[5068697] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
[82c11d3] | 25 | #include <stdlib.h> |
---|
[5068697] | 26 | using namespace std; |
---|
[82c11d3] | 27 | #include "triaxial_ellipsoid.h" |
---|
[5068697] | 28 | |
---|
| 29 | extern "C" { |
---|
[82c11d3] | 30 | #include "libCylinder.h" |
---|
| 31 | #include "libStructureFactor.h" |
---|
[5068697] | 32 | } |
---|
| 33 | |
---|
[82c11d3] | 34 | typedef struct { |
---|
| 35 | double scale; |
---|
| 36 | double semi_axisA; |
---|
| 37 | double semi_axisB; |
---|
| 38 | double semi_axisC; |
---|
| 39 | double sldEll; |
---|
| 40 | double sldSolv; |
---|
| 41 | double background; |
---|
| 42 | double axis_theta; |
---|
| 43 | double axis_phi; |
---|
| 44 | double axis_psi; |
---|
| 45 | |
---|
| 46 | } TriaxialEllipsoidParameters; |
---|
| 47 | |
---|
| 48 | static double triaxial_ellipsoid_kernel(TriaxialEllipsoidParameters *pars, double q, double alpha, double nu) { |
---|
| 49 | double t,a,b,c; |
---|
| 50 | double kernel; |
---|
| 51 | |
---|
| 52 | a = pars->semi_axisA ; |
---|
| 53 | b = pars->semi_axisB ; |
---|
| 54 | c = pars->semi_axisC ; |
---|
| 55 | |
---|
| 56 | t = q * sqrt(a*a*cos(nu)*cos(nu)+b*b*sin(nu)*sin(nu)*sin(alpha)*sin(alpha)+c*c*cos(alpha)*cos(alpha)); |
---|
| 57 | if (t==0.0){ |
---|
| 58 | kernel = 1.0; |
---|
| 59 | }else{ |
---|
| 60 | kernel = 3.0*(sin(t)-t*cos(t))/(t*t*t); |
---|
| 61 | } |
---|
| 62 | return kernel*kernel; |
---|
| 63 | } |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | /** |
---|
| 67 | * Function to evaluate 2D scattering function |
---|
| 68 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 69 | * @param q: q-value |
---|
| 70 | * @param q_x: q_x / q |
---|
| 71 | * @param q_y: q_y / q |
---|
| 72 | * @return: function value |
---|
| 73 | */ |
---|
| 74 | static double triaxial_ellipsoid_analytical_2D_scaled(TriaxialEllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
| 75 | double cyl_x, cyl_y, cyl_z, ell_x, ell_y; |
---|
| 76 | double q_z; |
---|
| 77 | double cos_nu,nu; |
---|
| 78 | double alpha, vol, cos_val; |
---|
| 79 | double answer; |
---|
| 80 | double pi = 4.0*atan(1.0); |
---|
| 81 | |
---|
| 82 | //convert angle degree to radian |
---|
| 83 | double theta = pars->axis_theta * pi/180.0; |
---|
| 84 | double phi = pars->axis_phi * pi/180.0; |
---|
| 85 | double psi = pars->axis_psi * pi/180.0; |
---|
| 86 | |
---|
| 87 | // Cylinder orientation |
---|
| 88 | cyl_x = sin(theta) * cos(phi); |
---|
| 89 | cyl_y = sin(theta) * sin(phi); |
---|
| 90 | cyl_z = cos(theta); |
---|
| 91 | |
---|
| 92 | // q vector |
---|
| 93 | q_z = 0.0; |
---|
| 94 | |
---|
| 95 | //dx = 1.0; |
---|
| 96 | //dy = 1.0; |
---|
| 97 | // Compute the angle btw vector q and the |
---|
| 98 | // axis of the cylinder |
---|
| 99 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
| 100 | |
---|
| 101 | // The following test should always pass |
---|
| 102 | if (fabs(cos_val)>1.0) { |
---|
| 103 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 104 | return 0; |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 108 | // undefined value from CylKernel |
---|
| 109 | alpha = acos( cos_val ); |
---|
| 110 | |
---|
| 111 | //ellipse orientation: |
---|
| 112 | // the elliptical corss section was transformed and projected |
---|
| 113 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
| 114 | // on the detector plane. |
---|
| 115 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
