source: sasview/sansmodels/src/c_models/stackeddisks.cpp @ 046af80

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 046af80 was 82c11d3, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

refactored bunch of models

  • Property mode set to 100644
File size: 12.1 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 *      TODO: refactor so that we pull in the old sansmodels.c_extensions
21 *      TODO: add 2d
22 */
23
24#include <math.h>
25#include "parameters.hh"
26#include <stdio.h>
27using namespace std;
28#include "stacked_disks.h"
29
30extern "C" {
31#include "libCylinder.h"
32#include "libStructureFactor.h"
33}
34
35typedef struct {
36  double scale;
37  double radius;
38  double core_thick;
39  double layer_thick;
40  double core_sld;
41  double layer_sld;
42  double solvent_sld;
43  double n_stacking;
44  double sigma_d;
45  double background;
46  double axis_theta;
47  double axis_phi;
48} StackedDisksParameters;
49
50
51/**
52 * Function to evaluate 2D scattering function
53 * @param pars: parameters of the staked disks
54 * @param q: q-value
55 * @param q_x: q_x / q
56 * @param q_y: q_y / q
57 * @return: function value
58 */
59static double stacked_disks_analytical_2D_scaled(StackedDisksParameters *pars, double q, double q_x, double q_y) {
60  double cyl_x, cyl_y, cyl_z;
61  double q_z;
62  double alpha, vol, cos_val;
63  double d, dum, halfheight;
64  double answer;
65
66
67
68  // parallelepiped orientation
69  cyl_x = sin(pars->axis_theta) * cos(pars->axis_phi);
70  cyl_y = sin(pars->axis_theta) * sin(pars->axis_phi);
71  cyl_z = cos(pars->axis_theta);
72
73  // q vector
74  q_z = 0;
75
76  // Compute the angle btw vector q and the
77  // axis of the parallelepiped
78  cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z;
79
80  // The following test should always pass
81  if (fabs(cos_val)>1.0) {
82    printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n");
83    return 0;
84  }
85
86  // Note: cos(alpha) = 0 and 1 will get an
87  // undefined value from Stackdisc_kern
88  alpha = acos( cos_val );
89
90  // Call the IGOR library function to get the kernel
91  d = 2 * pars->layer_thick + pars->core_thick;
92  halfheight = pars->core_thick/2.0;
93  dum =alpha ;
94  answer = Stackdisc_kern(q, pars->radius, pars->core_sld,pars->layer_sld,
95      pars->solvent_sld, halfheight, pars->layer_thick, dum, pars->sigma_d, d, pars->n_stacking)/sin(alpha);
96
97  // Multiply by contrast^2
98  //answer *= pars->contrast*pars->contrast;
99
100  //normalize by staked disks volume
101  vol = acos(-1.0) * pars->radius * pars->radius * d * pars->n_stacking;
102  answer /= vol;
103
104  //convert to [cm-1]
105  answer *= 1.0e8;
106
107  //Scale
108  answer *= pars->scale;
109
110  // add in the background
111  answer += pars->background;
112
113  return answer;
114}
115
116/**
117 * Function to evaluate 2D scattering function
118 * @param pars: parameters of the staked disks
119 * @param q: q-value
120 * @return: function value
121 */
122static double stacked_disks_analytical_2DXY(StackedDisksParameters *pars, double qx, double qy) {
123  double q;
124  q = sqrt(qx*qx+qy*qy);
125  return stacked_disks_analytical_2D_scaled(pars, q, qx/q, qy/q);
126}
127
128StackedDisksModel :: StackedDisksModel() {
129  scale      = Parameter(1.0);
130  radius     = Parameter(3000.0, true);
131  radius.set_min(0.0);
132  core_thick  = Parameter(10.0, true);
133  core_thick.set_min(0.0);
134  layer_thick     = Parameter(15.0);
135  layer_thick.set_min(0.0);
136  core_sld = Parameter(4.0e-6);
137  layer_sld  = Parameter(-4.0e-7);
138  solvent_sld  = Parameter(5.0e-6);
139  n_stacking   = Parameter(1);
140  sigma_d   = Parameter(0);
141  background = Parameter(0.001);
142  axis_theta  = Parameter(0.0, true);
143  axis_phi    = Parameter(0.0, true);
144}
145
146/**
147 * Function to evaluate 1D scattering function
148 * The NIST IGOR library is used for the actual calculation.
