1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | #include <stdlib.h> |
---|
26 | using namespace std; |
---|
27 | #include "triaxial_ellipsoid.h" |
---|
28 | |
---|
29 | extern "C" { |
---|
30 | #include "libCylinder.h" |
---|
31 | #include "libStructureFactor.h" |
---|
32 | } |
---|
33 | |
---|
34 | typedef struct { |
---|
35 | double scale; |
---|
36 | double semi_axisA; |
---|
37 | double semi_axisB; |
---|
38 | double semi_axisC; |
---|
39 | double sldEll; |
---|
40 | double sldSolv; |
---|
41 | double background; |
---|
42 | double axis_theta; |
---|
43 | double axis_phi; |
---|
44 | double axis_psi; |
---|
45 | |
---|
46 | } TriaxialEllipsoidParameters; |
---|
47 | |
---|
48 | static double triaxial_ellipsoid_kernel(TriaxialEllipsoidParameters *pars, double q, double alpha, double nu) { |
---|
49 | double t,a,b,c; |
---|
50 | double kernel; |
---|
51 | |
---|
52 | a = pars->semi_axisA ; |
---|
53 | b = pars->semi_axisB ; |
---|
54 | c = pars->semi_axisC ; |
---|
55 | |
---|
56 | t = q * sqrt(a*a*cos(nu)*cos(nu)+b*b*sin(nu)*sin(nu)*sin(alpha)*sin(alpha)+c*c*cos(alpha)*cos(alpha)); |
---|
57 | if (t==0.0){ |
---|
58 | kernel = 1.0; |
---|
59 | }else{ |
---|
60 | kernel = 3.0*(sin(t)-t*cos(t))/(t*t*t); |
---|
61 | } |
---|
62 | return kernel*kernel; |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | /** |
---|
67 | * Function to evaluate 2D scattering function |
---|
68 | * @param pars: parameters of the triaxial ellipsoid |
---|
69 | * @param q: q-value |
---|
70 | * @param q_x: q_x / q |
---|
71 | * @param q_y: q_y / q |
---|
72 | * @return: function value |
---|
73 | */ |
---|
74 | static double triaxial_ellipsoid_analytical_2D_scaled(TriaxialEllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
75 | double cyl_x, cyl_y, cyl_z, ell_x, ell_y; |
---|
76 | double q_z; |
---|
77 | double cos_nu,nu; |
---|
78 | double alpha, vol, cos_val; |
---|
79 | double answer; |
---|
80 | double pi = 4.0*atan(1.0); |
---|
81 | |
---|
82 | //convert angle degree to radian |
---|
83 | double theta = pars->axis_theta * pi/180.0; |
---|
84 | double phi = pars->axis_phi * pi/180.0; |
---|
85 | double psi = pars->axis_psi * pi/180.0; |
---|
86 | |
---|
87 | // Cylinder orientation |
---|
88 | cyl_x = sin(theta) * cos(phi); |
---|
89 | cyl_y = sin(theta) * sin(phi); |
---|
90 | cyl_z = cos(theta); |
---|
91 | |
---|
92 | // q vector |
---|
93 | q_z = 0.0; |
---|
94 | |
---|
95 | //dx = 1.0; |
---|
96 | //dy = 1.0; |
---|
97 | // Compute the angle btw vector q and the |
---|
98 | // axis of the cylinder |
---|
99 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
100 | |
---|
101 | // The following test should always pass |
---|
102 | if (fabs(cos_val)>1.0) { |
---|
103 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
104 | return 0; |
---|
105 | } |
---|
106 | |
---|
107 | // Note: cos(alpha) = 0 and 1 will get an |
---|
108 | // undefined value from CylKernel |
---|
109 | alpha = acos( cos_val ); |
---|
110 | |
---|
111 | //ellipse orientation: |
---|
112 | // the elliptical corss section was transformed and projected |
---|
113 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
114 | // on the detector plane. |
---|
115 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
116 | // the wave vector q. |
---|
117 | |
---|
118 | //x- y- component on the detector plane. |
---|
119 | ell_x = cos(psi); |
---|
120 | ell_y = sin(psi); |
---|
121 | |
---|
122 | // calculate the axis of the ellipse wrt q-coord. |
---|
123 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
124 | nu = acos(cos_nu); |
---|
125 | |
---|
126 | // Call the IGOR library function to get the kernel |
---|
127 | answer = triaxial_ellipsoid_kernel(pars, q, alpha, nu); |
---|
128 | |
---|
129 | // Multiply by contrast^2 |
---|
130 | answer *= (pars->sldEll- pars->sldSolv)*(pars->sldEll- pars->sldSolv); |
---|
131 | |
---|
132 | //normalize by cylinder volume |
---|
133 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
134 | vol = 4.0* pi/3.0 * pars->semi_axisA * pars->semi_axisB * pars->semi_axisC; |
---|
135 | answer *= vol; |
---|