| 116 | // the wave vector q. |
---|
| 117 | |
---|
| 118 | //x- y- component on the detector plane. |
---|
| 119 | ell_x = cos(psi); |
---|
| 120 | ell_y = sin(psi); |
---|
| 121 | |
---|
| 122 | // calculate the axis of the ellipse wrt q-coord. |
---|
| 123 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
| 124 | nu = acos(cos_nu); |
---|
| 125 | |
---|
| 126 | // Call the IGOR library function to get the kernel |
---|
| 127 | answer = triaxial_ellipsoid_kernel(pars, q, alpha, nu); |
---|
| 128 | |
---|
| 129 | // Multiply by contrast^2 |
---|
| 130 | answer *= (pars->sldEll- pars->sldSolv)*(pars->sldEll- pars->sldSolv); |
---|
| 131 | |
---|
| 132 | //normalize by cylinder volume |
---|
| 133 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 134 | vol = 4.0* pi/3.0 * pars->semi_axisA * pars->semi_axisB * pars->semi_axisC; |
---|
| 135 | answer *= vol; |
---|
| 136 | //convert to [cm-1] |
---|
| 137 | answer *= 1.0e8; |
---|
| 138 | //Scale |
---|
| 139 | answer *= pars->scale; |
---|
| 140 | |
---|
| 141 | // add in the background |
---|
| 142 | answer += pars->background; |
---|
| 143 | |
---|
| 144 | return answer; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Function to evaluate 2D scattering function |
---|
| 149 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 150 | * @param q: q-value |
---|
| 151 | * @return: function value |
---|
| 152 | */ |
---|
| 153 | static double triaxial_ellipsoid_analytical_2DXY(TriaxialEllipsoidParameters *pars, double qx, double qy) { |
---|
| 154 | double q; |
---|
| 155 | q = sqrt(qx*qx+qy*qy); |
---|
| 156 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | |
---|
[5068697] | 161 | TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { |
---|
[82c11d3] | 162 | scale = Parameter(1.0); |
---|
| 163 | semi_axisA = Parameter(35.0, true); |
---|
| 164 | semi_axisA.set_min(0.0); |
---|
| 165 | semi_axisB = Parameter(100.0, true); |
---|
| 166 | semi_axisB.set_min(0.0); |
---|
| 167 | semi_axisC = Parameter(400.0, true); |
---|
| 168 | semi_axisC.set_min(0.0); |
---|
| 169 | sldEll = Parameter(1.0e-6); |
---|
| 170 | sldSolv = Parameter(6.3e-6); |
---|
| 171 | background = Parameter(0.0); |
---|
| 172 | axis_theta = Parameter(57.325, true); |
---|
| 173 | axis_phi = Parameter(57.325, true); |
---|
| 174 | axis_psi = Parameter(0.0, true); |
---|
[5068697] | 175 | } |
---|
| 176 | |
---|
| 177 | /** |
---|
| 178 | * Function to evaluate 1D scattering function |
---|
| 179 | * The NIST IGOR library is used for the actual calculation. |
---|
| 180 | * @param q: q-value |
---|
| 181 | * @return: function value |
---|
| 182 | */ |
---|
| 183 | double TriaxialEllipsoidModel :: operator()(double q) { |
---|
[82c11d3] | 184 | double dp[7]; |
---|
| 185 | |
---|
| 186 | // Fill parameter array for IGOR library |
---|
| 187 | // Add the background after averaging |
---|
| 188 | dp[0] = scale(); |
---|
| 189 | dp[1] = semi_axisA(); |
---|
| 190 | dp[2] = semi_axisB(); |
---|
| 191 | dp[3] = semi_axisC(); |
---|
| 192 | dp[4] = sldEll(); |
---|
| 193 | dp[5] = sldSolv(); |
---|
| 194 | dp[6] = 0.0; |
---|
| 195 | |
---|
| 196 | // Get the dispersion points for the semi axis A |
---|
| 197 | vector<WeightPoint> weights_semi_axisA; |
---|
| 198 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 199 | |
---|
| 200 | // Get the dispersion points for the semi axis B |
---|
| 201 | vector<WeightPoint> weights_semi_axisB; |
---|
