[431c9e0] | 1 | /* stdtr.c |
---|
| 2 | * |
---|
| 3 | * Student's t distribution |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | * |
---|
| 7 | * SYNOPSIS: |
---|
| 8 | * |
---|
| 9 | * double t, stdtr(); |
---|
| 10 | * short k; |
---|
| 11 | * |
---|
| 12 | * y = stdtr( k, t ); |
---|
| 13 | * |
---|
| 14 | * |
---|
| 15 | * DESCRIPTION: |
---|
| 16 | * |
---|
| 17 | * Computes the integral from minus infinity to t of the Student |
---|
| 18 | * t distribution with integer k > 0 degrees of freedom: |
---|
| 19 | * |
---|
| 20 | * t |
---|
| 21 | * - |
---|
| 22 | * | | |
---|
| 23 | * - | 2 -(k+1)/2 |
---|
| 24 | * | ( (k+1)/2 ) | ( x ) |
---|
| 25 | * ---------------------- | ( 1 + --- ) dx |
---|
| 26 | * - | ( k ) |
---|
| 27 | * sqrt( k pi ) | ( k/2 ) | |
---|
| 28 | * | | |
---|
| 29 | * - |
---|
| 30 | * -inf. |
---|
| 31 | * |
---|
| 32 | * Relation to incomplete beta integral: |
---|
| 33 | * |
---|
| 34 | * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) |
---|
| 35 | * where |
---|
| 36 | * z = k/(k + t**2). |
---|
| 37 | * |
---|
| 38 | * For t < -2, this is the method of computation. For higher t, |
---|
| 39 | * a direct method is derived from integration by parts. |
---|
| 40 | * Since the function is symmetric about t=0, the area under the |
---|
| 41 | * right tail of the density is found by calling the function |
---|
| 42 | * with -t instead of t. |
---|
| 43 | * |
---|
| 44 | * ACCURACY: |
---|
| 45 | * |
---|
| 46 | * Tested at random 1 <= k <= 25. The "domain" refers to t. |
---|
| 47 | * Relative error: |
---|
| 48 | * arithmetic domain # trials peak rms |
---|
| 49 | * IEEE -100,-2 50000 5.9e-15 1.4e-15 |
---|
| 50 | * IEEE -2,100 500000 2.7e-15 4.9e-17 |
---|
| 51 | */ |
---|
| 52 | |
---|
| 53 | /* stdtri.c |
---|
| 54 | * |
---|
| 55 | * Functional inverse of Student's t distribution |
---|
| 56 | * |
---|
| 57 | * |
---|
| 58 | * |
---|
| 59 | * SYNOPSIS: |
---|
| 60 | * |
---|
| 61 | * double p, t, stdtri(); |
---|
| 62 | * int k; |
---|
| 63 | * |
---|
| 64 | * t = stdtri( k, p ); |
---|
| 65 | * |
---|
| 66 | * |
---|
| 67 | * DESCRIPTION: |
---|
| 68 | * |
---|
| 69 | * Given probability p, finds the argument t such that stdtr(k,t) |
---|
| 70 | * is equal to p. |
---|
| 71 | * |
---|
| 72 | * ACCURACY: |
---|
| 73 | * |
---|
| 74 | * Tested at random 1 <= k <= 100. The "domain" refers to p: |
---|
| 75 | * Relative error: |
---|
| 76 | * arithmetic domain # trials peak rms |
---|
| 77 | * IEEE .001,.999 25000 5.7e-15 8.0e-16 |
---|
| 78 | * IEEE 10^-6,.001 25000 2.0e-12 2.9e-14 |
---|
| 79 | */ |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | /* |
---|
| 83 | Cephes Math Library Release 2.8: June, 2000 |
---|
| 84 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
| 85 | */ |
---|
| 86 | |
---|
| 87 | #include "mconf.h" |
---|
| 88 | |
---|
| 89 | extern double PI, MACHEP, MAXNUM; |
---|
| 90 | #ifdef ANSIPROT |
---|
| 91 | extern double sqrt ( double ); |
---|
| 92 | extern double atan ( double ); |
---|
| 93 | extern double incbet ( double, double, double ); |
---|
| 94 | extern double incbi ( double, double, double ); |
---|
| 95 | extern double fabs ( double ); |
---|
| 96 | #else |
---|
| 97 | double sqrt(), atan(), incbet(), incbi(), fabs(); |
---|
| 98 | #endif |
---|
| 99 | |
---|
| 100 | double stdtr( k, t ) |
---|
