[431c9e0] | 1 | /* fdtr.c |
---|
| 2 | * |
---|
| 3 | * F distribution |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | * |
---|
| 7 | * SYNOPSIS: |
---|
| 8 | * |
---|
| 9 | * int df1, df2; |
---|
| 10 | * double x, y, fdtr(); |
---|
| 11 | * |
---|
| 12 | * y = fdtr( df1, df2, x ); |
---|
| 13 | * |
---|
| 14 | * DESCRIPTION: |
---|
| 15 | * |
---|
| 16 | * Returns the area from zero to x under the F density |
---|
| 17 | * function (also known as Snedcor's density or the |
---|
| 18 | * variance ratio density). This is the density |
---|
| 19 | * of x = (u1/df1)/(u2/df2), where u1 and u2 are random |
---|
| 20 | * variables having Chi square distributions with df1 |
---|
| 21 | * and df2 degrees of freedom, respectively. |
---|
| 22 | * |
---|
| 23 | * The incomplete beta integral is used, according to the |
---|
| 24 | * formula |
---|
| 25 | * |
---|
| 26 | * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). |
---|
| 27 | * |
---|
| 28 | * |
---|
| 29 | * The arguments a and b are greater than zero, and x is |
---|
| 30 | * nonnegative. |
---|
| 31 | * |
---|
| 32 | * ACCURACY: |
---|
| 33 | * |
---|
| 34 | * Tested at random points (a,b,x). |
---|
| 35 | * |
---|
| 36 | * x a,b Relative error: |
---|
| 37 | * arithmetic domain domain # trials peak rms |
---|
| 38 | * IEEE 0,1 0,100 100000 9.8e-15 1.7e-15 |
---|
| 39 | * IEEE 1,5 0,100 100000 6.5e-15 3.5e-16 |
---|
| 40 | * IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12 |
---|
| 41 | * IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13 |
---|
| 42 | * See also incbet.c. |
---|
| 43 | * |
---|
| 44 | * |
---|
| 45 | * ERROR MESSAGES: |
---|
| 46 | * |
---|
| 47 | * message condition value returned |
---|
| 48 | * fdtr domain a<0, b<0, x<0 0.0 |
---|
| 49 | * |
---|
| 50 | */ |
---|
| 51 | /* fdtrc() |
---|
| 52 | * |
---|
| 53 | * Complemented F distribution |
---|
| 54 | * |
---|
| 55 | * |
---|
| 56 | * |
---|
| 57 | * SYNOPSIS: |
---|
| 58 | * |
---|
| 59 | * int df1, df2; |
---|
| 60 | * double x, y, fdtrc(); |
---|
| 61 | * |
---|
| 62 | * y = fdtrc( df1, df2, x ); |
---|
| 63 | * |
---|
| 64 | * DESCRIPTION: |
---|
| 65 | * |
---|
| 66 | * Returns the area from x to infinity under the F density |
---|
| 67 | * function (also known as Snedcor's density or the |
---|
| 68 | * variance ratio density). |
---|
| 69 | * |
---|
| 70 | * |
---|
| 71 | * inf. |
---|
| 72 | * - |
---|
| 73 | * 1 | | a-1 b-1 |
---|
| 74 | * 1-P(x) = ------ | t (1-t) dt |
---|
| 75 | * B(a,b) | | |
---|
| 76 | * - |
---|
| 77 | * x |
---|
| 78 | * |
---|
| 79 | * |
---|
| 80 | * The incomplete beta integral is used, according to the |
---|
| 81 | * formula |
---|
| 82 | * |
---|
| 83 | * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). |
---|
| 84 | * |
---|
| 85 | * |
---|
| 86 | * ACCURACY: |
---|
| 87 | * |
---|
| 88 | * Tested at random points (a,b,x) in the indicated intervals. |
---|
| 89 | * x a,b Relative error: |
---|
| 90 | * arithmetic domain domain # trials peak rms |
---|
| 91 | * IEEE 0,1 1,100 100000 3.7e-14 5.9e-16 |
---|
| 92 | * IEEE 1,5 1,100 100000 8.0e-15 1.6e-15 |
---|
| 93 | * IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13 |
---|
| 94 | * IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12 |
---|
| 95 | * See also incbet.c. |
---|
| 96 | * |
---|
| 97 | * ERROR MESSAGES: |
---|
| 98 | * |
---|
| 99 | * message condition value returned |
---|
| 100 | * fdtrc domain a<0, b<0, x<0 0.0 |
---|
| 101 | * |
---|
| 102 | */ |
---|
| 103 | /* fdtri() |
---|
| 104 | * |
---|
| 105 | * Inverse of complemented F distribution |
---|
| 106 | * |
---|
| 107 | * |
---|
| 108 | * |
---|
| 109 | * SYNOPSIS: |
---|
| 110 | * |
---|
| 111 | * int df1, df2; |
---|
| 112 | * double x, p, fdtri(); |
---|
| 113 | * |
---|
| 114 | * x = fdtri( df1, df2, p ); |
---|
| 115 | * |
---|
| 116 | * DESCRIPTION: |
---|
| 117 | * |
---|
| 118 | * Finds the F density argument x such that the integral |
