1 | /** |
---|
2 | * Evaluate [PYTHONCLASS] with angular distribution given |
---|
3 | * by user. |
---|
4 | * |
---|
5 | * This code was written as part of the DANSE project |
---|
6 | * http://danse.us/trac/sans/ |
---|
7 | * |
---|
8 | * WARNING: THIS FILE WAS GENERATED BY IGORGENERATOR.PY |
---|
9 | * DO NOT MODIFY THIS FILE, MODIFY [INCLUDE_FILE] |
---|
10 | * AND RE-RUN THE GENERATOR SCRIPT |
---|
11 | * |
---|
12 | * @copyright 2007: University of Tennessee, for the DANSE project |
---|
13 | * |
---|
14 | */ |
---|
15 | |
---|
16 | #include "c_disperser.h" |
---|
17 | #include "danse.h" |
---|
18 | #include <math.h> |
---|
19 | |
---|
20 | /** |
---|
21 | * Evaluate model for given angular distributions in theta and phi. |
---|
22 | * |
---|
23 | * Angles are in radian. |
---|
24 | * |
---|
25 | * See [C_FILE_NAME] for more information about the model parameters. |
---|
26 | * |
---|
27 | * @param dp: model parameters |
---|
28 | * @param phi_values: vector of phi_values |
---|
29 | * @param phi_weights: vector of weights for each entry in phi_values |
---|
30 | * @param n_phi: length of phi_values and phi_weights vectors |
---|
31 | * @param theta_values: vector of theta values |
---|
32 | * @param theta_weights: vector of weights for each entry in theta_values |
---|
33 | * @param n_theta: length of theta_Values and theta_weights vectors |
---|
34 | * @param q: q-value to evaluate the model at |
---|
35 | * @param phi_q: angle between the q-vector and the q_x axis |
---|
36 | * @return: scattering intensity |
---|
37 | * |
---|
38 | [PARS_LIST] |
---|
39 | * |
---|
40 | */ |
---|
41 | double [MODEL_NAME]_Weights(double dp[], double *phi_values, double *phi_weights, int n_phi, |
---|
42 | double *theta_values, double *theta_weights, int n_theta, |
---|
43 | double q, double phi_q) { |
---|
44 | // Copy of parameters |
---|
45 | double pars[[NPARS]]; |
---|
46 | // Parameter index for theta |
---|
47 | int theta_index = [THETA_INDEX]; |
---|
48 | // Parameter index for phi |
---|
49 | int phi_index = [PHI_INDEX]; |
---|
50 | int i, i_theta; |
---|
51 | double sum, norm; |
---|
52 | |
---|
53 | // Copy parameters because they will be modified |
---|
54 | for(i=0; i<[NPARS]; i++) { |
---|
55 | pars[i] = dp[i]; |
---|
56 | } |
---|
57 | |
---|
58 | if (n_theta == 0) { |
---|
59 | return weight_dispersion( &disperse_[MODEL_NAME]_analytical_2D, |
---|
60 | phi_values, phi_weights, n_phi, phi_index, pars, q, phi_q ); |
---|
61 | } else { |
---|
62 | sum = 0.0; |
---|
63 | norm = 0.0; |
---|
64 | |
---|
65 | for(i_theta=0; i_theta<n_theta; i_theta++) { |
---|
66 | // Assign new theta value |
---|
67 | pars[theta_index] = theta_values[i_theta]; |
---|
68 | // Evaluate the function, weight by sin(theta) |
---|
69 | sum += sin(theta_values[i_theta]) * theta_weights[i_theta] * |
---|
70 | weight_dispersion( &disperse_[MODEL_NAME]_analytical_2D, |
---|
71 | phi_values, phi_weights, n_phi, phi_index, pars, q, phi_q ); |
---|
72 | // Keep track of normalization |
---|
73 | norm += theta_weights[i_theta]; |
---|
74 | } |
---|
75 | |
---|
76 | // Protect against null weight vector |
---|
77 | if(norm > 0) { |
---|
78 | return sum/norm; |
---|
79 | } |
---|
80 | } |
---|
81 | return 0.0; |
---|
82 | } |
---|
83 | |
---|
84 | |
---|