
---|
| 747 | drho2 = sld2-sld3; //shell-solvent |
---|
| 748 | zp1 = zz + 1.; |
---|
| 749 | zp2 = zz + 2.; |
---|
| 750 | zp3 = zz + 3.; |
---|
| 751 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((corrad+thick),3); |
---|
[6e93a02] | 752 | |
---|
[ae3ce4e] | 753 | // the beta factor is not calculated |
---|
| 754 | // the calculated form factor <f^2> has units [length^2] |
---|
| 755 | // and must be multiplied by number density [l^-3] and the correct unit |
---|
| 756 | // conversion to get to absolute scale |
---|
[6e93a02] | 757 | |
---|
[ae3ce4e] | 758 | pi43=4.0/3.0*pi; |
---|
| 759 | pp=corrad/shlrad; |
---|
| 760 | volume=pi43*shlrad*shlrad*shlrad; |
---|
| 761 | c1=drho1*volume; |
---|
| 762 | c2=drho2*volume; |
---|
[6e93a02] | 763 | |
---|
[ae3ce4e] | 764 | arg1 = x*shlrad*pp; |
---|
| 765 | arg2 = x*shlrad; |
---|
[6e93a02] | 766 | |
---|
[ae3ce4e] | 767 | form=pow(pp,6)*c1*c1*fnt2(arg1,zz); |
---|
| 768 | form += c2*c2*fnt2(arg2,zz); |
---|
| 769 | form += 2.0*c1*c2*fnt3(arg2,pp,zz); |
---|
[6e93a02] | 770 | |
---|
[ae3ce4e] | 771 | //convert the result to [cm^-1] |
---|
[6e93a02] | 772 | |
---|
[ae3ce4e] | 773 | //scale the result |
---|
| 774 | // - divide by the polydisperse volume, mult by 10^8 |
---|
| 775 | form /= vpoly; |
---|
| 776 | form *= 1.0e8; |
---|
| 777 | form *= scale; |
---|
[6e93a02] | 778 | |
---|
[ae3ce4e] | 779 | //add in the background |
---|
| 780 | form += bkg; |
---|
[6e93a02] | 781 | |
---|
[ae3ce4e] | 782 | return(form); |
---|
| 783 | } |
---|
| 784 | |
---|
| 785 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 786 | //c |
---|
| 787 | //c function fnt2(y,z) |
---|
| 788 | //c |
---|
| 789 | double |
---|
| 790 | fnt2(double yy, double zz) |
---|
| 791 | { |
---|
| 792 | double z1,z2,z3,u,ww,term1,term2,term3,ans; |
---|
[6e93a02] | 793 | |
---|
[ae3ce4e] | 794 | z1=zz+1.0; |
---|
| 795 | z2=zz+2.0; |
---|
| 796 | z3=zz+3.0; |
---|
| 797 | u=yy/z1; |
---|
| 798 | ww=atan(2.0*u); |
---|
| 799 | term1=cos(z1*ww)/pow((1.0+4.0*u*u),(z1/2.0)); |
---|
| 800 | term2=2.0*yy*sin(z2*ww)/pow((1.0+4.0*u*u),(z2/2.0)); |
---|
| 801 | term3=1.0+cos(z3*ww)/pow((1.0+4.0*u*u),(z3/2.0)); |
---|
| 802 | ans=(4.50/z1/pow(yy,6))*(z1*(1.0-term1-term2)+yy*yy*z2*term3); |
---|
[6e93a02] | 803 | |
---|
[ae3ce4e] | 804 | return(ans); |
---|
| 805 | } |
---|
| 806 | |
---|
| 807 | //cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 808 | //c |
---|
| 809 | //c function fnt3(y,p,z) |
---|
| 810 | //c |
---|
| 811 | double |
---|
| 812 | fnt3(double yy, double pp, double zz) |
---|
[6e93a02] | 813 | { |
---|
[ae3ce4e] | 814 | double z1,z2,z3,yp,yn,up,un,vp,vn,term1,term2,term3,term4,term5,term6,ans; |
---|
[6e93a02] | 815 | |
---|
[ae3ce4e] | 816 | z1=zz+1.0; |
---|
| 817 | z2=zz+2.0; |
---|
| 818 | z3=zz+3.0; |
---|
| 819 | yp=(1.0+pp)*yy; |
---|
| 820 | yn=(1.0-pp)*yy; |
---|
| 821 | up=yp/z1; |
---|
| 822 | un=yn/z1; |
---|
| 823 | vp=atan(up); |
---|
| 824 | vn=atan(un); |
---|
| 825 | term1=cos(z1*vn)/pow((1.0+un*un),(z1/2.0)); |
---|
| 826 | term2=cos(z1*vp)/pow((1.0+up*up),(z1/2.0)); |
---|
| 827 | term3=cos(z3*vn)/pow((1.0+un*un),(z3/2.0)); |
---|
| 828 | term4=cos(z3*vp)/pow((1.0+up*up),(z3/2.0)); |
---|
| 829 | term5=yn*sin(z2*vn)/pow((1.0+un*un),(z2/2.0)); |
---|
| 830 | term6=yp*sin(z2*vp)/pow((1.0+up*up),(z2/2.0)); |
---|
| 831 | ans=4.5/z1/pow(yy,6); |
---|
| 832 | ans *=(z1*(term1-term2)+yy*yy*pp*z2*(term3+term4)+z1*(term5-term6)); |
---|
[6e93a02] | 833 | |
---|
[ae3ce4e] | 834 | return(ans); |
---|
| 835 | } |
---|
| 836 | |
---|
| 837 | // scattering from a a binary population of hard spheres, 3 partial structure factors |
---|
| 838 | // are properly accounted for... |
---|
| 839 | // Input (fitting) variables are: |
---|
| 840 | // larger sphere radius(angstroms) = guess[0] |
---|
| 841 | // smaller sphere radius (A) = w[1] |
---|
| 842 | // number fraction of larger spheres = guess[2] |
---|
| 843 | // total volume fraction of spheres = guess[3] |
---|
| 844 | // size ratio, alpha(0<a<1) = derived |
---|
| 845 | // SLD(A-2) of larger particle = guess[4] |
---|
| 846 | // SLD(A-2) of smaller particle = guess[5] |
---|
| 847 | // SLD(A-2) of the solvent = guess[6] |
---|
| 848 | // background = guess[7] |
---|
| 849 | double |
---|
| 850 | BinaryHS(double dp[], double q) |
---|
| 851 | { |
---|
| 852 | double x,pi; |
---|
| 853 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,inten,bgd; //my local names |
---|
| 854 | double psf11,psf12,psf22; |
---|
| 855 | double phi1,phi2,phr,a3; |
---|
[975ec8e] | 856 | double v1,v2,n1,n2,qr1,qr2,b1,b2,sc1,sc2; |
---|
[ae3ce4e] | 857 | int err; |
---|
[6e93a02] | 858 | |
---|
[ae3ce4e] | 859 | pi = 4.0*atan(1.0); |
---|
| 860 | x= q; |
---|
| 861 | r2 = dp[0]; |
---|
| 862 | r1 = dp[1]; |
---|
| 863 | phi2 = dp[2]; |
---|
| 864 | phi1 = dp[3]; |
---|
| 865 | rho2 = dp[4]; |
---|
| 866 | rho1 = dp[5]; |
---|
| 867 | rhos = dp[6]; |
---|
| 868 | bgd = dp[7]; |
---|
[6e93a02] | 869 | |
---|
| 870 | |
---|
[ae3ce4e] | 871 | phi = phi1 + phi2; |
---|
| 872 | aa = r1/r2; |
---|
| 873 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 874 | a3=aa*aa*aa; |
---|
| 875 | phr=phi2/phi; |
---|
| 876 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 877 | // calculate the PSF's here |
---|
| 878 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 879 | |
---|
[ae3ce4e] | 880 | // /* do form factor calculations */ |
---|
[6e93a02] | 881 | |
---|
[ae3ce4e] | 882 | v1 = 4.0*pi/3.0*r1*r1*r1; |
---|
| 883 | v2 = 4.0*pi/3.0*r2*r2*r2; |
---|
[6e93a02] | 884 | |
---|
[ae3ce4e] | 885 | n1 = phi1/v1; |
---|
| 886 | n2 = phi2/v2; |
---|
[6e93a02] | 887 | |
---|
[ae3ce4e] | 888 | qr1 = r1*x; |
---|
| 889 | qr2 = r2*x; |
---|
[975ec8e] | 890 | |
---|
| 891 | if (qr1 == 0){ |
---|
| 892 | sc1 = 1.0/3.0; |
---|
| 893 | }else{ |
---|
| 894 | sc1 = (sin(qr1)-qr1*cos(qr1))/qr1/qr1/qr1; |
---|
| 895 | } |
---|
| 896 | if (qr2 == 0){ |
---|
| 897 | sc2 = 1.0/3.0; |
---|
| 898 | }else{ |
---|
| 899 | sc2 = (sin(qr2)-qr2*cos(qr2))/qr2/qr2/qr2; |
---|
| 900 | } |
---|
| 901 | b1 = r1*r1*r1*(rho1-rhos)*4.0*pi*sc1; |
---|
| 902 | b2 = r2*r2*r2*(rho2-rhos)*4.0*pi*sc2; |
---|
[ae3ce4e] | 903 | inten = n1*b1*b1*psf11; |
---|
| 904 | inten += sqrt(n1*n2)*2.0*b1*b2*psf12; |
---|
| 905 | inten += n2*b2*b2*psf22; |
---|
| 906 | ///* convert I(1/A) to (1/cm) */ |
---|
| 907 | inten *= 1.0e8; |
---|
[6e93a02] | 908 | |
---|
[ae3ce4e] | 909 | inten += bgd; |
---|
[6e93a02] | 910 | |
---|
[ae3ce4e] | 911 | return(inten); |
---|
| 912 | } |
---|
| 913 | |
---|
| 914 | double |
---|
| 915 | BinaryHS_PSF11(double dp[], double q) |
---|
| 916 | { |
---|
| 917 | double x,pi; |
---|
| 918 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 919 | double psf11,psf12,psf22; |
---|
| 920 | double phi1,phi2,phr,a3; |
---|
| 921 | int err; |
---|
[6e93a02] | 922 | |
---|
[ae3ce4e] | 923 | pi = 4.0*atan(1.0); |
---|
| 924 | x= q; |
---|
| 925 | r2 = dp[0]; |
---|
| 926 | r1 = dp[1]; |
---|
| 927 | phi2 = dp[2]; |
---|
| 928 | phi1 = dp[3]; |
---|
| 929 | rho2 = dp[4]; |
---|
| 930 | rho1 = dp[5]; |
---|
| 931 | rhos = dp[6]; |
---|
| 932 | bgd = dp[7]; |
---|
| 933 | phi = phi1 + phi2; |
---|
| 934 | aa = r1/r2; |
---|
| 935 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 936 | a3=aa*aa*aa; |
---|
| 937 | phr=phi2/phi; |
---|
| 938 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 939 | // calculate the PSF's here |
---|
| 940 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 941 | |
---|
[ae3ce4e] | 942 | return(psf11); //scale, and add in the background |
---|
| 943 | } |
---|
| 944 | |
---|
| 945 | double |
---|
| 946 | BinaryHS_PSF12(double dp[], double q) |
---|
| 947 | { |
---|
| 948 | double x,pi; |
---|
| 949 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 950 | double psf11,psf12,psf22; |
---|
| 951 | double phi1,phi2,phr,a3; |
---|
| 952 | int err; |
---|
[6e93a02] | 953 | |
