[431c9e0] | 1 | /* bdtr.c |
---|
| 2 | * |
---|
| 3 | * Binomial distribution |
---|
| 4 | * |
---|
| 5 | * |
---|
| 6 | * |
---|
| 7 | * SYNOPSIS: |
---|
| 8 | * |
---|
| 9 | * int k, n; |
---|
| 10 | * double p, y, bdtr(); |
---|
| 11 | * |
---|
| 12 | * y = bdtr( k, n, p ); |
---|
| 13 | * |
---|
| 14 | * DESCRIPTION: |
---|
| 15 | * |
---|
| 16 | * Returns the sum of the terms 0 through k of the Binomial |
---|
| 17 | * probability density: |
---|
| 18 | * |
---|
| 19 | * k |
---|
| 20 | * -- ( n ) j n-j |
---|
| 21 | * > ( ) p (1-p) |
---|
| 22 | * -- ( j ) |
---|
| 23 | * j=0 |
---|
| 24 | * |
---|
| 25 | * The terms are not summed directly; instead the incomplete |
---|
| 26 | * beta integral is employed, according to the formula |
---|
| 27 | * |
---|
| 28 | * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). |
---|
| 29 | * |
---|
| 30 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
| 31 | * |
---|
| 32 | * ACCURACY: |
---|
| 33 | * |
---|
| 34 | * Tested at random points (a,b,p), with p between 0 and 1. |
---|
| 35 | * |
---|
| 36 | * a,b Relative error: |
---|
| 37 | * arithmetic domain # trials peak rms |
---|
| 38 | * For p between 0.001 and 1: |
---|
| 39 | * IEEE 0,100 100000 4.3e-15 2.6e-16 |
---|
| 40 | * See also incbet.c. |
---|
| 41 | * |
---|
| 42 | * ERROR MESSAGES: |
---|
| 43 | * |
---|
| 44 | * message condition value returned |
---|
| 45 | * bdtr domain k < 0 0.0 |
---|
| 46 | * n < k |
---|
| 47 | * x < 0, x > 1 |
---|
| 48 | */ |
---|
| 49 | /* bdtrc() |
---|
| 50 | * |
---|
| 51 | * Complemented binomial distribution |
---|
| 52 | * |
---|
| 53 | * |
---|
| 54 | * |
---|
| 55 | * SYNOPSIS: |
---|
| 56 | * |
---|
| 57 | * int k, n; |
---|
| 58 | * double p, y, bdtrc(); |
---|
| 59 | * |
---|
| 60 | * y = bdtrc( k, n, p ); |
---|
| 61 | * |
---|
| 62 | * DESCRIPTION: |
---|
| 63 | * |
---|
| 64 | * Returns the sum of the terms k+1 through n of the Binomial |
---|
| 65 | * probability density: |
---|
| 66 | * |
---|
| 67 | * n |
---|
| 68 | * -- ( n ) j n-j |
---|
| 69 | * > ( ) p (1-p) |
---|
| 70 | * -- ( j ) |
---|
| 71 | * j=k+1 |
---|
| 72 | * |
---|
| 73 | * The terms are not summed directly; instead the incomplete |
---|
| 74 | * beta integral is employed, according to the formula |
---|
| 75 | * |
---|
| 76 | * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). |
---|
| 77 | * |
---|
| 78 | * The arguments must be positive, with p ranging from 0 to 1. |
---|
| 79 | * |
---|
| 80 | * ACCURACY: |
---|
| 81 | * |
---|
| 82 | * Tested at random points (a,b,p). |
---|
| 83 | * |
---|
| 84 | * a,b Relative error: |
---|
| 85 | * arithmetic domain # trials peak rms |
---|
| 86 | * For p between 0.001 and 1: |
---|
| 87 | * IEEE 0,100 100000 6.7e-15 8.2e-16 |
---|
| 88 | * For p between 0 and .001: |
---|
| 89 | * IEEE 0,100 100000 1.5e-13 2.7e-15 |
---|
| 90 | * |
---|
| 91 | * ERROR MESSAGES: |
---|
| 92 | * |
---|
| 93 | * message condition value returned |
---|
| 94 | * bdtrc domain x<0, x>1, n<k 0.0 |
---|
| 95 | */ |
---|
| 96 | /* bdtri() |
---|
| 97 | * |
---|
| 98 | * Inverse binomial distribution |
---|
| 99 | * |
---|
| 100 | * |
---|
| 101 | * |
---|
| 102 | * SYNOPSIS: |
---|
| 103 | * |
---|
| 104 | * int k, n; |
---|
| 105 | * double p, y, bdtri(); |
---|
| 106 | * |
---|
| 107 | * p = bdtr( k, n, y ); |
---|
| 108 | * |
---|
| 109 | * DESCRIPTION: |
---|
| 110 | * |
---|
| 111 | * Finds the event probability p such that the sum of the |
---|
| 112 | * terms 0 through k of the Binomial probability density |
---|
| 113 | * is equal to the given cumulative probability y. |
---|
| 114 | * |
---|
| 115 | * This is accomplished using the inverse beta integral |
---|
| 116 | * function and the relation |
---|
| 117 | * |
---|
| 118 | * 1 - p = incbi( n-k, k+1, y ). |
---|
| 119 | * |
---|
| 120 | * ACCURACY: |
---|
| 121 | * |
---|
| 122 | * Tested at random points (a,b,p). |
---|
| 123 | * |
---|
| 124 | * a,b Relative error: |
---|
| 125 | * arithmetic domain # trials peak rms |
