[431c9e0] | 1 | /* incbet.c |
---|
| 2 | * |
---|
| 3 | * Incomplete beta integral |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | * SYNOPSIS: |
---|
| 7 | * |
---|
| 8 | * double a, b, x, y, incbet(); |
---|
| 9 | * |
---|
| 10 | * y = incbet( a, b, x ); |
---|
| 11 | * |
---|
| 12 | * |
---|
| 13 | * DESCRIPTION: |
---|
| 14 | * |
---|
| 15 | * Returns incomplete beta integral of the arguments, evaluated |
---|
| 16 | * from zero to x. The function is defined as |
---|
| 17 | * |
---|
| 18 | * x |
---|
| 19 | * - - |
---|
| 20 | * | (a+b) | | a-1 b-1 |
---|
| 21 | * ----------- | t (1-t) dt. |
---|
| 22 | * - - | | |
---|
| 23 | * | (a) | (b) - |
---|
| 24 | * 0 |
---|
| 25 | * |
---|
| 26 | * The domain of definition is 0 <= x <= 1. In this |
---|
| 27 | * implementation a and b are restricted to positive values. |
---|
| 28 | * The integral from x to 1 may be obtained by the symmetry |
---|
| 29 | * relation |
---|
| 30 | * |
---|
| 31 | * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ). |
---|
| 32 | * |
---|
| 33 | * The integral is evaluated by a continued fraction expansion |
---|
| 34 | * or, when b*x is small, by a power series. |
---|
| 35 | * |
---|
| 36 | * ACCURACY: |
---|
| 37 | * |
---|
| 38 | * Tested at uniformly distributed random points (a,b,x) with a and b |
---|
| 39 | * in "domain" and x between 0 and 1. |
---|
| 40 | * Relative error |
---|
| 41 | * arithmetic domain # trials peak rms |
---|
| 42 | * IEEE 0,5 10000 6.9e-15 4.5e-16 |
---|
| 43 | * IEEE 0,85 250000 2.2e-13 1.7e-14 |
---|
| 44 | * IEEE 0,1000 30000 5.3e-12 6.3e-13 |
---|
| 45 | * IEEE 0,10000 250000 9.3e-11 7.1e-12 |
---|
| 46 | * IEEE 0,100000 10000 8.7e-10 4.8e-11 |
---|
| 47 | * Outputs smaller than the IEEE gradual underflow threshold |
---|
| 48 | * were excluded from these statistics. |
---|
| 49 | * |
---|
| 50 | * ERROR MESSAGES: |
---|
| 51 | * message condition value returned |
---|
| 52 | * incbet domain x<0, x>1 0.0 |
---|
| 53 | * incbet underflow 0.0 |
---|
| 54 | */ |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | /* |
---|
| 58 | Cephes Math Library, Release 2.8: June, 2000 |
---|
| 59 | Copyright 1984, 1995, 2000 by Stephen L. Moshier |
---|
| 60 | */ |
---|
| 61 | |
---|
| 62 | #include "mconf.h" |
---|
| 63 | |
---|
| 64 | #ifdef DEC |
---|
| 65 | #define MAXGAM 34.84425627277176174 |
---|
| 66 | #else |
---|
| 67 | #define MAXGAM 171.624376956302725 |
---|
| 68 | #endif |
---|
| 69 | |
---|
| 70 | extern double MACHEP, MINLOG, MAXLOG; |
---|
| 71 | #ifdef ANSIPROT |
---|
| 72 | extern double gamma ( double ); |
---|
| 73 | extern double lgam ( double ); |
---|
| 74 | extern double exp ( double ); |
---|
| 75 | extern double log ( double ); |
---|
| 76 | extern double pow ( double, double ); |
---|
| 77 | extern double fabs ( double ); |
---|
| 78 | static double incbcf(double, double, double); |
---|
| 79 | static double incbd(double, double, double); |
---|
| 80 | static double pseries(double, double, double); |
---|
| 81 | #else |
---|
| 82 | double gamma(), lgam(), exp(), log(), pow(), fabs(); |
---|