---|
[ae3ce4e] | 954 | pi = 4.0*atan(1.0); |
---|
| 955 | x= q; |
---|
| 956 | r2 = dp[0]; |
---|
| 957 | r1 = dp[1]; |
---|
| 958 | phi2 = dp[2]; |
---|
| 959 | phi1 = dp[3]; |
---|
| 960 | rho2 = dp[4]; |
---|
| 961 | rho1 = dp[5]; |
---|
| 962 | rhos = dp[6]; |
---|
| 963 | bgd = dp[7]; |
---|
| 964 | phi = phi1 + phi2; |
---|
| 965 | aa = r1/r2; |
---|
| 966 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 967 | a3=aa*aa*aa; |
---|
| 968 | phr=phi2/phi; |
---|
| 969 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 970 | // calculate the PSF's here |
---|
| 971 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 972 | |
---|
[ae3ce4e] | 973 | return(psf12); //scale, and add in the background |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | double |
---|
| 977 | BinaryHS_PSF22(double dp[], double q) |
---|
| 978 | { |
---|
| 979 | double x,pi; |
---|
| 980 | double r2,r1,nf2,phi,aa,rho2,rho1,rhos,bgd; //my local names |
---|
| 981 | double psf11,psf12,psf22; |
---|
| 982 | double phi1,phi2,phr,a3; |
---|
| 983 | int err; |
---|
[6e93a02] | 984 | |
---|
[ae3ce4e] | 985 | pi = 4.0*atan(1.0); |
---|
| 986 | x= q; |
---|
[6e93a02] | 987 | |
---|
[ae3ce4e] | 988 | r2 = dp[0]; |
---|
| 989 | r1 = dp[1]; |
---|
| 990 | phi2 = dp[2]; |
---|
| 991 | phi1 = dp[3]; |
---|
| 992 | rho2 = dp[4]; |
---|
| 993 | rho1 = dp[5]; |
---|
| 994 | rhos = dp[6]; |
---|
| 995 | bgd = dp[7]; |
---|
| 996 | phi = phi1 + phi2; |
---|
| 997 | aa = r1/r2; |
---|
| 998 | //calculate the number fraction of larger spheres (eqn 2 in reference) |
---|
| 999 | a3=aa*aa*aa; |
---|
| 1000 | phr=phi2/phi; |
---|
| 1001 | nf2 = phr*a3/(1.0-phr+phr*a3); |
---|
| 1002 | // calculate the PSF's here |
---|
| 1003 | err = ashcroft(x,r2,nf2,aa,phi,&psf11,&psf22,&psf12); |
---|
[6e93a02] | 1004 | |
---|
[ae3ce4e] | 1005 | return(psf22); //scale, and add in the background |
---|
| 1006 | } |
---|
| 1007 | |
---|
| 1008 | int |
---|
| 1009 | ashcroft(double qval, double r2, double nf2, double aa, double phi, double *s11, double *s22, double *s12) |
---|
| 1010 | { |
---|
| 1011 | // variable qval,r2,nf2,aa,phi,&s11,&s22,&s12 |
---|
[6e93a02] | 1012 | |
---|
[ae3ce4e] | 1013 | // calculate constant terms |
---|
| 1014 | double s1,s2,v,a3,v1,v2,g11,g12,g22,wmv,wmv3,wmv4; |
---|
| 1015 | double a1,a2i,a2,b1,b2,b12,gm1,gm12; |
---|
[6e93a02] | 1016 | double err=0.0,yy,ay,ay2,ay3,t1,t2,t3,f11,y2,y3,tt1,tt2,tt3; |
---|
[ae3ce4e] | 1017 | double c11,c22,c12,f12,f22,ttt1,ttt2,ttt3,ttt4,yl,y13; |
---|
| 1018 | double t21,t22,t23,t31,t32,t33,t41,t42,yl3,wma3,y1; |
---|
[6e93a02] | 1019 | |
---|
[ae3ce4e] | 1020 | s2 = 2.0*r2; |
---|
| 1021 | s1 = aa*s2; |
---|
| 1022 | v = phi; |
---|
| 1023 | a3 = aa*aa*aa; |
---|
| 1024 | v1=((1.-nf2)*a3/(nf2+(1.-nf2)*a3))*v; |
---|
| 1025 | v2=(nf2/(nf2+(1.-nf2)*a3))*v; |
---|
| 1026 | g11=((1.+.5*v)+1.5*v2*(aa-1.))/(1.-v)/(1.-v); |
---|
| 1027 | g22=((1.+.5*v)+1.5*v1*(1./aa-1.))/(1.-v)/(1.-v); |
---|
| 1028 | g12=((1.+.5*v)+1.5*(1.-aa)*(v1-v2)/(1.+aa))/(1.-v)/(1.-v); |
---|
| 1029 | wmv = 1/(1.-v); |
---|
| 1030 | wmv3 = wmv*wmv*wmv; |
---|
| 1031 | wmv4 = wmv*wmv3; |
---|
| 1032 | a1=3.*wmv4*((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2))) + ((v1+a3*v2)*(1.+2.*v)+(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)-3.*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 1033 | a2i=((v1+a3*v2)*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*3*wmv4 + ((v1+a3*v2)*(1.+2.*v)+a3*(1.+v+v*v)-3.*v1*v2*(1.-aa)*(1.-aa)*aa-3.*v1*(1.-aa)*(1.-aa)*(1.+v1+aa*(1.+v2)))*wmv3; |
---|
| 1034 | a2=a2i/a3; |
---|
| 1035 | b1=-6.*(v1*g11*g11+.25*v2*(1.+aa)*(1.+aa)*aa*g12*g12); |
---|
| 1036 | b2=-6.*(v2*g22*g22+.25*v1/a3*(1.+aa)*(1.+aa)*g12*g12); |
---|
| 1037 | b12=-3.*aa*(1.+aa)*(v1*g11/aa/aa+v2*g22)*g12; |
---|
| 1038 | gm1=(v1*a1+a3*v2*a2)*.5; |
---|
| 1039 | gm12=2.*gm1*(1.-aa)/aa; |
---|
[6e93a02] | 1040 | //c |
---|
[ae3ce4e] | 1041 | //c calculate the direct correlation functions and print results |
---|
| 1042 | //c |
---|
| 1043 | // do 20 j=1,npts |
---|
[6e93a02] | 1044 | |
---|
[ae3ce4e] | 1045 | yy=qval*s2; |
---|
| 1046 | //c calculate direct correlation functions |
---|
| 1047 | //c ----c11 |
---|
| 1048 | ay=aa*yy; |
---|
| 1049 | ay2 = ay*ay; |
---|
| 1050 | ay3 = ay*ay*ay; |
---|
| 1051 | t1=a1*(sin(ay)-ay*cos(ay)); |
---|
| 1052 | t2=b1*(2.*ay*sin(ay)-(ay2-2.)*cos(ay)-2.)/ay; |
---|
| 1053 | t3=gm1*((4.*ay*ay2-24.*ay)*sin(ay)-(ay2*ay2-12.*ay2+24.)*cos(ay)+24.)/ay3; |
---|
| 1054 | f11=24.*v1*(t1+t2+t3)/ay3; |
---|
[6e93a02] | 1055 | |
---|
[ae3ce4e] | 1056 | //c ------c22 |
---|
| 1057 | y2=yy*yy; |
---|
| 1058 | y3=yy*y2; |
---|
| 1059 | tt1=a2*(sin(yy)-yy*cos(yy)); |
---|
| 1060 | tt2=b2*(2.*yy*sin(yy)-(y2-2.)*cos(yy)-2.)/yy; |
---|
| 1061 | tt3=gm1*((4.*y3-24.*yy)*sin(yy)-(y2*y2-12.*y2+24.)*cos(yy)+24.)/ay3; |
---|
| 1062 | f22=24.*v2*(tt1+tt2+tt3)/y3; |
---|
[6e93a02] | 1063 | |
---|
[ae3ce4e] | 1064 | //c -----c12 |
---|
| 1065 | yl=.5*yy*(1.-aa); |
---|
| 1066 | yl3=yl*yl*yl; |
---|
| 1067 | wma3 = (1.-aa)*(1.-aa)*(1.-aa); |
---|
| 1068 | y1=aa*yy; |
---|
| 1069 | y13 = y1*y1*y1; |
---|
| 1070 | ttt1=3.*wma3*v*sqrt(nf2)*sqrt(1.-nf2)*a1*(sin(yl)-yl*cos(yl))/((nf2+(1.-nf2)*a3)*yl3); |
---|
| 1071 | t21=b12*(2.*y1*cos(y1)+(y1*y1-2.)*sin(y1)); |
---|
| 1072 | t22=gm12*((3.*y1*y1-6.)*cos(y1)+(y1*y1*y1-6.*y1)*sin(y1)+6.)/y1; |
---|
| 1073 | t23=gm1*((4.*y13-24.*y1)*cos(y1)+(y13*y1-12.*y1*y1+24.)*sin(y1))/(y1*y1); |
---|
| 1074 | t31=b12*(2.*y1*sin(y1)-(y1*y1-2.)*cos(y1)-2.); |
---|
| 1075 | t32=gm12*((3.*y1*y1-6.)*sin(y1)-(y1*y1*y1-6.*y1)*cos(y1))/y1; |
---|
| 1076 | t33=gm1*((4.*y13-24.*y1)*sin(y1)-(y13*y1-12.*y1*y1+24.)*cos(y1)+24.)/(y1*y1); |
---|
| 1077 | t41=cos(yl)*((sin(y1)-y1*cos(y1))/(y1*y1) + (1.-aa)/(2.*aa)*(1.-cos(y1))/y1); |
---|
| 1078 | t42=sin(yl)*((cos(y1)+y1*sin(y1)-1.)/(y1*y1) + (1.-aa)/(2.*aa)*sin(y1)/y1); |
---|
| 1079 | ttt2=sin(yl)*(t21+t22+t23)/(y13*y1); |
---|
| 1080 | ttt3=cos(yl)*(t31+t32+t33)/(y13*y1); |
---|
| 1081 | ttt4=a1*(t41+t42)/y1; |
---|
| 1082 | f12=ttt1+24.*v*sqrt(nf2)*sqrt(1.-nf2)*a3*(ttt2+ttt3+ttt4)/(nf2+(1.-nf2)*a3); |
---|
[6e93a02] | 1083 | |
---|
[ae3ce4e] | 1084 | c11=f11; |
---|
| 1085 | c22=f22; |
---|
| 1086 | c12=f12; |
---|
| 1087 | *s11=1./(1.+c11-(c12)*c12/(1.+c22)); |
---|
[6e93a02] | 1088 | *s22=1./(1.+c22-(c12)*c12/(1.+c11)); |
---|
| 1089 | *s12=-c12/((1.+c11)*(1.+c22)-(c12)*(c12)); |
---|
| 1090 | |
---|
[ae3ce4e] | 1091 | return(err); |
---|
| 1092 | } |
---|
| 1093 | |
---|
| 1094 | |
---|
| 1095 | |
---|
| 1096 | /* |
---|
| 1097 | // calculates the scattering from a spherical particle made up of a core (aqueous) surrounded |
---|
| 1098 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 1099 | //must always be a surfactant layer on the outside |
---|
| 1100 | // |
---|
| 1101 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 1102 | // resolution smeared version gives he most appropriate view of the model |
---|
[6e93a02] | 1103 | |
---|
[ae3ce4e] | 1104 | Warning: |
---|
| 1105 | The call to WaveData() below returns a pointer to the middle |
---|
| 1106 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 1107 | calculations could cause memory to move, you should copy the coefficient |
---|
| 1108 | values to local variables or an array before such operations. |
---|
| 1109 | */ |
---|
| 1110 | double |
---|
| 1111 | MultiShell(double dp[], double q) |
---|
| 1112 | { |
---|
| 1113 | double x; |
---|
| 1114 | double scale,rcore,tw,ts,rhocore,rhoshel,num,bkg; //my local names |
---|
| 1115 | int ii; |
---|
| 1116 | double fval,voli,ri,sldi; |
---|
| 1117 | double pi; |
---|
[6e93a02] | 1118 | |
---|
[ae3ce4e] | 1119 | pi = 4.0*atan(1.0); |
---|
[6e93a02] | 1120 | |
---|
[ae3ce4e] | 1121 | x= q; |
---|
| 1122 | scale = dp[0]; |
---|
| 1123 | rcore = dp[1]; |
---|
| 1124 | ts = dp[2]; |
---|
| 1125 | tw = dp[3]; |
---|
| 1126 | rhocore = dp[4]; |
---|