136 | //convert to [cm-1] |
---|
137 | answer *= 1.0e8; |
---|
138 | //Scale |
---|
139 | answer *= pars->scale; |
---|
140 | |
---|
141 | // add in the background |
---|
142 | answer += pars->background; |
---|
143 | |
---|
144 | return answer; |
---|
145 | } |
---|
146 | |
---|
147 | /** |
---|
148 | * Function to evaluate 2D scattering function |
---|
149 | * @param pars: parameters of the triaxial ellipsoid |
---|
150 | * @param q: q-value |
---|
151 | * @return: function value |
---|
152 | */ |
---|
153 | static double triaxial_ellipsoid_analytical_2DXY(TriaxialEllipsoidParameters *pars, double qx, double qy) { |
---|
154 | double q; |
---|
155 | q = sqrt(qx*qx+qy*qy); |
---|
156 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
157 | } |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { |
---|
162 | scale = Parameter(1.0); |
---|
163 | semi_axisA = Parameter(35.0, true); |
---|
164 | semi_axisA.set_min(0.0); |
---|
165 | semi_axisB = Parameter(100.0, true); |
---|
166 | semi_axisB.set_min(0.0); |
---|
167 | semi_axisC = Parameter(400.0, true); |
---|
168 | semi_axisC.set_min(0.0); |
---|
169 | sldEll = Parameter(1.0e-6); |
---|
170 | sldSolv = Parameter(6.3e-6); |
---|
171 | background = Parameter(0.0); |
---|
172 | axis_theta = Parameter(57.325, true); |
---|
173 | axis_phi = Parameter(57.325, true); |
---|
174 | axis_psi = Parameter(0.0, true); |
---|
175 | } |
---|
176 | |
---|
177 | /** |
---|
178 | * Function to evaluate 1D scattering function |
---|
179 | * The NIST IGOR library is used for the actual calculation. |
---|
180 | * @param q: q-value |
---|
181 | * @return: function value |
---|
182 | */ |
---|
183 | double TriaxialEllipsoidModel :: operator()(double q) { |
---|
184 | double dp[7]; |
---|
185 | |
---|
186 | // Fill parameter array for IGOR library |
---|
187 | // Add the background after averaging |
---|
188 | dp[0] = scale(); |
---|
189 | dp[1] = semi_axisA(); |
---|
190 | dp[2] = semi_axisB(); |
---|
191 | dp[3] = semi_axisC(); |
---|
192 | dp[4] = sldEll(); |
---|
193 | dp[5] = sldSolv(); |
---|
194 | dp[6] = 0.0; |
---|
195 | |
---|
196 | // Get the dispersion points for the semi axis A |
---|
197 | vector<WeightPoint> weights_semi_axisA; |
---|
198 | semi_axisA.get_weights(weights_semi_axisA); |
---|
199 | |
---|
200 | // Get the dispersion points for the semi axis B |
---|
201 | vector<WeightPoint> weights_semi_axisB; |
---|
202 | semi_axisB.get_weights(weights_semi_axisB); |
---|
203 | |
---|
204 | // Get the dispersion points for the semi axis C |
---|
205 | vector<WeightPoint> weights_semi_axisC; |
---|
206 | semi_axisC.get_weights(weights_semi_axisC); |
---|
207 | |
---|
208 | // Perform the computation, with all weight points |
---|
209 | double sum = 0.0; |
---|
210 | double norm = 0.0; |
---|
211 | double vol = 0.0; |
---|
212 | |
---|
213 | // Loop over semi axis A weight points |
---|
214 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
215 | dp[1] = weights_semi_axisA[i].value; |
---|
216 | |
---|
217 | // Loop over semi axis B weight points |
---|
218 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
219 | dp[2] = weights_semi_axisB[j].value; |
---|
220 | |
---|
221 | // Loop over semi axis C weight points |
---|
222 | for(int k=0; k< (int)weights_semi_axisC.size(); k++) { |
---|
223 | dp[3] = weights_semi_axisC[k].value; |
---|
224 | //Un-normalize by volume |
---|
225 | sum += weights_semi_axisA[i].weight |
---|
226 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q) |
---|
227 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
228 | //Find average volume |
---|
229 | vol += weights_semi_axisA[i].weight |
---|
230 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight |
---|
231 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
232 | |
---|
233 | norm += weights_semi_axisA[i].weight |
---|
234 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; |
---|
235 | } |
---|
236 | } |
---|
237 | } |
---|
238 | if (vol != 0.0 && norm != 0.0) { |
---|
239 | //Re-normalize by avg volume |
---|
240 | sum = sum/(vol/norm);} |
---|
241 | |
---|
