[431c9e0] | 1 | /* igami() |
---|
| 2 | * |
---|
| 3 | * Inverse of complemented imcomplete gamma integral |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | * |
---|
| 7 | * SYNOPSIS: |
---|
| 8 | * |
---|
| 9 | * double a, x, p, igami(); |
---|
| 10 | * |
---|
| 11 | * x = igami( a, p ); |
---|
| 12 | * |
---|
| 13 | * DESCRIPTION: |
---|
| 14 | * |
---|
| 15 | * Given p, the function finds x such that |
---|
| 16 | * |
---|
| 17 | * igamc( a, x ) = p. |
---|
| 18 | * |
---|
| 19 | * Starting with the approximate value |
---|
| 20 | * |
---|
| 21 | * 3 |
---|
| 22 | * x = a t |
---|
| 23 | * |
---|
| 24 | * where |
---|
| 25 | * |
---|
| 26 | * t = 1 - d - ndtri(p) sqrt(d) |
---|
| 27 | * |
---|
| 28 | * and |
---|
| 29 | * |
---|
| 30 | * d = 1/9a, |
---|
| 31 | * |
---|
| 32 | * the routine performs up to 10 Newton iterations to find the |
---|
| 33 | * root of igamc(a,x) - p = 0. |
---|
| 34 | * |
---|
| 35 | * ACCURACY: |
---|
| 36 | * |
---|
| 37 | * Tested at random a, p in the intervals indicated. |
---|
| 38 | * |
---|
| 39 | * a p Relative error: |
---|
| 40 | * arithmetic domain domain # trials peak rms |
---|
| 41 | * IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15 |
---|
| 42 | * IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15 |
---|
| 43 | * IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14 |
---|
| 44 | */ |
---|
| 45 | |
---|
| 46 | /* |
---|
| 47 | Cephes Math Library Release 2.8: June, 2000 |
---|
| 48 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
| 49 | */ |
---|
| 50 | |
---|
| 51 | #include "mconf.h" |
---|
| 52 | |
---|
| 53 | extern double MACHEP, MAXNUM, MAXLOG, MINLOG; |
---|
| 54 | #ifdef ANSIPROT |
---|
| 55 | extern double igamc ( double, double ); |
---|
| 56 | extern double ndtri ( double ); |
---|
| 57 | extern double exp ( double ); |
---|
| 58 | extern double fabs ( double ); |
---|
| 59 | extern double log ( double ); |
---|
| 60 | extern double sqrt ( double ); |
---|
| 61 | extern double lgam ( double ); |
---|
| 62 | #else |
---|
| 63 | double igamc(), ndtri(), exp(), fabs(), log(), sqrt(), lgam(); |
---|
| 64 | #endif |
---|
| 65 | |
---|
| 66 | double igami( a, y0 ) |
---|
| 67 | double a, y0; |
---|
| 68 | { |
---|
| 69 | double x0, x1, x, yl, yh, y, d, lgm, dithresh; |
---|
| 70 | int i, dir; |
---|
| 71 | |
---|
| 72 | /* bound the solution */ |
---|
| 73 | x0 = MAXNUM; |
---|
| 74 | yl = 0; |
---|
| 75 | x1 = 0; |
---|
| 76 | yh = 1.0; |
---|
| 77 | dithresh = 5.0 * MACHEP; |
---|
| 78 | |
---|
| 79 | /* approximation to inverse function */ |
---|
| 80 | d = 1.0/(9.0*a); |
---|
| 81 | y = ( 1.0 - d - ndtri(y0) * sqrt(d) ); |
---|
| 82 | x = a * y * y * y; |
---|
| 83 | |
---|
| 84 | lgm = lgam(a); |
---|
| 85 | |
---|