| 1127 | rhoshel = dp[5]; |
---|
| 1128 | num = dp[6]; |
---|
| 1129 | bkg = dp[7]; |
---|
[6e93a02] | 1130 | |
---|
[ae3ce4e] | 1131 | //calculate with a loop, two shells at a time |
---|
[6e93a02] | 1132 | |
---|
[ae3ce4e] | 1133 | ii=0; |
---|
[6e93a02] | 1134 | fval=0.0; |
---|
| 1135 | |
---|
[ae3ce4e] | 1136 | do { |
---|
| 1137 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
[6e93a02] | 1138 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1139 | sldi = rhocore-rhoshel; |
---|
| 1140 | fval += voli*sldi*F_func(ri*x); |
---|
| 1141 | ri += ts; |
---|
[6e93a02] | 1142 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1143 | sldi = rhoshel-rhocore; |
---|
| 1144 | fval += voli*sldi*F_func(ri*x); |
---|
| 1145 | ii+=1; //do 2 layers at a time |
---|
| 1146 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
[6e93a02] | 1147 | |
---|
[ae3ce4e] | 1148 | fval *= fval; //square it |
---|
| 1149 | fval /= voli; //normalize by the overall volume |
---|
[6e93a02] | 1150 | fval *= scale*1.0e8; |
---|
[ae3ce4e] | 1151 | fval += bkg; |
---|
[6e93a02] | 1152 | |
---|
[ae3ce4e] | 1153 | return(fval); |
---|
| 1154 | } |
---|
| 1155 | |
---|
| 1156 | /* |
---|
| 1157 | // calculates the scattering from a POLYDISPERSE spherical particle made up of a core (aqueous) surrounded |
---|
| 1158 | // by N spherical layers, each of which is a PAIR of shells, solvent + surfactant since there |
---|
| 1159 | //must always be a surfactant layer on the outside |
---|
| 1160 | // |
---|
| 1161 | // bragg peaks arise naturally from the periodicity of the sample |
---|
| 1162 | // resolution smeared version gives he most appropriate view of the model |
---|
| 1163 | // |
---|
| 1164 | // Polydispersity is of the total (outer) radius. This is converted into a distribution of MLV's |
---|
| 1165 | // with integer numbers of layers, with a minimum of one layer... a vesicle... depending |
---|
| 1166 | // on the parameters, the "distribution" of MLV's that is used may be truncated |
---|
| 1167 | // |
---|
| 1168 | Warning: |
---|
| 1169 | The call to WaveData() below returns a pointer to the middle |
---|
| 1170 | of an unlocked Macintosh handle. In the unlikely event that your |
---|
| 1171 | calculations could cause memory to move, you should copy the coefficient |
---|
| 1172 | values to local variables or an array before such operations. |
---|
| 1173 | */ |
---|
| 1174 | double |
---|
| 1175 | PolyMultiShell(double dp[], double q) |
---|
| 1176 | { |
---|
| 1177 | double x; |
---|
| 1178 | double scale,rcore,tw,ts,rhocore,rhoshel,bkg; //my local names |
---|
| 1179 | int ii,minPairs,maxPairs,first; |
---|
| 1180 | double fval,ri,pi; |
---|
| 1181 | double avg,pd,zz,lo,hi,r1,r2,d1,d2,distr; |
---|
[6e93a02] | 1182 | |
---|
| 1183 | pi = 4.0*atan(1.0); |
---|
[ae3ce4e] | 1184 | x= q; |
---|
[6e93a02] | 1185 | |
---|
[ae3ce4e] | 1186 | scale = dp[0]; |
---|
| 1187 | avg = dp[1]; // average (total) outer radius |
---|
| 1188 | pd = dp[2]; |
---|
| 1189 | rcore = dp[3]; |
---|
| 1190 | ts = dp[4]; |
---|
| 1191 | tw = dp[5]; |
---|
| 1192 | rhocore = dp[6]; |
---|
| 1193 | rhoshel = dp[7]; |
---|
| 1194 | bkg = dp[8]; |
---|
[6e93a02] | 1195 | |
---|
[ae3ce4e] | 1196 | zz = (1.0/pd)*(1.0/pd)-1.0; |
---|
[6e93a02] | 1197 | |
---|
[ae3ce4e] | 1198 | //max radius set to be 5 std deviations past mean |
---|
| 1199 | hi = avg + pd*avg*5.0; |
---|
| 1200 | lo = avg - pd*avg*5.0; |
---|
[6e93a02] | 1201 | |
---|
[ae3ce4e] | 1202 | maxPairs = trunc( (hi-rcore+tw)/(ts+tw) ); |
---|
| 1203 | minPairs = trunc( (lo-rcore+tw)/(ts+tw) ); |
---|
| 1204 | minPairs = (minPairs < 1) ? 1 : minPairs; // need a minimum of one |
---|
[6e93a02] | 1205 | |
---|
[ae3ce4e] | 1206 | ii=minPairs; |
---|
[6e93a02] | 1207 | fval=0.0; |
---|
| 1208 | d1 = 0.0; |
---|
| 1209 | d2 = 0.0; |
---|
| 1210 | r1 = 0.0; |
---|
| 1211 | r2 = 0.0; |
---|
| 1212 | distr = 0.0; |
---|
| 1213 | first = 1.0; |
---|
[ae3ce4e] | 1214 | do { |
---|
| 1215 | //make the current values old |
---|
| 1216 | r1 = r2; |
---|
| 1217 | d1 = d2; |
---|
[6e93a02] | 1218 | |
---|
[ae3ce4e] | 1219 | ri = (double)ii*(ts+tw) - tw + rcore; |
---|
| 1220 | fval += SchulzPoint(ri,avg,zz) * MultiShellGuts(x, rcore, ts, tw, rhocore, rhoshel, ii) * (4*pi/3*ri*ri*ri); |
---|
| 1221 | // get a running integration of the fraction of the distribution used, but not the first time |
---|
| 1222 | r2 = ri; |
---|
| 1223 | d2 = SchulzPoint(ri,avg,zz); |
---|
| 1224 | if( !first ) { |
---|
| 1225 | distr += 0.5*(d1+d2)*(r2-r1); //cheap trapezoidal integration |
---|
| 1226 | } |
---|
| 1227 | ii+=1; |
---|
| 1228 | first = 0; |
---|
| 1229 | } while(ii<=maxPairs); |
---|
[6e93a02] | 1230 | |
---|
| 1231 | fval /= 4.0*pi/3.0*avg*avg*avg; //normalize by the overall volume |
---|
[ae3ce4e] | 1232 | fval /= distr; |
---|
| 1233 | fval *= scale; |
---|
| 1234 | fval += bkg; |
---|
[6e93a02] | 1235 | |
---|
[ae3ce4e] | 1236 | return(fval); |
---|
| 1237 | } |
---|
| 1238 | |
---|
| 1239 | double |
---|
| 1240 | MultiShellGuts(double x,double rcore,double ts,double tw,double rhocore,double rhoshel,int num) { |
---|
[6e93a02] | 1241 | |
---|
[ae3ce4e] | 1242 | double ri,sldi,fval,voli,pi; |
---|
| 1243 | int ii; |
---|
[6e93a02] | 1244 | |
---|
[ae3ce4e] | 1245 | pi = 4.0*atan(1.0); |
---|
| 1246 | ii=0; |
---|
[6e93a02] | 1247 | fval=0.0; |
---|
| 1248 | |
---|
[ae3ce4e] | 1249 | do { |
---|
| 1250 | ri = rcore + (double)ii*ts + (double)ii*tw; |
---|
[6e93a02] | 1251 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1252 | sldi = rhocore-rhoshel; |
---|
| 1253 | fval += voli*sldi*F_func(ri*x); |
---|
| 1254 | ri += ts; |
---|
[6e93a02] | 1255 | voli = 4.0*pi/3.0*ri*ri*ri; |
---|
[ae3ce4e] | 1256 | sldi = rhoshel-rhocore; |
---|
| 1257 | fval += voli*sldi*F_func(ri*x); |
---|
| 1258 | ii+=1; //do 2 layers at a time |
---|
| 1259 | } while(ii<=num-1); //change to make 0 < num < 2 correspond to unilamellar vesicles (C. Glinka, 11/24/03) |
---|
[6e93a02] | 1260 | |
---|
[ae3ce4e] | 1261 | fval *= fval; |
---|
| 1262 | fval /= voli; |
---|
[6e93a02] | 1263 | fval *= 1.0e8; |
---|
| 1264 | |
---|
[ae3ce4e] | 1265 | return(fval); // this result still needs to be multiplied by scale and have background added |
---|
| 1266 | } |
---|
| 1267 | |
---|
[34c2649] | 1268 | /* |
---|
[ae3ce4e] | 1269 | static double |
---|
| 1270 | SchulzPoint(double x, double avg, double zz) { |
---|
[6e93a02] | 1271 | |
---|
[ae3ce4e] | 1272 | double dr; |
---|
[6e93a02] | 1273 | |
---|
| 1274 | dr = zz*log(x) - gammln(zz+1.0)+(zz+1.0)*log((zz+1.0)/avg)-(x/avg*(zz+1.0)); |
---|
[ae3ce4e] | 1275 | return (exp(dr)); |
---|
| 1276 | } |
---|
| 1277 | |
---|
| 1278 | static double |
---|
| 1279 | gammln(double xx) { |
---|
[6e93a02] | 1280 | |
---|
[ae3ce4e] | 1281 | double x,y,tmp,ser; |
---|
| 1282 | static double cof[6]={76.18009172947146,-86.50532032941677, |
---|
| 1283 | 24.01409824083091,-1.231739572450155, |
---|
| 1284 | 0.1208650973866179e-2,-0.5395239384953e-5}; |
---|
| 1285 | int j; |
---|
[6e93a02] | 1286 | |
---|
[ae3ce4e] | 1287 | y=x=xx; |
---|
| 1288 | tmp=x+5.5; |
---|
| 1289 | tmp -= (x+0.5)*log(tmp); |
---|
| 1290 | ser=1.000000000190015; |
---|
| 1291 | for (j=0;j<=5;j++) ser += cof[j]/++y; |
---|
| 1292 | return -tmp+log(2.5066282746310005*ser/x); |
---|
| 1293 | } |
---|
[34c2649] | 1294 | */ |
---|
[ae3ce4e] | 1295 | |
---|
| 1296 | double |
---|
| 1297 | F_func(double qr) { |
---|
[975ec8e] | 1298 | double sc; |
---|
[6e93a02] | 1299 | if (qr == 0.0){ |
---|
[975ec8e] | 1300 | sc = 1.0; |
---|
| 1301 | }else{ |
---|
[6e93a02] | 1302 | sc=(3.0*(sin(qr) - qr*cos(qr))/(qr*qr*qr)); |
---|
[975ec8e] | 1303 | } |
---|
| 1304 | return sc; |
---|
[ae3ce4e] | 1305 | } |
---|
| 1306 | |
---|
[6e93a02] | 1307 | double |
---|
| 1308 | OneShell(double dp[], double q) |
---|
| 1309 | { |
---|
| 1310 | // variables are: |
---|
| 1311 | //[0] scale factor |
---|