242 | return sum/norm + background(); |
---|
243 | } |
---|
244 | |
---|
245 | /** |
---|
246 | * Function to evaluate 2D scattering function |
---|
247 | * @param q_x: value of Q along x |
---|
248 | * @param q_y: value of Q along y |
---|
249 | * @return: function value |
---|
250 | */ |
---|
251 | double TriaxialEllipsoidModel :: operator()(double qx, double qy) { |
---|
252 | TriaxialEllipsoidParameters dp; |
---|
253 | // Fill parameter array |
---|
254 | dp.scale = scale(); |
---|
255 | dp.semi_axisA = semi_axisA(); |
---|
256 | dp.semi_axisB = semi_axisB(); |
---|
257 | dp.semi_axisC = semi_axisC(); |
---|
258 | dp.sldEll = sldEll(); |
---|
259 | dp.sldSolv = sldSolv(); |
---|
260 | dp.background = 0.0; |
---|
261 | dp.axis_theta = axis_theta(); |
---|
262 | dp.axis_phi = axis_phi(); |
---|
263 | dp.axis_psi = axis_psi(); |
---|
264 | |
---|
265 | // Get the dispersion points for the semi_axis A |
---|
266 | vector<WeightPoint> weights_semi_axisA; |
---|
267 | semi_axisA.get_weights(weights_semi_axisA); |
---|
268 | |
---|
269 | // Get the dispersion points for the semi_axis B |
---|
270 | vector<WeightPoint> weights_semi_axisB; |
---|
271 | semi_axisB.get_weights(weights_semi_axisB); |
---|
272 | |
---|
273 | // Get the dispersion points for the semi_axis C |
---|
274 | vector<WeightPoint> weights_semi_axisC; |
---|
275 | semi_axisC.get_weights(weights_semi_axisC); |
---|
276 | |
---|
277 | // Get angular averaging for theta |
---|
278 | vector<WeightPoint> weights_theta; |
---|
279 | axis_theta.get_weights(weights_theta); |
---|
280 | |
---|
281 | // Get angular averaging for phi |
---|
282 | vector<WeightPoint> weights_phi; |
---|
283 | axis_phi.get_weights(weights_phi); |
---|
284 | |
---|
285 | // Get angular averaging for psi |
---|
286 | vector<WeightPoint> weights_psi; |
---|
287 | axis_psi.get_weights(weights_psi); |
---|
288 | |
---|
289 | // Perform the computation, with all weight points |
---|
290 | double sum = 0.0; |
---|
291 | double norm = 0.0; |
---|
292 | double norm_vol = 0.0; |
---|
293 | double vol = 0.0; |
---|
294 | double pi = 4.0*atan(1.0); |
---|
295 | // Loop over semi axis A weight points |
---|
296 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
297 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
298 | |
---|
299 | // Loop over semi axis B weight points |
---|
300 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
301 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
302 | |
---|
303 | // Loop over semi axis C weight points |
---|
304 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
305 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
306 | |
---|
307 | // Average over theta distribution |
---|
308 | for(int l=0; l< (int)weights_theta.size(); l++) { |
---|
309 | dp.axis_theta = weights_theta[l].value; |
---|
310 | |
---|
311 | // Average over phi distribution |
---|
312 | for(int m=0; m <(int)weights_phi.size(); m++) { |
---|
313 | dp.axis_phi = weights_phi[m].value; |
---|
314 | // Average over psi distribution |
---|
315 | for(int n=0; n <(int)weights_psi.size(); n++) { |
---|
316 | dp.axis_psi = weights_psi[n].value; |
---|
317 | //Un-normalize by volume |
---|
318 | double _ptvalue = weights_semi_axisA[i].weight |
---|
319 | * weights_semi_axisB[j].weight |
---|
320 | * weights_semi_axisC[k].weight |
---|
321 | * weights_theta[l].weight |
---|
322 | * weights_phi[m].weight |
---|
323 | * weights_psi[n].weight |
---|
324 | * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy) |
---|
325 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
326 | if (weights_theta.size()>1) { |
---|
327 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
328 | } |
---|
329 | sum += _ptvalue; |
---|
330 | //Find average volume |
---|
331 | vol += weights_semi_axisA[i].weight |
---|
332 | * weights_semi_axisB[j].weight |
---|
333 | * weights_semi_axisC[k].weight |
---|
334 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
335 | //Find norm for volume |
---|
336 | norm_vol += weights_semi_axisA[i].weight |
---|
337 | * weights_semi_axisB[j].weight |
---|