| 202 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 203 | |
---|
| 204 | // Get the dispersion points for the semi axis C |
---|
| 205 | vector<WeightPoint> weights_semi_axisC; |
---|
| 206 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 207 | |
---|
| 208 | // Perform the computation, with all weight points |
---|
| 209 | double sum = 0.0; |
---|
| 210 | double norm = 0.0; |
---|
| 211 | double vol = 0.0; |
---|
| 212 | |
---|
| 213 | // Loop over semi axis A weight points |
---|
| 214 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 215 | dp[1] = weights_semi_axisA[i].value; |
---|
| 216 | |
---|
| 217 | // Loop over semi axis B weight points |
---|
| 218 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 219 | dp[2] = weights_semi_axisB[j].value; |
---|
| 220 | |
---|
| 221 | // Loop over semi axis C weight points |
---|
| 222 | for(int k=0; k< (int)weights_semi_axisC.size(); k++) { |
---|
| 223 | dp[3] = weights_semi_axisC[k].value; |
---|
| 224 | //Un-normalize by volume |
---|
| 225 | sum += weights_semi_axisA[i].weight |
---|
| 226 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q) |
---|
| 227 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 228 | //Find average volume |
---|
| 229 | vol += weights_semi_axisA[i].weight |
---|
| 230 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight |
---|
| 231 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 232 | |
---|
| 233 | norm += weights_semi_axisA[i].weight |
---|
| 234 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; |
---|
| 235 | } |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | if (vol != 0.0 && norm != 0.0) { |
---|
| 239 | //Re-normalize by avg volume |
---|
| 240 | sum = sum/(vol/norm);} |
---|
| 241 | |
---|
| 242 | return sum/norm + background(); |
---|
[5068697] | 243 | } |
---|
| 244 | |
---|
| 245 | /** |
---|
| 246 | * Function to evaluate 2D scattering function |
---|
| 247 | * @param q_x: value of Q along x |
---|
| 248 | * @param q_y: value of Q along y |
---|
| 249 | * @return: function value |
---|
| 250 | */ |
---|
| 251 | double TriaxialEllipsoidModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 252 | TriaxialEllipsoidParameters dp; |
---|
| 253 | // Fill parameter array |
---|
| 254 | dp.scale = scale(); |
---|
| 255 | dp.semi_axisA = semi_axisA(); |
---|
| 256 | dp.semi_axisB = semi_axisB(); |
---|
| 257 | dp.semi_axisC = semi_axisC(); |
---|
| 258 | dp.sldEll = sldEll(); |
---|
| 259 | dp.sldSolv = sldSolv(); |
---|
| 260 | dp.background = 0.0; |
---|
| 261 | dp.axis_theta = axis_theta(); |
---|
| 262 | dp.axis_phi = axis_phi(); |
---|
| 263 | dp.axis_psi = axis_psi(); |
---|
| 264 | |
---|
| 265 | // Get the dispersion points for the semi_axis A |
---|
| 266 | vector<WeightPoint> weights_semi_axisA; |
---|
| 267 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 268 | |
---|
| 269 | // Get the dispersion points for the semi_axis B |
---|
| 270 | vector<WeightPoint> weights_semi_axisB; |
---|
| 271 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 272 | |
---|
| 273 | // Get the dispersion points for the semi_axis C |
---|
| 274 | vector<WeightPoint> weights_semi_axisC; |
---|
| 275 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 276 | |
---|
| 277 | // Get angular averaging for theta |
---|
| 278 | vector<WeightPoint> weights_theta; |
---|
| 279 | axis_theta.get_weights(weights_theta); |
---|
| 280 | |
---|
| 281 | // Get angular averaging for phi |
---|