| 86 | for( i=0; i<10; i++ ) |
---|
| 87 | { |
---|
| 88 | if( x > x0 || x < x1 ) |
---|
| 89 | goto ihalve; |
---|
| 90 | y = igamc(a,x); |
---|
| 91 | if( y < yl || y > yh ) |
---|
| 92 | goto ihalve; |
---|
| 93 | if( y < y0 ) |
---|
| 94 | { |
---|
| 95 | x0 = x; |
---|
| 96 | yl = y; |
---|
| 97 | } |
---|
| 98 | else |
---|
| 99 | { |
---|
| 100 | x1 = x; |
---|
| 101 | yh = y; |
---|
| 102 | } |
---|
| 103 | /* compute the derivative of the function at this point */ |
---|
| 104 | d = (a - 1.0) * log(x) - x - lgm; |
---|
| 105 | if( d < -MAXLOG ) |
---|
| 106 | goto ihalve; |
---|
| 107 | d = -exp(d); |
---|
| 108 | /* compute the step to the next approximation of x */ |
---|
| 109 | d = (y - y0)/d; |
---|
| 110 | if( fabs(d/x) < MACHEP ) |
---|
| 111 | goto done; |
---|
| 112 | x = x - d; |
---|
| 113 | } |
---|
| 114 | |
---|
| 115 | /* Resort to interval halving if Newton iteration did not converge. */ |
---|
| 116 | ihalve: |
---|
| 117 | |
---|
| 118 | d = 0.0625; |
---|
| 119 | if( x0 == MAXNUM ) |
---|
| 120 | { |
---|
| 121 | if( x <= 0.0 ) |
---|
| 122 | x = 1.0; |
---|
| 123 | while( x0 == MAXNUM ) |
---|
| 124 | { |
---|
| 125 | x = (1.0 + d) * x; |
---|
| 126 | y = igamc( a, x ); |
---|
| 127 | if( y < y0 ) |
---|
| 128 | { |
---|
| 129 | x0 = x; |
---|
| 130 | yl = y; |
---|
| 131 | break; |
---|
| 132 | } |
---|
| 133 | d = d + d; |
---|
| 134 | } |
---|
| 135 | } |
---|
| 136 | d = 0.5; |
---|
| 137 | dir = 0; |
---|
| 138 | |
---|
| 139 | for( i=0; i<400; i++ ) |
---|
| 140 | { |
---|
| 141 | x = x1 + d * (x0 - x1); |
---|
| 142 | y = igamc( a, x ); |
---|
| 143 | lgm = (x0 - x1)/(x1 + x0); |
---|
| 144 | if( fabs(lgm) < dithresh ) |
---|
| 145 | break; |
---|
| 146 | lgm = (y - y0)/y0; |
---|
| 147 | if( fabs(lgm) < dithresh ) |
---|
| 148 | break; |
---|
| 149 | if( x <= 0.0 ) |
---|
| 150 | break; |
---|
| 151 | if( y >= y0 ) |
---|
| 152 | { |
---|
| 153 | x1 = x; |
---|
| 154 | yh = y; |
---|
| 155 | if( dir < 0 ) |
---|
| 156 | { |
---|
| 157 | dir = 0; |
---|
| 158 | d = 0.5; |
---|
| 159 | } |
---|
| 160 | else if( dir > 1 ) |
---|
| 161 | d = 0.5 * d + 0.5; |
---|
| 162 | else |
---|
| 163 | d = (y0 - yl)/(yh - yl); |
---|
| 164 | dir += 1; |
---|
| 165 | } |
---|
| 166 | else |
---|
| 167 | { |
---|
| 168 | x0 = x; |
---|
| 169 | yl = y; |
---|
| 170 | if( dir > 0 ) |
---|
| 171 | { |
---|
| 172 | dir = 0; |
---|
| 173 | d = 0.5; |
---|
| 174 | } |
---|
| 175 | else if( dir < -1 ) |
---|
| 176 | d = 0.5 * d; |
---|
| 177 | else |
---|
| 178 | d = (y0 - yl)/(yh - yl); |
---|
| 179 | dir -= 1; |
---|
| 180 | } |
---|
| 181 | } |
---|
| 182 | if( x == 0.0 ) |
---|
| 183 | mtherr( "igami", UNDERFLOW ); |
---|
| 184 | |
---|
| 185 | done: |
---|
| 186 | return( x ); |
---|
| 187 | } |
---|