---|
| 119 | * from x to infinity of the F density is equal to the |
---|
| 120 | * given probability p. |
---|
| 121 | * |
---|
| 122 | * This is accomplished using the inverse beta integral |
---|
| 123 | * function and the relations |
---|
| 124 | * |
---|
| 125 | * z = incbi( df2/2, df1/2, p ) |
---|
| 126 | * x = df2 (1-z) / (df1 z). |
---|
| 127 | * |
---|
| 128 | * Note: the following relations hold for the inverse of |
---|
| 129 | * the uncomplemented F distribution: |
---|
| 130 | * |
---|
| 131 | * z = incbi( df1/2, df2/2, p ) |
---|
| 132 | * x = df2 z / (df1 (1-z)). |
---|
| 133 | * |
---|
| 134 | * ACCURACY: |
---|
| 135 | * |
---|
| 136 | * Tested at random points (a,b,p). |
---|
| 137 | * |
---|
| 138 | * a,b Relative error: |
---|
| 139 | * arithmetic domain # trials peak rms |
---|
| 140 | * For p between .001 and 1: |
---|
| 141 | * IEEE 1,100 100000 8.3e-15 4.7e-16 |
---|
| 142 | * IEEE 1,10000 100000 2.1e-11 1.4e-13 |
---|
| 143 | * For p between 10^-6 and 10^-3: |
---|
| 144 | * IEEE 1,100 50000 1.3e-12 8.4e-15 |
---|
| 145 | * IEEE 1,10000 50000 3.0e-12 4.8e-14 |
---|
| 146 | * See also fdtrc.c. |
---|
| 147 | * |
---|
| 148 | * ERROR MESSAGES: |
---|
| 149 | * |
---|
| 150 | * message condition value returned |
---|
| 151 | * fdtri domain p <= 0 or p > 1 0.0 |
---|
| 152 | * v < 1 |
---|
| 153 | * |
---|
| 154 | */ |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | /* |
---|
| 158 | Cephes Math Library Release 2.8: June, 2000 |
---|
| 159 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
| 160 | */ |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | #include "mconf.h" |
---|
| 164 | #ifdef ANSIPROT |
---|
| 165 | extern double incbet ( double, double, double ); |
---|
| 166 | extern double incbi ( double, double, double ); |
---|
| 167 | #else |
---|
| 168 | double incbet(), incbi(); |
---|
| 169 | #endif |
---|
| 170 | |
---|
| 171 | double fdtrc( ia, ib, x ) |
---|
| 172 | int ia, ib; |
---|
| 173 | double x; |
---|
| 174 | { |
---|
| 175 | double a, b, w; |
---|
| 176 | |
---|
| 177 | if( (ia < 1) || (ib < 1) || (x < 0.0) ) |
---|
| 178 | { |
---|
| 179 | mtherr( "fdtrc", DOMAIN ); |
---|
| 180 | return( 0.0 ); |
---|
| 181 | } |
---|
| 182 | a = ia; |
---|
| 183 | b = ib; |
---|
| 184 | w = b / (b + a * x); |
---|
| 185 | return( incbet( 0.5*b, 0.5*a, w ) ); |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | double fdtr( ia, ib, x ) |
---|
| 191 | int ia, ib; |
---|
| 192 | double x; |
---|
| 193 | { |
---|
| 194 | double a, b, w; |
---|
| 195 | |
---|
| 196 | if( (ia < 1) || (ib < 1) || (x < 0.0) ) |
---|
| 197 | { |
---|
| 198 | mtherr( "fdtr", DOMAIN ); |
---|
| 199 | return( 0.0 ); |
---|
| 200 | } |
---|
| 201 | a = ia; |
---|
| 202 | b = ib; |
---|
| 203 | w = a * x; |
---|
| 204 | w = w / (b + w); |
---|
| 205 | return( incbet(0.5*a, 0.5*b, w) ); |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | |
---|
| 209 | double fdtri( ia, ib, y ) |
---|
| 210 | int ia, ib; |
---|
| 211 | double y; |
---|
| 212 | { |
---|
| 213 | double a, b, w, x; |
---|
| 214 | |
---|
| 215 | if( (ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0) ) |
---|
| 216 | { |
---|
| 217 | mtherr( "fdtri", DOMAIN ); |
---|
| 218 | return( 0.0 ); |
---|
| 219 | } |
---|
| 220 | a = ia; |
---|
| 221 | b = ib; |
---|
| 222 | /* Compute probability for x = 0.5. */ |
---|
| 223 | w = incbet( 0.5*b, 0.5*a, 0.5 ); |
---|
| 224 | /* If that is greater than y, then the solution w < .5. |
---|
| 225 | Otherwise, solve at 1-y to remove cancellation in (b - b*w). */ |
---|
| 226 | if( w > y || y < 0.001) |
---|
| 227 | { |
---|
| 228 | w = incbi( 0.5*b, 0.5*a, y ); |
---|
| 229 | x = (b - b*w)/(a*w); |
---|
| 230 | } |
---|
| 231 | else |
---|
| 232 | { |
---|
| 233 | w = incbi( 0.5*a, 0.5*b, 1.0-y ); |
---|
| 234 | x = b*w/(a*(1.0-w)); |
---|
| 235 | } |
---|
| 236 | return(x); |
---|
| 237 | } |
---|