| 282 | vector<WeightPoint> weights_phi; |
---|
| 283 | axis_phi.get_weights(weights_phi); |
---|
| 284 | |
---|
| 285 | // Get angular averaging for psi |
---|
| 286 | vector<WeightPoint> weights_psi; |
---|
| 287 | axis_psi.get_weights(weights_psi); |
---|
| 288 | |
---|
| 289 | // Perform the computation, with all weight points |
---|
| 290 | double sum = 0.0; |
---|
| 291 | double norm = 0.0; |
---|
| 292 | double norm_vol = 0.0; |
---|
| 293 | double vol = 0.0; |
---|
| 294 | double pi = 4.0*atan(1.0); |
---|
| 295 | // Loop over semi axis A weight points |
---|
| 296 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 297 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
| 298 | |
---|
| 299 | // Loop over semi axis B weight points |
---|
| 300 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 301 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
| 302 | |
---|
| 303 | // Loop over semi axis C weight points |
---|
| 304 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
| 305 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
| 306 | |
---|
| 307 | // Average over theta distribution |
---|
| 308 | for(int l=0; l< (int)weights_theta.size(); l++) { |
---|
| 309 | dp.axis_theta = weights_theta[l].value; |
---|
| 310 | |
---|
| 311 | // Average over phi distribution |
---|
| 312 | for(int m=0; m <(int)weights_phi.size(); m++) { |
---|
| 313 | dp.axis_phi = weights_phi[m].value; |
---|
| 314 | // Average over psi distribution |
---|
| 315 | for(int n=0; n <(int)weights_psi.size(); n++) { |
---|
| 316 | dp.axis_psi = weights_psi[n].value; |
---|
| 317 | //Un-normalize by volume |
---|
| 318 | double _ptvalue = weights_semi_axisA[i].weight |
---|
| 319 | * weights_semi_axisB[j].weight |
---|
| 320 | * weights_semi_axisC[k].weight |
---|
| 321 | * weights_theta[l].weight |
---|
| 322 | * weights_phi[m].weight |
---|
| 323 | * weights_psi[n].weight |
---|
| 324 | * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy) |
---|
| 325 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 326 | if (weights_theta.size()>1) { |
---|
| 327 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
| 328 | } |
---|
| 329 | sum += _ptvalue; |
---|
| 330 | //Find average volume |
---|
| 331 | vol += weights_semi_axisA[i].weight |
---|
| 332 | * weights_semi_axisB[j].weight |
---|
| 333 | * weights_semi_axisC[k].weight |
---|
| 334 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
| 335 | //Find norm for volume |
---|
| 336 | norm_vol += weights_semi_axisA[i].weight |
---|
| 337 | * weights_semi_axisB[j].weight |
---|
| 338 | * weights_semi_axisC[k].weight; |
---|
| 339 | |
---|
| 340 | norm += weights_semi_axisA[i].weight |
---|
| 341 | * weights_semi_axisB[j].weight |
---|
| 342 | * weights_semi_axisC[k].weight |
---|
| 343 | * weights_theta[l].weight |
---|
| 344 | * weights_phi[m].weight |
---|
| 345 | * weights_psi[n].weight; |
---|
| 346 | } |
---|
| 347 | } |
---|
| 348 | |
---|
| 349 | } |
---|
| 350 | } |
---|
| 351 | } |
---|
| 352 | } |
---|
| 353 | // Averaging in theta needs an extra normalization |
---|
| 354 | // factor to account for the sin(theta) term in the |
---|
| 355 | // integration (see documentation). |
---|
| 356 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 357 | |
---|
| 358 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 359 | //Re-normalize by avg volume |
---|
| 360 | sum = sum/(vol/norm_vol);} |
---|
| 361 | |
---|
| 362 | return sum/norm + background(); |
---|