[34c2649] | 1312 | //[1] radius of core [ᅵ] |
---|
| 1313 | //[2] SLD of the core [ᅵ-2] |
---|
| 1314 | //[3] thickness of the shell [ᅵ] |
---|
[6e93a02] | 1315 | //[4] SLD of the shell |
---|
| 1316 | //[5] SLD of the solvent |
---|
| 1317 | //[6] background [cm-1] |
---|
| 1318 | |
---|
| 1319 | double x,pi; |
---|
| 1320 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg; //my local names |
---|
| 1321 | double bes,f,vol,qr,contr,f2; |
---|
| 1322 | |
---|
| 1323 | pi = 4.0*atan(1.0); |
---|
| 1324 | x=q; |
---|
| 1325 | |
---|
| 1326 | scale = dp[0]; |
---|
| 1327 | rcore = dp[1]; |
---|
| 1328 | rhocore = dp[2]; |
---|
| 1329 | thick = dp[3]; |
---|
| 1330 | rhoshel = dp[4]; |
---|
| 1331 | rhosolv = dp[5]; |
---|
| 1332 | bkg = dp[6]; |
---|
| 1333 | |
---|
| 1334 | // core first, then add in shell |
---|
| 1335 | qr=x*rcore; |
---|
| 1336 | contr = rhocore-rhoshel; |
---|
| 1337 | if(qr == 0){ |
---|
| 1338 | bes = 1.0; |
---|
| 1339 | }else{ |
---|
| 1340 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1341 | } |
---|
| 1342 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1343 | f = vol*bes*contr; |
---|
| 1344 | //now the shell |
---|
| 1345 | qr=x*(rcore+thick); |
---|
| 1346 | contr = rhoshel-rhosolv; |
---|
| 1347 | if(qr == 0){ |
---|
| 1348 | bes = 1.0; |
---|
| 1349 | }else{ |
---|
| 1350 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1351 | } |
---|
| 1352 | vol = 4.0*pi/3.0*pow((rcore+thick),3); |
---|
| 1353 | f += vol*bes*contr; |
---|
| 1354 | |
---|
[34c2649] | 1355 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
[6e93a02] | 1356 | f2 = f*f/vol*1.0e8; |
---|
| 1357 | |
---|
| 1358 | //scale if desired |
---|
| 1359 | f2 *= scale; |
---|
| 1360 | // then add in the background |
---|
| 1361 | f2 += bkg; |
---|
| 1362 | |
---|
| 1363 | return(f2); |
---|
| 1364 | } |
---|
| 1365 | |
---|
| 1366 | double |
---|
| 1367 | TwoShell(double dp[], double q) |
---|
| 1368 | { |
---|
| 1369 | // variables are: |
---|
| 1370 | //[0] scale factor |
---|
[34c2649] | 1371 | //[1] radius of core [ᅵ] |
---|
| 1372 | //[2] SLD of the core [ᅵ-2] |
---|
| 1373 | //[3] thickness of shell 1 [ᅵ] |
---|
[6e93a02] | 1374 | //[4] SLD of shell 1 |
---|
[34c2649] | 1375 | //[5] thickness of shell 2 [ᅵ] |
---|
[6e93a02] | 1376 | //[6] SLD of shell 2 |
---|
| 1377 | //[7] SLD of the solvent |
---|
| 1378 | //[8] background [cm-1] |
---|
| 1379 | |
---|
| 1380 | double x,pi; |
---|
| 1381 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1382 | double bes,f,vol,qr,contr,f2; |
---|
| 1383 | double rhoshel2,thick2; |
---|
| 1384 | |
---|
| 1385 | pi = 4.0*atan(1.0); |
---|
| 1386 | x=q; |
---|
| 1387 | |
---|
| 1388 | scale = dp[0]; |
---|
| 1389 | rcore = dp[1]; |
---|
| 1390 | rhocore = dp[2]; |
---|
| 1391 | thick1 = dp[3]; |
---|
| 1392 | rhoshel1 = dp[4]; |
---|
| 1393 | thick2 = dp[5]; |
---|
| 1394 | rhoshel2 = dp[6]; |
---|
| 1395 | rhosolv = dp[7]; |
---|
| 1396 | bkg = dp[8]; |
---|
| 1397 | // core first, then add in shells |
---|
| 1398 | qr=x*rcore; |
---|
| 1399 | contr = rhocore-rhoshel1; |
---|
| 1400 | if(qr == 0){ |
---|
| 1401 | bes = 1.0; |
---|
| 1402 | }else{ |
---|
| 1403 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1404 | } |
---|
| 1405 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1406 | f = vol*bes*contr; |
---|
| 1407 | //now the shell (1) |
---|
| 1408 | qr=x*(rcore+thick1); |
---|
| 1409 | contr = rhoshel1-rhoshel2; |
---|
| 1410 | if(qr == 0){ |
---|
| 1411 | bes = 1.0; |
---|
| 1412 | }else{ |
---|
| 1413 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1414 | } |
---|
| 1415 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1416 | f += vol*bes*contr; |
---|
| 1417 | //now the shell (2) |
---|
| 1418 | qr=x*(rcore+thick1+thick2); |
---|
| 1419 | contr = rhoshel2-rhosolv; |
---|
| 1420 | if(qr == 0){ |
---|
| 1421 | bes = 1.0; |
---|
| 1422 | }else{ |
---|
| 1423 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1424 | } |
---|
| 1425 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1426 | f += vol*bes*contr; |
---|
| 1427 | |
---|
| 1428 | |
---|
[34c2649] | 1429 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
[6e93a02] | 1430 | f2 = f*f/vol*1.0e8; |
---|
| 1431 | |
---|
| 1432 | //scale if desired |
---|
| 1433 | f2 *= scale; |
---|
| 1434 | // then add in the background |
---|
| 1435 | f2 += bkg; |
---|
| 1436 | |
---|
| 1437 | return(f2); |
---|
| 1438 | } |
---|
| 1439 | |
---|
| 1440 | double |
---|
| 1441 | ThreeShell(double dp[], double q) |
---|
| 1442 | { |
---|
| 1443 | // variables are: |
---|
| 1444 | //[0] scale factor |
---|
[34c2649] | 1445 | //[1] radius of core [ᅵ] |
---|
| 1446 | //[2] SLD of the core [ᅵ-2] |
---|
| 1447 | //[3] thickness of shell 1 [ᅵ] |
---|
[6e93a02] | 1448 | //[4] SLD of shell 1 |
---|
[34c2649] | 1449 | //[5] thickness of shell 2 [ᅵ] |
---|
[6e93a02] | 1450 | //[6] SLD of shell 2 |
---|
| 1451 | //[7] thickness of shell 3 |
---|
| 1452 | //[8] SLD of shell 3 |
---|
| 1453 | //[9] SLD of solvent |
---|
| 1454 | //[10] background [cm-1] |
---|
| 1455 | |
---|
| 1456 | double x,pi; |
---|
| 1457 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1458 | double bes,f,vol,qr,contr,f2; |
---|
| 1459 | double rhoshel2,thick2,rhoshel3,thick3; |
---|
| 1460 | |
---|
| 1461 | pi = 4.0*atan(1.0); |
---|
| 1462 | x=q; |
---|
| 1463 | |
---|
| 1464 | scale = dp[0]; |
---|
| 1465 | rcore = dp[1]; |
---|
| 1466 | rhocore = dp[2]; |
---|
| 1467 | thick1 = dp[3]; |
---|
| 1468 | rhoshel1 = dp[4]; |
---|
| 1469 | thick2 = dp[5]; |
---|
| 1470 | rhoshel2 = dp[6]; |
---|
| 1471 | thick3 = dp[7]; |
---|
| 1472 | rhoshel3 = dp[8]; |
---|
| 1473 | rhosolv = dp[9]; |
---|
| 1474 | bkg = dp[10]; |
---|
| 1475 | |
---|
| 1476 | // core first, then add in shells |
---|
| 1477 | qr=x*rcore; |
---|
| 1478 | contr = rhocore-rhoshel1; |
---|
| 1479 | if(qr == 0){ |
---|
| 1480 | bes = 1.0; |
---|
| 1481 | }else{ |
---|
| 1482 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1483 | } |
---|
| 1484 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1485 | f = vol*bes*contr; |
---|
| 1486 | //now the shell (1) |
---|
| 1487 | qr=x*(rcore+thick1); |
---|
| 1488 | contr = rhoshel1-rhoshel2; |
---|
| 1489 | if(qr == 0){ |
---|
| 1490 | bes = 1.0; |
---|
| 1491 | }else{ |
---|
| 1492 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1493 | } |
---|
| 1494 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1495 | f += vol*bes*contr; |
---|
| 1496 | //now the shell (2) |
---|
| 1497 | qr=x*(rcore+thick1+thick2); |
---|
| 1498 | contr = rhoshel2-rhoshel3; |
---|
| 1499 | if(qr == 0){ |
---|
| 1500 | bes = 1.0; |
---|
| 1501 | }else{ |
---|
| 1502 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1503 | } |
---|
| 1504 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1505 | f += vol*bes*contr; |
---|
| 1506 | //now the shell (3) |
---|
| 1507 | qr=x*(rcore+thick1+thick2+thick3); |
---|
| 1508 | contr = rhoshel3-rhosolv; |
---|
| 1509 | if(qr == 0){ |
---|
| 1510 | bes = 1.0; |
---|
| 1511 | }else{ |
---|
| 1512 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1513 | } |
---|
| 1514 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
| 1515 | f += vol*bes*contr; |
---|
| 1516 | |
---|
[34c2649] | 1517 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
[6e93a02] | 1518 | f2 = f*f/vol*1.0e8; |
---|
| 1519 | |
---|
| 1520 | //scale if desired |
---|
| 1521 | f2 *= scale; |
---|
| 1522 | // then add in the background |
---|
| 1523 | f2 += bkg; |
---|
| 1524 | |
---|
| 1525 | return(f2); |
---|
| 1526 | } |
---|
| 1527 | |
---|
| 1528 | double |
---|
| 1529 | FourShell(double dp[], double q) |
---|
| 1530 | { |
---|
| 1531 | // variables are: |
---|
| 1532 | //[0] scale factor |
---|
[34c2649] | 1533 | //[1] radius of core [ᅵ] |
---|
| 1534 | //[2] SLD of the core [ᅵ-2] |
---|
| 1535 | //[3] thickness of shell 1 [ᅵ] |
---|
[6e93a02] | 1536 | //[4] SLD of shell 1 |