---|
| 126 | * For p between 0.001 and 1: |
---|
| 127 | * IEEE 0,100 100000 2.3e-14 6.4e-16 |
---|
| 128 | * IEEE 0,10000 100000 6.6e-12 1.2e-13 |
---|
| 129 | * For p between 10^-6 and 0.001: |
---|
| 130 | * IEEE 0,100 100000 2.0e-12 1.3e-14 |
---|
| 131 | * IEEE 0,10000 100000 1.5e-12 3.2e-14 |
---|
| 132 | * See also incbi.c. |
---|
| 133 | * |
---|
| 134 | * ERROR MESSAGES: |
---|
| 135 | * |
---|
| 136 | * message condition value returned |
---|
| 137 | * bdtri domain k < 0, n <= k 0.0 |
---|
| 138 | * x < 0, x > 1 |
---|
| 139 | */ |
---|
| 140 | |
---|
| 141 | /* bdtr() */ |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | /* |
---|
| 145 | Cephes Math Library Release 2.8: June, 2000 |
---|
| 146 | Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier |
---|
| 147 | */ |
---|
| 148 | |
---|
| 149 | #include "mconf.h" |
---|
| 150 | #ifdef ANSIPROT |
---|
| 151 | extern double incbet ( double, double, double ); |
---|
| 152 | extern double incbi ( double, double, double ); |
---|
| 153 | extern double pow ( double, double ); |
---|
| 154 | extern double log1p ( double ); |
---|
| 155 | extern double expm1 ( double ); |
---|
| 156 | #else |
---|
| 157 | double incbet(), incbi(), pow(), log1p(), expm1(); |
---|
| 158 | #endif |
---|
| 159 | |
---|
| 160 | double bdtrc( k, n, p ) |
---|
| 161 | int k, n; |
---|
| 162 | double p; |
---|
| 163 | { |
---|
| 164 | double dk, dn; |
---|
| 165 | |
---|
| 166 | if( (p < 0.0) || (p > 1.0) ) |
---|
| 167 | goto domerr; |
---|
| 168 | if( k < 0 ) |
---|
| 169 | return( 1.0 ); |
---|
| 170 | |
---|
| 171 | if( n < k ) |
---|
| 172 | { |
---|
| 173 | domerr: |
---|
| 174 | mtherr( "bdtrc", DOMAIN ); |
---|
| 175 | return( 0.0 ); |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | if( k == n ) |
---|
| 179 | return( 0.0 ); |
---|
| 180 | dn = n - k; |
---|
| 181 | if( k == 0 ) |
---|
| 182 | { |
---|
| 183 | if( p < .01 ) |
---|
| 184 | dk = -expm1( dn * log1p(-p) ); |
---|
| 185 | else |
---|
| 186 | dk = 1.0 - pow( 1.0-p, dn ); |
---|
| 187 | } |
---|
| 188 | else |
---|
| 189 | { |
---|
| 190 | dk = k + 1; |
---|
| 191 | dk = incbet( dk, dn, p ); |
---|
| 192 | } |
---|
| 193 | return( dk ); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | double bdtr( k, n, p ) |
---|
| 199 | int k, n; |
---|
| 200 | double p; |
---|
| 201 | { |
---|
| 202 | double dk, dn; |
---|
| 203 | |
---|
| 204 | if( (p < 0.0) || (p > 1.0) ) |
---|
| 205 | goto domerr; |
---|
| 206 | if( (k < 0) || (n < k) ) |
---|
| 207 | { |
---|
| 208 | domerr: |
---|
| 209 | mtherr( "bdtr", DOMAIN ); |
---|
| 210 | return( 0.0 ); |
---|
| 211 | } |
---|
| 212 | |
---|
| 213 | if( k == n ) |
---|
| 214 | return( 1.0 ); |
---|
| 215 | |
---|
| 216 | dn = n - k; |
---|
| 217 | if( k == 0 ) |
---|
| 218 | { |
---|
| 219 | dk = pow( 1.0-p, dn ); |
---|
| 220 | } |
---|
| 221 | else |
---|
| 222 | { |
---|
| 223 | dk = k + 1; |
---|
| 224 | dk = incbet( dn, dk, 1.0 - p ); |
---|
| 225 | } |
---|
| 226 | return( dk ); |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | double bdtri( k, n, y ) |
---|
| 231 | int k, n; |
---|
| 232 | double y; |
---|
| 233 | { |
---|
| 234 | double dk, dn, p; |
---|
| 235 | |
---|
| 236 | if( (y < 0.0) || (y > 1.0) ) |
---|
| 237 | goto domerr; |
---|
| 238 | if( (k < 0) || (n <= k) ) |
---|
| 239 | { |
---|
| 240 | domerr: |
---|
| 241 | mtherr( "bdtri", DOMAIN ); |
---|
| 242 | return( 0.0 ); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | dn = n - k; |
---|
| 246 | if( k == 0 ) |
---|
| 247 | { |
---|
| 248 | if( y > 0.8 ) |
---|
| 249 | p = -expm1( log1p(y-1.0) / dn ); |
---|
| 250 | else |
---|
| 251 | p = 1.0 - pow( y, 1.0/dn ); |
---|
| 252 | } |
---|
| 253 | else |
---|
| 254 | { |
---|
| 255 | dk = k + 1; |
---|
| 256 | p = incbet( dn, dk, 0.5 ); |
---|
| 257 | if( p > 0.5 ) |
---|
| 258 | p = incbi( dk, dn, 1.0-y ); |
---|
| 259 | else |
---|
| 260 | p = 1.0 - incbi( dn, dk, y ); |
---|
| 261 | } |
---|
| 262 | return( p ); |
---|
| 263 | } |
---|