338 | * weights_semi_axisC[k].weight; |
---|
339 | |
---|
340 | norm += weights_semi_axisA[i].weight |
---|
341 | * weights_semi_axisB[j].weight |
---|
342 | * weights_semi_axisC[k].weight |
---|
343 | * weights_theta[l].weight |
---|
344 | * weights_phi[m].weight |
---|
345 | * weights_psi[n].weight; |
---|
346 | } |
---|
347 | } |
---|
348 | |
---|
349 | } |
---|
350 | } |
---|
351 | } |
---|
352 | } |
---|
353 | // Averaging in theta needs an extra normalization |
---|
354 | // factor to account for the sin(theta) term in the |
---|
355 | // integration (see documentation). |
---|
356 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
357 | |
---|
358 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
359 | //Re-normalize by avg volume |
---|
360 | sum = sum/(vol/norm_vol);} |
---|
361 | |
---|
362 | return sum/norm + background(); |
---|
363 | } |
---|
364 | |
---|
365 | /** |
---|
366 | * Function to evaluate 2D scattering function |
---|
367 | * @param pars: parameters of the triaxial ellipsoid |
---|
368 | * @param q: q-value |
---|
369 | * @param phi: angle phi |
---|
370 | * @return: function value |
---|
371 | */ |
---|
372 | double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
373 | double qx = q*cos(phi); |
---|
374 | double qy = q*sin(phi); |
---|
375 | return (*this).operator()(qx, qy); |
---|
376 | } |
---|
377 | /** |
---|
378 | * Function to calculate effective radius |
---|
379 | * @return: effective radius value |
---|
380 | */ |
---|
381 | double TriaxialEllipsoidModel :: calculate_ER() { |
---|
382 | TriaxialEllipsoidParameters dp; |
---|
383 | |
---|
384 | dp.semi_axisA = semi_axisA(); |
---|
385 | dp.semi_axisB = semi_axisB(); |
---|
386 | //polar axis C |
---|
387 | dp.semi_axisC = semi_axisC(); |
---|
388 | |
---|
389 | double rad_out = 0.0; |
---|
390 | //Surface average radius at the equat. cross section. |
---|
391 | double suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
392 | |
---|
393 | // Perform the computation, with all weight points |
---|
394 | double sum = 0.0; |
---|
395 | double norm = 0.0; |
---|
396 | |
---|
397 | // Get the dispersion points for the semi_axis A |
---|
398 | vector<WeightPoint> weights_semi_axisA; |
---|
399 | semi_axisA.get_weights(weights_semi_axisA); |
---|
400 | |
---|
401 | // Get the dispersion points for the semi_axis B |
---|
402 | vector<WeightPoint> weights_semi_axisB; |
---|
403 | semi_axisB.get_weights(weights_semi_axisB); |
---|
404 | |
---|
405 | // Get the dispersion points for the semi_axis C |
---|
406 | vector<WeightPoint> weights_semi_axisC; |
---|
407 | semi_axisC.get_weights(weights_semi_axisC); |
---|
408 | |
---|
409 | // Loop over semi axis A weight points |
---|
410 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
411 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
412 | |
---|
413 | // Loop over semi axis B weight points |
---|
414 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
415 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
416 | |
---|
417 | // Loop over semi axis C weight points |
---|
418 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
419 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
420 | |
---|
421 | //Calculate surface averaged radius |
---|
422 | suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
423 | |
---|
424 | //Sum |
---|
425 | sum += weights_semi_axisA[i].weight |
---|
426 | * weights_semi_axisB[j].weight |
---|
427 | * weights_semi_axisC[k].weight * DiamEllip(dp.semi_axisC, suf_rad)/2.0; |
---|
428 | //Norm |
---|
429 | norm += weights_semi_axisA[i].weight* weights_semi_axisB[j].weight |
---|
430 | * weights_semi_axisC[k].weight; |
---|
431 | } |
---|
432 | } |
---|
433 | } |
---|
434 | if (norm != 0){ |
---|
435 | //return the averaged value |
---|
436 | rad_out = sum/norm;} |
---|
437 | else{ |
---|
438 | //return normal value |
---|
439 | rad_out = DiamEllip(dp.semi_axisC, suf_rad)/2.0;} |
---|
440 | |
---|
441 | return rad_out; |
---|
442 | } |
---|
443 | double TriaxialEllipsoidModel :: calculate_VR() { |
---|
444 | return 1.0; |
---|
445 | } |
---|