---|
[34c2649] | 1537 | //[5] thickness of shell 2 [ᅵ] |
---|
[6e93a02] | 1538 | //[6] SLD of shell 2 |
---|
| 1539 | //[7] thickness of shell 3 |
---|
| 1540 | //[8] SLD of shell 3 |
---|
| 1541 | //[9] thickness of shell 3 |
---|
| 1542 | //[10] SLD of shell 3 |
---|
| 1543 | //[11] SLD of solvent |
---|
| 1544 | //[12] background [cm-1] |
---|
| 1545 | |
---|
| 1546 | double x,pi; |
---|
| 1547 | double scale,rcore,thick1,rhocore,rhoshel1,rhosolv,bkg; //my local names |
---|
| 1548 | double bes,f,vol,qr,contr,f2; |
---|
| 1549 | double rhoshel2,thick2,rhoshel3,thick3,rhoshel4,thick4; |
---|
| 1550 | |
---|
| 1551 | pi = 4.0*atan(1.0); |
---|
| 1552 | x=q; |
---|
| 1553 | |
---|
| 1554 | scale = dp[0]; |
---|
| 1555 | rcore = dp[1]; |
---|
| 1556 | rhocore = dp[2]; |
---|
| 1557 | thick1 = dp[3]; |
---|
| 1558 | rhoshel1 = dp[4]; |
---|
| 1559 | thick2 = dp[5]; |
---|
| 1560 | rhoshel2 = dp[6]; |
---|
| 1561 | thick3 = dp[7]; |
---|
| 1562 | rhoshel3 = dp[8]; |
---|
| 1563 | thick4 = dp[9]; |
---|
| 1564 | rhoshel4 = dp[10]; |
---|
| 1565 | rhosolv = dp[11]; |
---|
| 1566 | bkg = dp[12]; |
---|
| 1567 | |
---|
| 1568 | // core first, then add in shells |
---|
| 1569 | qr=x*rcore; |
---|
| 1570 | contr = rhocore-rhoshel1; |
---|
| 1571 | if(qr == 0){ |
---|
| 1572 | bes = 1.0; |
---|
| 1573 | }else{ |
---|
| 1574 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1575 | } |
---|
| 1576 | vol = 4.0*pi/3.0*rcore*rcore*rcore; |
---|
| 1577 | f = vol*bes*contr; |
---|
| 1578 | //now the shell (1) |
---|
| 1579 | qr=x*(rcore+thick1); |
---|
| 1580 | contr = rhoshel1-rhoshel2; |
---|
| 1581 | if(qr == 0){ |
---|
| 1582 | bes = 1.0; |
---|
| 1583 | }else{ |
---|
| 1584 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1585 | } |
---|
| 1586 | vol = 4.0*pi/3.0*(rcore+thick1)*(rcore+thick1)*(rcore+thick1); |
---|
| 1587 | f += vol*bes*contr; |
---|
| 1588 | //now the shell (2) |
---|
| 1589 | qr=x*(rcore+thick1+thick2); |
---|
| 1590 | contr = rhoshel2-rhoshel3; |
---|
| 1591 | if(qr == 0){ |
---|
| 1592 | bes = 1.0; |
---|
| 1593 | }else{ |
---|
| 1594 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1595 | } |
---|
| 1596 | vol = 4.0*pi/3.0*(rcore+thick1+thick2)*(rcore+thick1+thick2)*(rcore+thick1+thick2); |
---|
| 1597 | f += vol*bes*contr; |
---|
| 1598 | //now the shell (3) |
---|
| 1599 | qr=x*(rcore+thick1+thick2+thick3); |
---|
| 1600 | contr = rhoshel3-rhoshel4; |
---|
| 1601 | if(qr == 0){ |
---|
| 1602 | bes = 1.0; |
---|
| 1603 | }else{ |
---|
| 1604 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1605 | } |
---|
| 1606 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3)*(rcore+thick1+thick2+thick3); |
---|
| 1607 | f += vol*bes*contr; |
---|
| 1608 | //now the shell (4) |
---|
| 1609 | qr=x*(rcore+thick1+thick2+thick3+thick4); |
---|
| 1610 | contr = rhoshel4-rhosolv; |
---|
| 1611 | if(qr == 0){ |
---|
| 1612 | bes = 1.0; |
---|
| 1613 | }else{ |
---|
| 1614 | bes = 3.0*(sin(qr)-qr*cos(qr))/(qr*qr*qr); |
---|
| 1615 | } |
---|
| 1616 | vol = 4.0*pi/3.0*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4)*(rcore+thick1+thick2+thick3+thick4); |
---|
| 1617 | f += vol*bes*contr; |
---|
| 1618 | |
---|
| 1619 | |
---|
[34c2649] | 1620 | // normalize to particle volume and rescale from [ᅵ-1] to [cm-1] |
---|
[6e93a02] | 1621 | f2 = f*f/vol*1.0e8; |
---|
| 1622 | |
---|
| 1623 | //scale if desired |
---|
| 1624 | f2 *= scale; |
---|
| 1625 | // then add in the background |
---|
| 1626 | f2 += bkg; |
---|
| 1627 | |
---|
| 1628 | return(f2); |
---|
| 1629 | } |
---|
| 1630 | |
---|
| 1631 | double |
---|
| 1632 | PolyOneShell(double dp[], double x) |
---|
| 1633 | { |
---|
| 1634 | double scale,rcore,thick,rhocore,rhoshel,rhosolv,bkg,pd,zz; //my local names |
---|
| 1635 | double va,vb,summ,yyy,zi; |
---|
| 1636 | double answer,zp1,zp2,zp3,vpoly,range,temp_1sf[7],pi; |
---|
| 1637 | int nord=76,ii; |
---|
| 1638 | |
---|
| 1639 | pi = 4.0*atan(1.0); |
---|
| 1640 | |
---|
| 1641 | scale = dp[0]; |
---|
| 1642 | rcore = dp[1]; |
---|
| 1643 | pd = dp[2]; |
---|
| 1644 | rhocore = dp[3]; |
---|
| 1645 | thick = dp[4]; |
---|
| 1646 | rhoshel = dp[5]; |
---|
| 1647 | rhosolv = dp[6]; |
---|
| 1648 | bkg = dp[7]; |
---|
| 1649 | |
---|
| 1650 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1651 | |
---|
| 1652 | range = 8.0; //std deviations for the integration |
---|
| 1653 | va = rcore*(1.0-range*pd); |
---|
| 1654 | if (va<0.0) { |
---|
| 1655 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1656 | } |
---|
| 1657 | if (pd>0.3) { |
---|
| 1658 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1659 | } |
---|
| 1660 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1661 | |
---|
| 1662 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1663 | temp_1sf[0] = 1.0; |
---|
| 1664 | temp_1sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1665 | temp_1sf[2] = dp[3]; |
---|
| 1666 | temp_1sf[3] = dp[4]; |
---|
| 1667 | temp_1sf[4] = dp[5]; |
---|
| 1668 | temp_1sf[5] = dp[6]; |
---|
| 1669 | temp_1sf[6] = 0.0; |
---|
| 1670 | |
---|
| 1671 | summ = 0.0; // initialize integral |
---|
| 1672 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1673 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1674 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1675 | temp_1sf[1] = zi; |
---|
| 1676 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * OneShell(temp_1sf,x); |
---|
| 1677 | //un-normalize by volume |
---|
| 1678 | yyy *= 4.0*pi/3.0*pow((zi+thick),3); |
---|
| 1679 | summ += yyy; //add to the running total of the quadrature |
---|
| 1680 | } |
---|
| 1681 | // calculate value of integral to return |
---|
| 1682 | answer = (vb-va)/2.0*summ; |
---|
| 1683 | |
---|
| 1684 | //re-normalize by the average volume |
---|
| 1685 | zp1 = zz + 1.0; |
---|
| 1686 | zp2 = zz + 2.0; |
---|
| 1687 | zp3 = zz + 3.0; |
---|
| 1688 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick),3); |
---|
| 1689 | answer /= vpoly; |
---|
| 1690 | //scale |
---|
| 1691 | answer *= scale; |
---|
| 1692 | // add in the background |
---|
| 1693 | answer += bkg; |
---|
| 1694 | |
---|
| 1695 | return(answer); |
---|
| 1696 | } |
---|
| 1697 | |
---|
| 1698 | double |
---|
| 1699 | PolyTwoShell(double dp[], double x) |
---|
| 1700 | { |
---|
| 1701 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1702 | double va,vb,summ,yyy,zi; |
---|
| 1703 | double answer,zp1,zp2,zp3,vpoly,range,temp_2sf[9],pi; |
---|
| 1704 | int nord=76,ii; |
---|
| 1705 | double thick1,thick2; |
---|
| 1706 | double rhoshel1,rhoshel2; |
---|
| 1707 | |
---|
| 1708 | scale = dp[0]; |
---|
| 1709 | rcore = dp[1]; |
---|
| 1710 | pd = dp[2]; |
---|
| 1711 | rhocore = dp[3]; |
---|
| 1712 | thick1 = dp[4]; |
---|
| 1713 | rhoshel1 = dp[5]; |
---|
| 1714 | thick2 = dp[6]; |
---|
| 1715 | rhoshel2 = dp[7]; |
---|
| 1716 | rhosolv = dp[8]; |
---|
| 1717 | bkg = dp[9]; |
---|
| 1718 | |
---|
| 1719 | pi = 4.0*atan(1.0); |
---|
| 1720 | |
---|
| 1721 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1722 | |
---|
| 1723 | range = 8.0; //std deviations for the integration |
---|
| 1724 | va = rcore*(1.0-range*pd); |
---|
| 1725 | if (va<0.0) { |
---|
| 1726 | va=0.0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1727 | } |
---|
| 1728 | if (pd>0.3) { |
---|
| 1729 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1730 | } |
---|
| 1731 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1732 | |
---|
| 1733 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1734 | temp_2sf[0] = 1.0; |
---|
| 1735 | temp_2sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1736 | temp_2sf[2] = dp[3]; |
---|
| 1737 | temp_2sf[3] = dp[4]; |
---|
| 1738 | temp_2sf[4] = dp[5]; |
---|
| 1739 | temp_2sf[5] = dp[6]; |
---|
| 1740 | temp_2sf[6] = dp[7]; |
---|
| 1741 | temp_2sf[7] = dp[8]; |
---|
| 1742 | temp_2sf[8] = 0.0; |
---|
| 1743 | |
---|
| 1744 | summ = 0.0; // initialize integral |