| 83 | static double incbcf(), incbd(), pseries(); |
---|
| 84 | #endif |
---|
| 85 | |
---|
| 86 | static double big = 4.503599627370496e15; |
---|
| 87 | static double biginv = 2.22044604925031308085e-16; |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | double incbet( aa, bb, xx ) |
---|
| 91 | double aa, bb, xx; |
---|
| 92 | { |
---|
| 93 | double a, b, t, x, xc, w, y; |
---|
| 94 | int flag; |
---|
| 95 | |
---|
| 96 | if( aa <= 0.0 || bb <= 0.0 ) |
---|
| 97 | goto domerr; |
---|
| 98 | |
---|
| 99 | if( (xx <= 0.0) || ( xx >= 1.0) ) |
---|
| 100 | { |
---|
| 101 | if( xx == 0.0 ) |
---|
| 102 | return(0.0); |
---|
| 103 | if( xx == 1.0 ) |
---|
| 104 | return( 1.0 ); |
---|
| 105 | domerr: |
---|
| 106 | mtherr( "incbet", DOMAIN ); |
---|
| 107 | return( 0.0 ); |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | flag = 0; |
---|
| 111 | if( (bb * xx) <= 1.0 && xx <= 0.95) |
---|
| 112 | { |
---|
| 113 | t = pseries(aa, bb, xx); |
---|
| 114 | goto done; |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | w = 1.0 - xx; |
---|
| 118 | |
---|
| 119 | /* Reverse a and b if x is greater than the mean. */ |
---|
| 120 | if( xx > (aa/(aa+bb)) ) |
---|
| 121 | { |
---|
| 122 | flag = 1; |
---|
| 123 | a = bb; |
---|
| 124 | b = aa; |
---|
| 125 | xc = xx; |
---|
| 126 | x = w; |
---|
| 127 | } |
---|
| 128 | else |
---|
| 129 | { |
---|
| 130 | a = aa; |
---|
| 131 | b = bb; |
---|
| 132 | xc = w; |
---|
| 133 | x = xx; |
---|
| 134 | } |
---|
| 135 | |
---|
| 136 | if( flag == 1 && (b * x) <= 1.0 && x <= 0.95) |
---|
| 137 | { |
---|
| 138 | t = pseries(a, b, x); |
---|
| 139 | goto done; |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | /* Choose expansion for better convergence. */ |
---|
| 143 | y = x * (a+b-2.0) - (a-1.0); |
---|
| 144 | if( y < 0.0 ) |
---|
| 145 | w = incbcf( a, b, x ); |
---|
| 146 | else |
---|
| 147 | w = incbd( a, b, x ) / xc; |
---|
| 148 | |
---|
| 149 | /* Multiply w by the factor |
---|
| 150 | a b _ _ _ |
---|
| 151 | x (1-x) | (a+b) / ( a | (a) | (b) ) . */ |
---|
| 152 | |
---|
| 153 | y = a * log(x); |
---|
| 154 | t = b * log(xc); |
---|
| 155 | if( (a+b) < MAXGAM && fabs(y) < MAXLOG && fabs(t) < MAXLOG ) |
---|
| 156 | { |
---|
| 157 | t = pow(xc,b); |
---|
| 158 | t *= pow(x,a); |
---|
| 159 | t /= a; |
---|
| 160 | t *= w; |
---|
| 161 | t *= gamma(a+b) / (gamma(a) * gamma(b)); |
---|
| 162 | goto done; |
---|
| 163 | } |
---|
| 164 | /* Resort to logarithms. */ |
---|
| 165 | y += t + lgam(a+b) - lgam(a) - lgam(b); |
---|
| 166 | y += log(w/a); |
---|
| 167 | if( y < MINLOG ) |
---|
| 168 | t = 0.0; |
---|
| 169 | else |
---|
| 170 | t = exp(y); |
---|
| 171 | |
---|
| 172 | done: |
---|
| 173 | |
---|
| 174 | if( flag == 1 ) |
---|
| 175 | { |
---|
| 176 | if( t <= MACHEP ) |
---|
| 177 | t = 1.0 - MACHEP; |
---|
| 178 | else |
---|
| 179 | t = 1.0 - t; |
---|
| 180 | } |
---|
| 181 | return( t ); |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | /* Continued fraction expansion #1 |
---|
| 185 | * for incomplete beta integral |
---|
| 186 | */ |
---|
| 187 | |
---|