| 101 | int k; |
---|
| 102 | double t; |
---|
| 103 | { |
---|
| 104 | double x, rk, z, f, tz, p, xsqk; |
---|
| 105 | int j; |
---|
| 106 | |
---|
| 107 | if( k <= 0 ) |
---|
| 108 | { |
---|
| 109 | mtherr( "stdtr", DOMAIN ); |
---|
| 110 | return(0.0); |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | if( t == 0 ) |
---|
| 114 | return( 0.5 ); |
---|
| 115 | |
---|
| 116 | if( t < -2.0 ) |
---|
| 117 | { |
---|
| 118 | rk = k; |
---|
| 119 | z = rk / (rk + t * t); |
---|
| 120 | p = 0.5 * incbet( 0.5*rk, 0.5, z ); |
---|
| 121 | return( p ); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | /* compute integral from -t to + t */ |
---|
| 125 | |
---|
| 126 | if( t < 0 ) |
---|
| 127 | x = -t; |
---|
| 128 | else |
---|
| 129 | x = t; |
---|
| 130 | |
---|
| 131 | rk = k; /* degrees of freedom */ |
---|
| 132 | z = 1.0 + ( x * x )/rk; |
---|
| 133 | |
---|
| 134 | /* test if k is odd or even */ |
---|
| 135 | if( (k & 1) != 0) |
---|
| 136 | { |
---|
| 137 | |
---|
| 138 | /* computation for odd k */ |
---|
| 139 | |
---|
| 140 | xsqk = x/sqrt(rk); |
---|
| 141 | p = atan( xsqk ); |
---|
| 142 | if( k > 1 ) |
---|
| 143 | { |
---|
| 144 | f = 1.0; |
---|
| 145 | tz = 1.0; |
---|
| 146 | j = 3; |
---|
| 147 | while( (j<=(k-2)) && ( (tz/f) > MACHEP ) ) |
---|
| 148 | { |
---|
| 149 | tz *= (j-1)/( z * j ); |
---|
| 150 | f += tz; |
---|
| 151 | j += 2; |
---|
| 152 | } |
---|
| 153 | p += f * xsqk/z; |
---|
| 154 | } |
---|
| 155 | p *= 2.0/PI; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | else |
---|
| 160 | { |
---|
| 161 | |
---|
| 162 | /* computation for even k */ |
---|
| 163 | |
---|
| 164 | f = 1.0; |
---|
| 165 | tz = 1.0; |
---|
| 166 | j = 2; |
---|
| 167 | |
---|
| 168 | while( ( j <= (k-2) ) && ( (tz/f) > MACHEP ) ) |
---|
| 169 | { |
---|
| 170 | tz *= (j - 1)/( z * j ); |
---|
| 171 | f += tz; |
---|
| 172 | j += 2; |
---|
| 173 | } |
---|
| 174 | p = f * x/sqrt(z*rk); |
---|
| 175 | } |
---|
| 176 | |
---|
| 177 | /* common exit */ |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | if( t < 0 ) |
---|
| 181 | p = -p; /* note destruction of relative accuracy */ |
---|
| 182 | |
---|
| 183 | p = 0.5 + 0.5 * p; |
---|
| 184 | return(p); |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | double stdtri( k, p ) |
---|
| 188 | int k; |
---|
| 189 | double p; |
---|
| 190 | { |
---|
| 191 | double t, rk, z; |
---|
| 192 | int rflg; |
---|
| 193 | |
---|
| 194 | if( k <= 0 || p <= 0.0 || p >= 1.0 ) |
---|
| 195 | { |
---|
| 196 | mtherr( "stdtri", DOMAIN ); |
---|
| 197 | return(0.0); |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | rk = k; |
---|
| 201 | |
---|
| 202 | if( p > 0.25 && p < 0.75 ) |
---|
| 203 | { |
---|
| 204 | if( p == 0.5 ) |
---|
| 205 | return( 0.0 ); |
---|
| 206 | z = 1.0 - 2.0 * p; |
---|
| 207 | z = incbi( 0.5, 0.5*rk, fabs(z) ); |
---|
| 208 | t = sqrt( rk*z/(1.0-z) ); |
---|
| 209 | if( p < 0.5 ) |
---|
| 210 | t = -t; |
---|
| 211 | return( t ); |
---|
| 212 | } |
---|
| 213 | rflg = -1; |
---|
| 214 | if( p >= 0.5) |
---|
| 215 | { |
---|
| 216 | p = 1.0 - p; |
---|
| 217 | rflg = 1; |
---|
| 218 | } |
---|
| 219 | z = incbi( 0.5*rk, 0.5, 2.0*p ); |
---|
| 220 | |
---|
| 221 | if( MAXNUM * z < rk ) |
---|
| 222 | return(rflg* MAXNUM); |
---|
| 223 | t = sqrt( rk/z - rk ); |
---|
| 224 | return( rflg * t ); |
---|
| 225 | } |
---|