---|
| 1745 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1746 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1747 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1748 | temp_2sf[1] = zi; |
---|
| 1749 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * TwoShell(temp_2sf,x); |
---|
| 1750 | //un-normalize by volume |
---|
| 1751 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2),3); |
---|
| 1752 | summ += yyy; //add to the running total of the quadrature |
---|
| 1753 | } |
---|
| 1754 | // calculate value of integral to return |
---|
| 1755 | answer = (vb-va)/2.0*summ; |
---|
| 1756 | |
---|
| 1757 | //re-normalize by the average volume |
---|
| 1758 | zp1 = zz + 1.0; |
---|
| 1759 | zp2 = zz + 2.0; |
---|
| 1760 | zp3 = zz + 3.0; |
---|
| 1761 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2),3); |
---|
| 1762 | answer /= vpoly; |
---|
| 1763 | //scale |
---|
| 1764 | answer *= scale; |
---|
| 1765 | // add in the background |
---|
| 1766 | answer += bkg; |
---|
| 1767 | |
---|
| 1768 | return(answer); |
---|
| 1769 | } |
---|
| 1770 | |
---|
| 1771 | double |
---|
| 1772 | PolyThreeShell(double dp[], double x) |
---|
| 1773 | { |
---|
| 1774 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1775 | double va,vb,summ,yyy,zi; |
---|
| 1776 | double answer,zp1,zp2,zp3,vpoly,range,temp_3sf[11],pi; |
---|
| 1777 | int nord=76,ii; |
---|
| 1778 | double thick1,thick2,thick3; |
---|
| 1779 | double rhoshel1,rhoshel2,rhoshel3; |
---|
| 1780 | |
---|
| 1781 | scale = dp[0]; |
---|
| 1782 | rcore = dp[1]; |
---|
| 1783 | pd = dp[2]; |
---|
| 1784 | rhocore = dp[3]; |
---|
| 1785 | thick1 = dp[4]; |
---|
| 1786 | rhoshel1 = dp[5]; |
---|
| 1787 | thick2 = dp[6]; |
---|
| 1788 | rhoshel2 = dp[7]; |
---|
| 1789 | thick3 = dp[8]; |
---|
| 1790 | rhoshel3 = dp[9]; |
---|
| 1791 | rhosolv = dp[10]; |
---|
| 1792 | bkg = dp[11]; |
---|
| 1793 | |
---|
| 1794 | pi = 4.0*atan(1.0); |
---|
| 1795 | |
---|
| 1796 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1797 | |
---|
| 1798 | range = 8.0; //std deviations for the integration |
---|
| 1799 | va = rcore*(1.0-range*pd); |
---|
| 1800 | if (va<0) { |
---|
| 1801 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1802 | } |
---|
| 1803 | if (pd>0.3) { |
---|
| 1804 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1805 | } |
---|
| 1806 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1807 | |
---|
| 1808 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1809 | temp_3sf[0] = 1.0; |
---|
| 1810 | temp_3sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1811 | temp_3sf[2] = dp[3]; |
---|
| 1812 | temp_3sf[3] = dp[4]; |
---|
| 1813 | temp_3sf[4] = dp[5]; |
---|
| 1814 | temp_3sf[5] = dp[6]; |
---|
| 1815 | temp_3sf[6] = dp[7]; |
---|
| 1816 | temp_3sf[7] = dp[8]; |
---|
| 1817 | temp_3sf[8] = dp[9]; |
---|
| 1818 | temp_3sf[9] = dp[10]; |
---|
| 1819 | temp_3sf[10] = 0.0; |
---|
| 1820 | |
---|
| 1821 | summ = 0.0; // initialize integral |
---|
| 1822 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1823 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1824 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1825 | temp_3sf[1] = zi; |
---|
| 1826 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * ThreeShell(temp_3sf,x); |
---|
| 1827 | //un-normalize by volume |
---|
| 1828 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3),3); |
---|
| 1829 | summ += yyy; //add to the running total of the quadrature |
---|
| 1830 | } |
---|
| 1831 | // calculate value of integral to return |
---|
| 1832 | answer = (vb-va)/2.0*summ; |
---|
| 1833 | |
---|
| 1834 | //re-normalize by the average volume |
---|
| 1835 | zp1 = zz + 1.0; |
---|
| 1836 | zp2 = zz + 2.0; |
---|
| 1837 | zp3 = zz + 3.0; |
---|
| 1838 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3),3); |
---|
| 1839 | answer /= vpoly; |
---|
| 1840 | //scale |
---|
| 1841 | answer *= scale; |
---|
| 1842 | // add in the background |
---|
| 1843 | answer += bkg; |
---|
| 1844 | |
---|
| 1845 | return(answer); |
---|
| 1846 | } |
---|
| 1847 | |
---|
| 1848 | double |
---|
| 1849 | PolyFourShell(double dp[], double x) |
---|
| 1850 | { |
---|
| 1851 | double scale,rcore,rhocore,rhosolv,bkg,pd,zz; //my local names |
---|
| 1852 | double va,vb,summ,yyy,zi; |
---|
| 1853 | double answer,zp1,zp2,zp3,vpoly,range,temp_4sf[13],pi; |
---|
| 1854 | int nord=76,ii; |
---|
| 1855 | double thick1,thick2,thick3,thick4; |
---|
| 1856 | double rhoshel1,rhoshel2,rhoshel3,rhoshel4; |
---|
| 1857 | |
---|
| 1858 | scale = dp[0]; |
---|
| 1859 | rcore = dp[1]; |
---|
| 1860 | pd = dp[2]; |
---|
| 1861 | rhocore = dp[3]; |
---|
| 1862 | thick1 = dp[4]; |
---|
| 1863 | rhoshel1 = dp[5]; |
---|
| 1864 | thick2 = dp[6]; |
---|
| 1865 | rhoshel2 = dp[7]; |
---|
| 1866 | thick3 = dp[8]; |
---|
| 1867 | rhoshel3 = dp[9]; |
---|
| 1868 | thick4 = dp[10]; |
---|
| 1869 | rhoshel4 = dp[11]; |
---|
| 1870 | rhosolv = dp[12]; |
---|
| 1871 | bkg = dp[13]; |
---|
| 1872 | |
---|
| 1873 | pi = 4.0*atan(1.0); |
---|
| 1874 | |
---|
| 1875 | zz = (1.0/pd)*(1.0/pd)-1.0; //polydispersity of the core only |
---|
| 1876 | |
---|
| 1877 | range = 8.0; //std deviations for the integration |
---|
| 1878 | va = rcore*(1.0-range*pd); |
---|
| 1879 | if (va<0) { |
---|
| 1880 | va=0; //otherwise numerical error when pd >= 0.3, making a<0 |
---|
| 1881 | } |
---|
| 1882 | if (pd>0.3) { |
---|
| 1883 | range = range + (pd-0.3)*18.0; //stretch upper range to account for skewed tail |
---|
| 1884 | } |
---|
| 1885 | vb = rcore*(1.0+range*pd); // is this far enough past avg radius? |
---|
| 1886 | |
---|
| 1887 | //temp set scale=1 and bkg=0 for quadrature calc |
---|
| 1888 | temp_4sf[0] = 1.0; |
---|
| 1889 | temp_4sf[1] = dp[1]; //the core radius will be changed in the loop |
---|
| 1890 | temp_4sf[2] = dp[3]; |
---|
| 1891 | temp_4sf[3] = dp[4]; |
---|
| 1892 | temp_4sf[4] = dp[5]; |
---|
| 1893 | temp_4sf[5] = dp[6]; |
---|
| 1894 | temp_4sf[6] = dp[7]; |
---|
| 1895 | temp_4sf[7] = dp[8]; |
---|
| 1896 | temp_4sf[8] = dp[9]; |
---|
| 1897 | temp_4sf[9] = dp[10]; |
---|
| 1898 | temp_4sf[10] = dp[11]; |
---|
| 1899 | temp_4sf[11] = dp[12]; |
---|
| 1900 | temp_4sf[12] = 0.0; |
---|
| 1901 | |
---|
| 1902 | summ = 0.0; // initialize integral |
---|
| 1903 | for(ii=0;ii<nord;ii+=1) { |
---|
| 1904 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 1905 | zi = ( Gauss76Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 1906 | temp_4sf[1] = zi; |
---|
| 1907 | yyy = Gauss76Wt[ii] * SchulzPoint(zi,rcore,zz) * FourShell(temp_4sf,x); |
---|
| 1908 | //un-normalize by volume |
---|
| 1909 | yyy *= 4.0*pi/3.0*pow((zi+thick1+thick2+thick3+thick4),3); |
---|
| 1910 | summ += yyy; //add to the running total of the quadrature |
---|
| 1911 | } |
---|
| 1912 | // calculate value of integral to return |
---|
| 1913 | answer = (vb-va)/2.0*summ; |
---|
| 1914 | |
---|
| 1915 | //re-normalize by the average volume |
---|
| 1916 | zp1 = zz + 1.0; |
---|
| 1917 | zp2 = zz + 2.0; |
---|
| 1918 | zp3 = zz + 3.0; |
---|
| 1919 | vpoly = 4.0*pi/3.0*zp3*zp2/zp1/zp1*pow((rcore+thick1+thick2+thick3+thick4),3); |
---|
| 1920 | answer /= vpoly; |
---|
| 1921 | //scale |
---|
| 1922 | answer *= scale; |
---|
| 1923 | // add in the background |
---|
| 1924 | answer += bkg; |
---|
| 1925 | |
---|
| 1926 | return(answer); |
---|
| 1927 | } |
---|
| 1928 | |
---|
| 1929 | |
---|
| 1930 | /* BCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 1931 | |
---|
| 1932 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 1933 | |
---|
| 1934 | */ |
---|
| 1935 | double |
---|
| 1936 | BCC_ParaCrystal(double w[], double x) |
---|
| 1937 | { |
---|
| 1938 | int i,j; |
---|
| 1939 | double Pi; |
---|
| 1940 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 1941 | int nordi=150; //order of integration |
---|
| 1942 | int nordj=150; |
---|