| 188 | static double incbcf( a, b, x ) |
---|
| 189 | double a, b, x; |
---|
| 190 | { |
---|
| 191 | double xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
---|
| 192 | double k1, k2, k3, k4, k5, k6, k7, k8; |
---|
| 193 | double r, t, ans, thresh; |
---|
| 194 | int n; |
---|
| 195 | |
---|
| 196 | k1 = a; |
---|
| 197 | k2 = a + b; |
---|
| 198 | k3 = a; |
---|
| 199 | k4 = a + 1.0; |
---|
| 200 | k5 = 1.0; |
---|
| 201 | k6 = b - 1.0; |
---|
| 202 | k7 = k4; |
---|
| 203 | k8 = a + 2.0; |
---|
| 204 | |
---|
| 205 | pkm2 = 0.0; |
---|
| 206 | qkm2 = 1.0; |
---|
| 207 | pkm1 = 1.0; |
---|
| 208 | qkm1 = 1.0; |
---|
| 209 | ans = 1.0; |
---|
| 210 | r = 1.0; |
---|
| 211 | n = 0; |
---|
| 212 | thresh = 3.0 * MACHEP; |
---|
| 213 | do |
---|
| 214 | { |
---|
| 215 | |
---|
| 216 | xk = -( x * k1 * k2 )/( k3 * k4 ); |
---|
| 217 | pk = pkm1 + pkm2 * xk; |
---|
| 218 | qk = qkm1 + qkm2 * xk; |
---|
| 219 | pkm2 = pkm1; |
---|
| 220 | pkm1 = pk; |
---|
| 221 | qkm2 = qkm1; |
---|
| 222 | qkm1 = qk; |
---|
| 223 | |
---|
| 224 | xk = ( x * k5 * k6 )/( k7 * k8 ); |
---|
| 225 | pk = pkm1 + pkm2 * xk; |
---|
| 226 | qk = qkm1 + qkm2 * xk; |
---|
| 227 | pkm2 = pkm1; |
---|
| 228 | pkm1 = pk; |
---|
| 229 | qkm2 = qkm1; |
---|
| 230 | qkm1 = qk; |
---|
| 231 | |
---|
| 232 | if( qk != 0 ) |
---|
| 233 | r = pk/qk; |
---|
| 234 | if( r != 0 ) |
---|
| 235 | { |
---|
| 236 | t = fabs( (ans - r)/r ); |
---|
| 237 | ans = r; |
---|
| 238 | } |
---|
| 239 | else |
---|
| 240 | t = 1.0; |
---|
| 241 | |
---|
| 242 | if( t < thresh ) |
---|
| 243 | goto cdone; |
---|
| 244 | |
---|
| 245 | k1 += 1.0; |
---|
| 246 | k2 += 1.0; |
---|
| 247 | k3 += 2.0; |
---|
| 248 | k4 += 2.0; |
---|
| 249 | k5 += 1.0; |
---|
| 250 | k6 -= 1.0; |
---|
| 251 | k7 += 2.0; |
---|
| 252 | k8 += 2.0; |
---|
| 253 | |
---|
| 254 | if( (fabs(qk) + fabs(pk)) > big ) |
---|
| 255 | { |
---|
| 256 | pkm2 *= biginv; |
---|
| 257 | pkm1 *= biginv; |
---|
| 258 | qkm2 *= biginv; |
---|
| 259 | qkm1 *= biginv; |
---|
| 260 | } |
---|
| 261 | if( (fabs(qk) < biginv) || (fabs(pk) < biginv) ) |
---|
| 262 | { |
---|
| 263 | pkm2 *= big; |
---|
| 264 | pkm1 *= big; |
---|
| 265 | qkm2 *= big; |
---|
| 266 | qkm1 *= big; |
---|
| 267 | } |
---|
| 268 | } |
---|
| 269 | while( ++n < 300 ); |
---|
| 270 | |
---|
| 271 | cdone: |
---|
| 272 | return(ans); |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | /* Continued fraction expansion #2 |
---|
| 277 | * for incomplete beta integral |
---|
| 278 | */ |
---|
| 279 | |
---|
| 280 | static double incbd( a, b, x ) |
---|
| 281 | double a, b, x; |
---|
| 282 | { |
---|
| 283 | double xk, pk, pkm1, pkm2, qk, qkm1, qkm2; |
---|
| 284 | double k1, k2, k3, k4, k5, k6, k7, k8; |
---|
| 285 | double r, t, ans, z, thresh; |
---|
| 286 | int n; |
---|
| 287 | |
---|
| 288 | k1 = a; |
---|
| 289 | k2 = b - 1.0; |
---|
| 290 | k3 = a; |
---|
| 291 | k4 = a + 1.0; |
---|
| 292 | k5 = 1.0; |
---|
| 293 | k6 = a + b; |
---|
| 294 | k7 = a + 1.0;; |
---|
| 295 | k8 = a + 2.0; |
---|
| 296 | |
---|
| 297 | pkm2 = 0.0; |
---|
| 298 | qkm2 = 1.0; |
---|