[5068697] | 363 | } |
---|
| 364 | |
---|
| 365 | /** |
---|
| 366 | * Function to evaluate 2D scattering function |
---|
| 367 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 368 | * @param q: q-value |
---|
| 369 | * @param phi: angle phi |
---|
| 370 | * @return: function value |
---|
| 371 | */ |
---|
| 372 | double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 373 | double qx = q*cos(phi); |
---|
| 374 | double qy = q*sin(phi); |
---|
| 375 | return (*this).operator()(qx, qy); |
---|
[5068697] | 376 | } |
---|
[5eb9154] | 377 | /** |
---|
| 378 | * Function to calculate effective radius |
---|
| 379 | * @return: effective radius value |
---|
| 380 | */ |
---|
| 381 | double TriaxialEllipsoidModel :: calculate_ER() { |
---|
[82c11d3] | 382 | TriaxialEllipsoidParameters dp; |
---|
| 383 | |
---|
| 384 | dp.semi_axisA = semi_axisA(); |
---|
| 385 | dp.semi_axisB = semi_axisB(); |
---|
| 386 | //polar axis C |
---|
| 387 | dp.semi_axisC = semi_axisC(); |
---|
| 388 | |
---|
| 389 | double rad_out = 0.0; |
---|
| 390 | //Surface average radius at the equat. cross section. |
---|
| 391 | double suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
| 392 | |
---|
| 393 | // Perform the computation, with all weight points |
---|
| 394 | double sum = 0.0; |
---|
| 395 | double norm = 0.0; |
---|
| 396 | |
---|
| 397 | // Get the dispersion points for the semi_axis A |
---|
| 398 | vector<WeightPoint> weights_semi_axisA; |
---|
| 399 | semi_axisA.get_weights(weights_semi_axisA); |
---|
| 400 | |
---|
| 401 | // Get the dispersion points for the semi_axis B |
---|
| 402 | vector<WeightPoint> weights_semi_axisB; |
---|
| 403 | semi_axisB.get_weights(weights_semi_axisB); |
---|
| 404 | |
---|
| 405 | // Get the dispersion points for the semi_axis C |
---|
| 406 | vector<WeightPoint> weights_semi_axisC; |
---|
| 407 | semi_axisC.get_weights(weights_semi_axisC); |
---|
| 408 | |
---|
| 409 | // Loop over semi axis A weight points |
---|
| 410 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
| 411 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
| 412 | |
---|
| 413 | // Loop over semi axis B weight points |
---|
| 414 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
| 415 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
| 416 | |
---|
| 417 | // Loop over semi axis C weight points |
---|
| 418 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
| 419 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
| 420 | |
---|
| 421 | //Calculate surface averaged radius |
---|
| 422 | suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
| 423 | |
---|
| 424 | //Sum |
---|
| 425 | sum += weights_semi_axisA[i].weight |
---|
| 426 | * weights_semi_axisB[j].weight |
---|
| 427 | * weights_semi_axisC[k].weight * DiamEllip(dp.semi_axisC, suf_rad)/2.0; |
---|
| 428 | //Norm |
---|
| 429 | norm += weights_semi_axisA[i].weight* weights_semi_axisB[j].weight |
---|
| 430 | * weights_semi_axisC[k].weight; |
---|
| 431 | } |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | if (norm != 0){ |
---|
| 435 | //return the averaged value |
---|
| 436 | rad_out = sum/norm;} |
---|
| 437 | else{ |
---|
| 438 | //return normal value |
---|
| 439 | rad_out = DiamEllip(dp.semi_axisC, suf_rad)/2.0;} |
---|
| 440 | |
---|
| 441 | return rad_out; |
---|
[5eb9154] | 442 | } |
---|
[e08bd5b] | 443 | double TriaxialEllipsoidModel :: calculate_VR() { |
---|
| 444 | return 1.0; |
---|
| 445 | } |
---|