| 1943 | double va,vb; //upper and lower integration limits |
---|
| 1944 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 1945 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 1946 | |
---|
| 1947 | Pi = 4.0*atan(1.0); |
---|
| 1948 | va = 0.0; |
---|
| 1949 | vb = 2.0*Pi; //orintational average, outer integral |
---|
| 1950 | vaj = 0.0; |
---|
| 1951 | vbj = Pi; //endpoints of inner integral |
---|
| 1952 | |
---|
| 1953 | summ = 0.0; //initialize intergral |
---|
| 1954 | |
---|
| 1955 | scale = w[0]; |
---|
| 1956 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 1957 | gg = w[2]; //Paracrystal distortion factor |
---|
| 1958 | Rad = w[3]; //Sphere radius |
---|
| 1959 | sld = w[4]; |
---|
| 1960 | sldSolv = w[5]; |
---|
| 1961 | background = w[6]; |
---|
| 1962 | |
---|
| 1963 | contrast = sld - sldSolv; |
---|
| 1964 | |
---|
| 1965 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 1966 | latticeScale = 2.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn/sqrt(3.0/4.0),3); |
---|
| 1967 | |
---|
| 1968 | for(i=0;i<nordi;i++) { |
---|
| 1969 | //setup inner integral over the ellipsoidal cross-section |
---|
| 1970 | summj=0.0; |
---|
| 1971 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 1972 | for(j=0;j<nordj;j++) { |
---|
| 1973 | //20 gauss points for the inner integral |
---|
| 1974 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 1975 | yyy = Gauss150Wt[j] * BCC_Integrand(w,x,zi,zij); |
---|
| 1976 | summj += yyy; |
---|
| 1977 | } |
---|
| 1978 | //now calculate the value of the inner integral |
---|
| 1979 | answer = (vbj-vaj)/2.0*summj; |
---|
| 1980 | |
---|
| 1981 | //now calculate outer integral |
---|
| 1982 | yyy = Gauss150Wt[i] * answer; |
---|
| 1983 | summ += yyy; |
---|
| 1984 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 1985 | |
---|
| 1986 | answer = (vb-va)/2.0*summ; |
---|
| 1987 | // Multiply by contrast^2 |
---|
| 1988 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 1989 | // add in the background |
---|
| 1990 | answer += background; |
---|
| 1991 | |
---|
| 1992 | return answer; |
---|
| 1993 | } |
---|
| 1994 | |
---|
| 1995 | // xx is phi (outer) |
---|
| 1996 | // yy is theta (inner) |
---|
| 1997 | double |
---|
| 1998 | BCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 1999 | |
---|
| 2000 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
| 2001 | |
---|
| 2002 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2003 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2004 | aa = Dnn; |
---|
| 2005 | Da = gg*aa; |
---|
| 2006 | |
---|
| 2007 | Pi = 4.0*atan(1.0); |
---|
| 2008 | temp1 = qq*qq*Da*Da; |
---|
| 2009 | temp3 = qq*aa; |
---|
| 2010 | |
---|
| 2011 | retVal = BCCeval(yy,xx,temp1,temp3); |
---|
| 2012 | retVal /=4.0*Pi; |
---|
| 2013 | |
---|
| 2014 | return(retVal); |
---|
| 2015 | } |
---|
| 2016 | |
---|
| 2017 | double |
---|
| 2018 | BCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
| 2019 | |
---|
| 2020 | double temp6,temp7,temp8,temp9,temp10; |
---|
| 2021 | double result; |
---|
| 2022 | |
---|
| 2023 | temp6 = sin(Theta); |
---|
| 2024 | temp7 = sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 2025 | temp8 = -1.0*sin(Theta)*cos(Phi)-sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 2026 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi)-cos(Theta); |
---|
| 2027 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
| 2028 | result = pow(1.0-(temp10*temp10),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
| 2029 | |
---|
| 2030 | return (result); |
---|
| 2031 | } |
---|
| 2032 | |
---|
| 2033 | double |
---|
| 2034 | SphereForm_Paracrystal(double radius, double delrho, double x) { |
---|
| 2035 | |
---|
| 2036 | double bes,f,vol,f2,pi; |
---|
| 2037 | pi = 4.0*atan(1.0); |
---|
| 2038 | // |
---|
| 2039 | //handle q==0 separately |
---|
| 2040 | if(x==0) { |
---|
| 2041 | f = 4.0/3.0*pi*radius*radius*radius*delrho*delrho*1.0e8; |
---|
| 2042 | return(f); |
---|
| 2043 | } |
---|
| 2044 | |
---|
| 2045 | bes = 3.0*(sin(x*radius)-x*radius*cos(x*radius))/(x*x*x)/(radius*radius*radius); |
---|
| 2046 | vol = 4.0*pi/3.0*radius*radius*radius; |
---|
[34c2649] | 2047 | f = vol*bes*delrho ; // [=] ᅵ |
---|
[6e93a02] | 2048 | // normalize to single particle volume, convert to 1/cm |
---|
| 2049 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
| 2050 | |
---|
| 2051 | return (f2); |
---|
| 2052 | } |
---|
| 2053 | |
---|
| 2054 | /* FCC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 2055 | |
---|
| 2056 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 2057 | |
---|
| 2058 | */ |
---|
| 2059 | double |
---|
| 2060 | FCC_ParaCrystal(double w[], double x) |
---|
| 2061 | { |
---|
| 2062 | int i,j; |
---|
| 2063 | double Pi; |
---|
| 2064 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 2065 | int nordi=150; //order of integration |
---|
| 2066 | int nordj=150; |
---|
| 2067 | double va,vb; //upper and lower integration limits |
---|
| 2068 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2069 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2070 | |
---|
| 2071 | Pi = 4.0*atan(1.0); |
---|
| 2072 | va = 0.0; |
---|
| 2073 | vb = 2.0*Pi; //orintational average, outer integral |
---|
| 2074 | vaj = 0.0; |
---|
| 2075 | vbj = Pi; //endpoints of inner integral |
---|
| 2076 | |
---|
| 2077 | summ = 0.0; //initialize intergral |
---|
| 2078 | |
---|
| 2079 | scale = w[0]; |
---|
| 2080 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2081 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2082 | Rad = w[3]; //Sphere radius |
---|
| 2083 | sld = w[4]; |
---|
| 2084 | sldSolv = w[5]; |
---|
| 2085 | background = w[6]; |
---|
| 2086 | |
---|
| 2087 | contrast = sld - sldSolv; |
---|
| 2088 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 2089 | latticeScale = 4.0*(4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn*sqrt(2.0),3); |
---|
| 2090 | |
---|
| 2091 | for(i=0;i<nordi;i++) { |
---|
| 2092 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2093 | summj=0.0; |
---|
| 2094 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 2095 | for(j=0;j<nordj;j++) { |
---|
| 2096 | //20 gauss points for the inner integral |
---|
| 2097 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 2098 | yyy = Gauss150Wt[j] * FCC_Integrand(w,x,zi,zij); |
---|
| 2099 | summj += yyy; |
---|
| 2100 | } |
---|
| 2101 | //now calculate the value of the inner integral |
---|
| 2102 | answer = (vbj-vaj)/2.0*summj; |
---|
| 2103 | |
---|
| 2104 | //now calculate outer integral |
---|
| 2105 | yyy = Gauss150Wt[i] * answer; |
---|
| 2106 | summ += yyy; |
---|
| 2107 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2108 | |
---|
| 2109 | answer = (vb-va)/2.0*summ; |
---|
| 2110 | // Multiply by contrast^2 |
---|
| 2111 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 2112 | // add in the background |
---|
| 2113 | answer += background; |
---|
| 2114 | |
---|
| 2115 | return answer; |
---|
| 2116 | } |
---|
| 2117 | |
---|
| 2118 | |
---|
| 2119 | // xx is phi (outer) |
---|
| 2120 | // yy is theta (inner) |
---|
| 2121 | double |
---|
| 2122 | FCC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 2123 | |
---|
| 2124 | double retVal,temp1,temp3,aa,Da,Dnn,gg,Pi; |
---|
| 2125 | |
---|
| 2126 | Pi = 4.0*atan(1.0); |
---|
| 2127 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2128 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2129 | aa = Dnn; |
---|
| 2130 | Da = gg*aa; |
---|
| 2131 | |
---|
| 2132 | temp1 = qq*qq*Da*Da; |
---|
| 2133 | temp3 = qq*aa; |
---|
| 2134 | |
---|
| 2135 | retVal = FCCeval(yy,xx,temp1,temp3); |
---|
| 2136 | retVal /=4*Pi; |
---|
| 2137 | |
---|
| 2138 | return(retVal); |
---|
| 2139 | } |
---|
| 2140 | |
---|
| 2141 | double |
---|
| 2142 | FCCeval(double Theta, double Phi, double temp1, double temp3) { |
---|
| 2143 | |
---|
| 2144 | double temp6,temp7,temp8,temp9,temp10; |
---|