149 * @param q: q-value
150 * @return: function value
151 */
152double StackedDisksModel :: operator()(double q) {
153  double dp[10];
154
155  // Fill parameter array for IGOR library
156  // Add the background after averaging
157  dp[0] = scale();
158  dp[1] = radius();
159  dp[2] = core_thick();
160  dp[3] = layer_thick();
161  dp[4] = core_sld();
162  dp[5] = layer_sld();
163  dp[6] = solvent_sld();
164  dp[7] = n_stacking();
165  dp[8] = sigma_d();
166  dp[9] = 0.0;
167
168  // Get the dispersion points for the radius
169  vector<WeightPoint> weights_radius;
170  radius.get_weights(weights_radius);
171
172  // Get the dispersion points for the core_thick
173  vector<WeightPoint> weights_core_thick;
174  core_thick.get_weights(weights_core_thick);
175
176  // Get the dispersion points for the layer_thick
177  vector<WeightPoint> weights_layer_thick;
178  layer_thick.get_weights(weights_layer_thick);
179
180  // Perform the computation, with all weight points
181  double sum = 0.0;
182  double norm = 0.0;
183  double vol = 0.0;
184
185  // Loop over length weight points
186  for(int i=0; i< (int)weights_radius.size(); i++) {
187    dp[1] = weights_radius[i].value;
188
189    // Loop over radius weight points
190    for(int j=0; j< (int)weights_core_thick.size(); j++) {
191      dp[2] = weights_core_thick[j].value;
192
193      // Loop over thickness weight points
194      for(int k=0; k< (int)weights_layer_thick.size(); k++) {
195        dp[3] = weights_layer_thick[k].value;
196        //Un-normalize by volume
197        sum += weights_radius[i].weight
198            * weights_core_thick[j].weight * weights_layer_thick[k].weight* StackedDiscs(dp, q)
199        *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value);
200        //Find average volume
201        vol += weights_radius[i].weight
202            * weights_core_thick[j].weight * weights_layer_thick[k].weight
203            *pow(weights_radius[i].value,2)*(weights_core_thick[j].value+2*weights_layer_thick[k].value);
204        norm += weights_radius[i].weight
205            * weights_core_thick[j].weight* weights_layer_thick[k].weight;
206      }
207    }
208  }
209  if (vol != 0.0 && norm != 0.0) {
210    //Re-normalize by avg volume
211    sum = sum/(vol/norm);}
212
213  return sum/norm + background();
214}
215
216/**
217 * Function to evaluate 2D scattering function
218 * @param q_x: value of Q along x
219 * @param q_y: value of Q along y
220 * @return: function value
221 */
222double StackedDisksModel :: operator()(double qx, double qy) {
223  StackedDisksParameters dp;
224  // Fill parameter array
225  dp.scale      = scale();
226  dp.core_thick    = core_thick();
227  dp.radius       = radius();
228  dp.layer_thick  = layer_thick();
229  dp.core_sld   = core_sld();
230  dp.layer_sld  = layer_sld();
231  dp.solvent_sld= solvent_sld();
232  dp.n_stacking   = n_stacking();
233  dp.sigma_d   = sigma_d();
234  dp.background = 0.0;
235  dp.axis_theta = axis_theta();
236  dp.axis_phi   = axis_phi();
237
238  // Get the dispersion points for the length
239  vector<WeightPoint> weights_core_thick;
240  core_thick.get_weights(weights_core_thick);
241
242  // Get the dispersion points for the radius
243  vector<WeightPoint> weights_radius;
244  radius.get_weights(weights_radius);
245
246  // Get the dispersion points for the thickness
247  vector<WeightPoint> weights_layer_thick;
248  layer_thick.get_weights(weights_layer_thick);
249
250  // Get angular averaging for theta
251  vector<WeightPoint> weights_theta;
252  axis_theta.get_weights(weights_theta);
253
254  // Get angular averaging for phi
255  vector<WeightPoint> weights_phi;
256  axis_phi.get_weights(weights_phi);
257
258  // Perform the computation, with all weight points
259  double sum = 0.0;
260  double norm = 0.0;
261  double norm_vol = 0.0;
262  double vol = 0.0;
263
264  // Loop over length weight points
265  for(int i=0; i< (int)weights_core_thick.size(); i++) {
266    dp.core_thick = weights_core_thick[i].value;
267
268    // Loop over radius weight points
269    for(int j=0; j< (int)weights_radius.size(); j++) {
270      dp.radius = weights_radius[j].value;
271
272      // Loop over thickness weight points
273      for(int k=0; k< (int)weights_layer_thick.size(); k++) {
274        dp.layer_thick = weights_layer_thick[k].value;
275
276        for(int l=0; l< (int)weights_theta.size(); l++) {