| 299 | pkm1 = 1.0; |
---|
| 300 | qkm1 = 1.0; |
---|
| 301 | z = x / (1.0-x); |
---|
| 302 | ans = 1.0; |
---|
| 303 | r = 1.0; |
---|
| 304 | n = 0; |
---|
| 305 | thresh = 3.0 * MACHEP; |
---|
| 306 | do |
---|
| 307 | { |
---|
| 308 | |
---|
| 309 | xk = -( z * k1 * k2 )/( k3 * k4 ); |
---|
| 310 | pk = pkm1 + pkm2 * xk; |
---|
| 311 | qk = qkm1 + qkm2 * xk; |
---|
| 312 | pkm2 = pkm1; |
---|
| 313 | pkm1 = pk; |
---|
| 314 | qkm2 = qkm1; |
---|
| 315 | qkm1 = qk; |
---|
| 316 | |
---|
| 317 | xk = ( z * k5 * k6 )/( k7 * k8 ); |
---|
| 318 | pk = pkm1 + pkm2 * xk; |
---|
| 319 | qk = qkm1 + qkm2 * xk; |
---|
| 320 | pkm2 = pkm1; |
---|
| 321 | pkm1 = pk; |
---|
| 322 | qkm2 = qkm1; |
---|
| 323 | qkm1 = qk; |
---|
| 324 | |
---|
| 325 | if( qk != 0 ) |
---|
| 326 | r = pk/qk; |
---|
| 327 | if( r != 0 ) |
---|
| 328 | { |
---|
| 329 | t = fabs( (ans - r)/r ); |
---|
| 330 | ans = r; |
---|
| 331 | } |
---|
| 332 | else |
---|
| 333 | t = 1.0; |
---|
| 334 | |
---|
| 335 | if( t < thresh ) |
---|
| 336 | goto cdone; |
---|
| 337 | |
---|
| 338 | k1 += 1.0; |
---|
| 339 | k2 -= 1.0; |
---|
| 340 | k3 += 2.0; |
---|
| 341 | k4 += 2.0; |
---|
| 342 | k5 += 1.0; |
---|
| 343 | k6 += 1.0; |
---|
| 344 | k7 += 2.0; |
---|
| 345 | k8 += 2.0; |
---|
| 346 | |
---|
| 347 | if( (fabs(qk) + fabs(pk)) > big ) |
---|
| 348 | { |
---|
| 349 | pkm2 *= biginv; |
---|
| 350 | pkm1 *= biginv; |
---|
| 351 | qkm2 *= biginv; |
---|
| 352 | qkm1 *= biginv; |
---|
| 353 | } |
---|
| 354 | if( (fabs(qk) < biginv) || (fabs(pk) < biginv) ) |
---|
| 355 | { |
---|
| 356 | pkm2 *= big; |
---|
| 357 | pkm1 *= big; |
---|
| 358 | qkm2 *= big; |
---|
| 359 | qkm1 *= big; |
---|
| 360 | } |
---|
| 361 | } |
---|
| 362 | while( ++n < 300 ); |
---|
| 363 | cdone: |
---|
| 364 | return(ans); |
---|
| 365 | } |
---|
| 366 | |
---|
| 367 | /* Power series for incomplete beta integral. |
---|
| 368 | Use when b*x is small and x not too close to 1. */ |
---|
| 369 | |
---|
| 370 | static double pseries( a, b, x ) |
---|
| 371 | double a, b, x; |
---|
| 372 | { |
---|
| 373 | double s, t, u, v, n, t1, z, ai; |
---|
| 374 | |
---|
| 375 | ai = 1.0 / a; |
---|
| 376 | u = (1.0 - b) * x; |
---|
| 377 | v = u / (a + 1.0); |
---|
| 378 | t1 = v; |
---|
| 379 | t = u; |
---|
| 380 | n = 2.0; |
---|
| 381 | s = 0.0; |
---|
| 382 | z = MACHEP * ai; |
---|
| 383 | while( fabs(v) > z ) |
---|
| 384 | { |
---|
| 385 | u = (n - b) * x / n; |
---|
| 386 | t *= u; |
---|
| 387 | v = t / (a + n); |
---|
| 388 | s += v; |
---|
| 389 | n += 1.0; |
---|
| 390 | } |
---|
| 391 | s += t1; |
---|
| 392 | s += ai; |
---|
| 393 | |
---|
| 394 | u = a * log(x); |
---|
| 395 | if( (a+b) < MAXGAM && fabs(u) < MAXLOG ) |
---|
| 396 | { |
---|
| 397 | t = gamma(a+b)/(gamma(a)*gamma(b)); |
---|
| 398 | s = s * t * pow(x,a); |
---|
| 399 | } |
---|
| 400 | else |
---|
| 401 | { |
---|
| 402 | t = lgam(a+b) - lgam(a) - lgam(b) + u + log(s); |
---|
| 403 | if( t < MINLOG ) |
---|
| 404 | s = 0.0; |
---|
| 405 | else |
---|
| 406 | s = exp(t); |
---|
| 407 | } |
---|
| 408 | return(s); |
---|
| 409 | } |
---|