| 2145 | double result; |
---|
| 2146 | |
---|
| 2147 | temp6 = sin(Theta); |
---|
| 2148 | temp7 = sin(Theta)*sin(Phi)+cos(Theta); |
---|
| 2149 | temp8 = -1.0*sin(Theta)*cos(Phi)+cos(Theta); |
---|
| 2150 | temp9 = -1.0*sin(Theta)*cos(Phi)+sin(Theta)*sin(Phi); |
---|
| 2151 | temp10 = exp((-1.0/8.0)*temp1*((temp7*temp7)+(temp8*temp8)+(temp9*temp9))); |
---|
| 2152 | result = pow((1.0-(temp10*temp10)),3)*temp6/((1.0-2.0*temp10*cos(0.5*temp3*(temp7))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp8))+(temp10*temp10))*(1.0-2.0*temp10*cos(0.5*temp3*(temp9))+(temp10*temp10))); |
---|
| 2153 | |
---|
| 2154 | return (result); |
---|
| 2155 | } |
---|
| 2156 | |
---|
| 2157 | |
---|
| 2158 | /* SC_ParaCrystal : calculates the form factor of a Triaxial Ellipsoid at the given x-value p->x |
---|
| 2159 | |
---|
| 2160 | Uses 150 pt Gaussian quadrature for both integrals |
---|
| 2161 | |
---|
| 2162 | */ |
---|
| 2163 | double |
---|
| 2164 | SC_ParaCrystal(double w[], double x) |
---|
| 2165 | { |
---|
| 2166 | int i,j; |
---|
| 2167 | double Pi; |
---|
| 2168 | double scale,Dnn,gg,Rad,contrast,background,latticeScale,sld,sldSolv; //local variables of coefficient wave |
---|
| 2169 | int nordi=150; //order of integration |
---|
| 2170 | int nordj=150; |
---|
| 2171 | double va,vb; //upper and lower integration limits |
---|
| 2172 | double summ,zi,yyy,answer; //running tally of integration |
---|
| 2173 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 2174 | |
---|
| 2175 | Pi = 4.0*atan(1.0); |
---|
| 2176 | va = 0.0; |
---|
| 2177 | vb = Pi/2.0; //orintational average, outer integral |
---|
| 2178 | vaj = 0.0; |
---|
| 2179 | vbj = Pi/2.0; //endpoints of inner integral |
---|
| 2180 | |
---|
| 2181 | summ = 0.0; //initialize intergral |
---|
| 2182 | |
---|
| 2183 | scale = w[0]; |
---|
| 2184 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2185 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2186 | Rad = w[3]; //Sphere radius |
---|
| 2187 | sld = w[4]; |
---|
| 2188 | sldSolv = w[5]; |
---|
| 2189 | background = w[6]; |
---|
| 2190 | |
---|
| 2191 | contrast = sld - sldSolv; |
---|
| 2192 | //Volume fraction calculated from lattice symmetry and sphere radius |
---|
| 2193 | latticeScale = (4.0/3.0)*Pi*(Rad*Rad*Rad)/pow(Dnn,3); |
---|
| 2194 | |
---|
| 2195 | for(i=0;i<nordi;i++) { |
---|
| 2196 | //setup inner integral over the ellipsoidal cross-section |
---|
| 2197 | summj=0.0; |
---|
| 2198 | zi = ( Gauss150Z[i]*(vb-va) + va + vb )/2.0; //the outer dummy is phi |
---|
| 2199 | for(j=0;j<nordj;j++) { |
---|
| 2200 | //20 gauss points for the inner integral |
---|
| 2201 | zij = ( Gauss150Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the inner dummy is theta |
---|
| 2202 | yyy = Gauss150Wt[j] * SC_Integrand(w,x,zi,zij); |
---|
| 2203 | summj += yyy; |
---|
| 2204 | } |
---|
| 2205 | //now calculate the value of the inner integral |
---|
| 2206 | answer = (vbj-vaj)/2.0*summj; |
---|
| 2207 | |
---|
| 2208 | //now calculate outer integral |
---|
| 2209 | yyy = Gauss150Wt[i] * answer; |
---|
| 2210 | summ += yyy; |
---|
| 2211 | } //final scaling is done at the end of the function, after the NT_FP64 case |
---|
| 2212 | |
---|
| 2213 | answer = (vb-va)/2.0*summ; |
---|
| 2214 | // Multiply by contrast^2 |
---|
| 2215 | answer *= SphereForm_Paracrystal(Rad,contrast,x)*scale*latticeScale; |
---|
| 2216 | // add in the background |
---|
| 2217 | answer += background; |
---|
| 2218 | |
---|
| 2219 | return answer; |
---|
| 2220 | } |
---|
| 2221 | |
---|
| 2222 | // xx is phi (outer) |
---|
| 2223 | // yy is theta (inner) |
---|
| 2224 | double |
---|
| 2225 | SC_Integrand(double w[], double qq, double xx, double yy) { |
---|
| 2226 | |
---|
| 2227 | double retVal,temp1,temp2,temp3,temp4,temp5,aa,Da,Dnn,gg,Pi; |
---|
| 2228 | |
---|
| 2229 | Pi = 4.0*atan(1.0); |
---|
| 2230 | Dnn = w[1]; //Nearest neighbor distance A |
---|
| 2231 | gg = w[2]; //Paracrystal distortion factor |
---|
| 2232 | aa = Dnn; |
---|
| 2233 | Da = gg*aa; |
---|
| 2234 | |
---|
| 2235 | temp1 = qq*qq*Da*Da; |
---|
| 2236 | temp2 = pow( 1.0-exp(-1.0*temp1) ,3); |
---|
| 2237 | temp3 = qq*aa; |
---|
| 2238 | temp4 = 2.0*exp(-0.5*temp1); |
---|
| 2239 | temp5 = exp(-1.0*temp1); |
---|
| 2240 | |
---|
| 2241 | |
---|
| 2242 | retVal = temp2*SCeval(yy,xx,temp3,temp4,temp5); |
---|
| 2243 | retVal *= 2.0/Pi; |
---|
| 2244 | |
---|
| 2245 | return(retVal); |
---|
| 2246 | } |
---|
| 2247 | |
---|
| 2248 | double |
---|
| 2249 | SCeval(double Theta, double Phi, double temp3, double temp4, double temp5) { //Function to calculate integrand values for simple cubic structure |
---|
| 2250 | |
---|
| 2251 | double temp6,temp7,temp8,temp9; //Theta and phi dependent parts of the equation |
---|
| 2252 | double result; |
---|
| 2253 | |
---|
| 2254 | temp6 = sin(Theta); |
---|
| 2255 | temp7 = -1.0*temp3*sin(Theta)*cos(Phi); |
---|
| 2256 | temp8 = temp3*sin(Theta)*sin(Phi); |
---|
| 2257 | temp9 = temp3*cos(Theta); |
---|
| 2258 | result = temp6/((1.0-temp4*cos((temp7))+temp5)*(1.0-temp4*cos((temp8))+temp5)*(1.0-temp4*cos((temp9))+temp5)); |
---|
| 2259 | |
---|
| 2260 | return (result); |
---|
| 2261 | } |
---|
| 2262 | |
---|
| 2263 | // scattering from a uniform sphere with a Gaussian size distribution |
---|
| 2264 | // |
---|
| 2265 | double |
---|
| 2266 | FuzzySpheres(double dp[], double q) |
---|
| 2267 | { |
---|
| 2268 | double pi,x; |
---|
| 2269 | double scale,rad,pd,sig,rho,rhos,bkg,delrho,sig_surf,f2,bes,vol,f; //my local names |
---|
| 2270 | double va,vb,zi,yy,summ,inten; |
---|
| 2271 | int nord=20,ii; |
---|
| 2272 | |
---|
| 2273 | pi = 4.0*atan(1.0); |
---|
| 2274 | x= q; |
---|
| 2275 | |
---|
| 2276 | scale=dp[0]; |
---|
| 2277 | rad=dp[1]; |
---|
| 2278 | pd=dp[2]; |
---|
| 2279 | sig=pd*rad; |
---|
| 2280 | sig_surf = dp[3]; |
---|
| 2281 | rho=dp[4]; |
---|
| 2282 | rhos=dp[5]; |
---|
| 2283 | delrho=rho-rhos; |
---|
| 2284 | bkg=dp[6]; |
---|
| 2285 | |
---|
| 2286 | |
---|
| 2287 | va = -4.0*sig + rad; |
---|
| 2288 | if (va<0) { |
---|
| 2289 | va=0; //to avoid numerical error when va<0 (-ve q-value) |
---|
| 2290 | } |
---|
| 2291 | vb = 4.0*sig +rad; |
---|
| 2292 | |
---|
| 2293 | summ = 0.0; // initialize integral |
---|
| 2294 | for(ii=0;ii<nord;ii+=1) { |
---|
| 2295 | // calculate Gauss points on integration interval (r-value for evaluation) |
---|
| 2296 | zi = ( Gauss20Z[ii]*(vb-va) + vb + va )/2.0; |
---|
| 2297 | // calculate sphere scattering |
---|
| 2298 | // |
---|
| 2299 | //handle q==0 separately |
---|
| 2300 | if (x==0.0) { |
---|
| 2301 | f2 = 4.0/3.0*pi*zi*zi*zi*delrho*delrho*1.0e8; |
---|
| 2302 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2303 | f2 *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2304 | } else { |
---|
| 2305 | bes = 3.0*(sin(x*zi)-x*zi*cos(x*zi))/(x*x*x)/(zi*zi*zi); |
---|
| 2306 | vol = 4.0*pi/3.0*zi*zi*zi; |
---|
| 2307 | f = vol*bes*delrho; // [=] A |
---|
| 2308 | f *= exp(-0.5*sig_surf*sig_surf*x*x); |
---|
| 2309 | // normalize to single particle volume, convert to 1/cm |
---|
| 2310 | f2 = f * f / vol * 1.0e8; // [=] 1/cm |
---|
| 2311 | } |
---|
| 2312 | |
---|
| 2313 | yy = Gauss20Wt[ii] * Gauss_distr(sig,rad,zi) * f2; |
---|
| 2314 | yy *= 4.0*pi/3.0*zi*zi*zi; //un-normalize by current sphere volume |
---|
| 2315 | |
---|
| 2316 | summ += yy; //add to the running total of the quadrature |
---|
| 2317 | |
---|
| 2318 | |
---|
| 2319 | } |
---|
| 2320 | // calculate value of integral to return |
---|
| 2321 | inten = (vb-va)/2.0*summ; |
---|
| 2322 | |
---|
| 2323 | //re-normalize by polydisperse sphere volume |
---|
| 2324 | inten /= (4.0*pi/3.0*rad*rad*rad)*(1.0+3.0*pd*pd); |
---|
| 2325 | |
---|
| 2326 | inten *= scale; |
---|
| 2327 | inten += bkg; |
---|
| 2328 | |
---|
| 2329 | return(inten); //scale, and add in the background |
---|
| 2330 | } |
---|
| 2331 | |
---|
| 2332 | |
---|