277          dp.axis_theta = weights_theta[l].value;
278
279          // Average over phi distribution
280          for(int m=0; m <(int)weights_phi.size(); m++) {
281            dp.axis_phi = weights_phi[m].value;
282
283            //Un-normalize by volume
284            double _ptvalue = weights_core_thick[i].weight
285                * weights_radius[j].weight
286                * weights_layer_thick[k].weight
287                * weights_theta[l].weight
288                * weights_phi[m].weight
289                * stacked_disks_analytical_2DXY(&dp, qx, qy)
290            *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value);
291            if (weights_theta.size()>1) {
292              _ptvalue *= fabs(sin(weights_theta[l].value));
293            }
294            sum += _ptvalue;
295            //Find average volume
296            vol += weights_radius[j].weight
297                * weights_core_thick[i].weight * weights_layer_thick[k].weight
298                *pow(weights_radius[j].value,2)*(weights_core_thick[i].value+2*weights_layer_thick[k].value);
299            //Find norm for volume
300            norm_vol += weights_radius[j].weight
301                * weights_core_thick[i].weight * weights_layer_thick[k].weight;
302
303            norm += weights_core_thick[i].weight
304                * weights_radius[j].weight
305                * weights_layer_thick[k].weight
306                * weights_theta[l].weight
307                * weights_phi[m].weight;
308          }
309        }
310      }
311    }
312  }
313  // Averaging in theta needs an extra normalization
314  // factor to account for the sin(theta) term in the
315  // integration (see documentation).
316  if (weights_theta.size()>1) norm = norm / asin(1.0);
317  if (vol != 0.0 && norm_vol != 0.0) {
318    //Re-normalize by avg volume
319    sum = sum/(vol/norm_vol);}
320  return sum/norm + background();
321}
322
323/**
324 * Function to evaluate 2D scattering function
325 * @param pars: parameters of the triaxial ellipsoid
326 * @param q: q-value
327 * @param phi: angle phi
328 * @return: function value
329 */
330double StackedDisksModel :: evaluate_rphi(double q, double phi) {
331  double qx = q*cos(phi);
332  double qy = q*sin(phi);
333  return (*this).operator()(qx, qy);
334}
335/**
336 * Function to calculate effective radius
337 * @return: effective radius value
338 */
339double StackedDisksModel :: calculate_ER() {
340  StackedDisksParameters dp;
341
342  dp.core_thick    = core_thick();
343  dp.radius       = radius();
344  dp.layer_thick  = layer_thick();
345  dp.n_stacking   = n_stacking();
346
347  double rad_out = 0.0;
348  if (dp.n_stacking <= 0.0){
349    return rad_out;
350  }
351
352  // Perform the computation, with all weight points
353  double sum = 0.0;
354  double norm = 0.0;
355
356  // Get the dispersion points for the length
357  vector<WeightPoint> weights_core_thick;
358  core_thick.get_weights(weights_core_thick);
359
360  // Get the dispersion points for the radius
361  vector<WeightPoint> weights_radius;
362  radius.get_weights(weights_radius);
363
364  // Get the dispersion points for the thickness
365  vector<WeightPoint> weights_layer_thick;
366  layer_thick.get_weights(weights_layer_thick);
367
368  // Loop over major shell weight points
369  for(int i=0; i< (int)weights_core_thick.size(); i++) {
370    dp.core_thick = weights_core_thick[i].value;
371    for(int j=0; j< (int)weights_layer_thick.size(); j++) {
372      dp.layer_thick = weights_layer_thick[j].value;
373      for(int k=0; k< (int)weights_radius.size(); k++) {
374        dp.radius = weights_radius[k].value;
375        //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER.
376        sum +=weights_core_thick[i].weight*weights_layer_thick[j].weight
377            * weights_radius[k].weight*DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0;
378        norm += weights_core_thick[i].weight*weights_layer_thick[j].weight* weights_radius[k].weight;
379      }
380    }
381  }
382  if (norm != 0){
383    //return the averaged value
384    rad_out =  sum/norm;}
385  else{
386    //return normal value
387    //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER.
388    rad_out = DiamCyl(dp.n_stacking*(dp.layer_thick*2.0+dp.core_thick),dp.radius)/2.0;}
389
390  return rad_out;
391}
Note: See TracBrowser for help on using the repository browser.