source: sasview/sansmodels/src/c_models/spheresld.cpp @ a8d3b4f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since a8d3b4f was e08bd5b, checked in by Jae Cho <jhjcho@…>, 13 years ago

c models fix: scale fix for P*S

  • Property mode set to 100644
File size: 17.8 KB
Line 
1
2#include <math.h>
3#include "parameters.hh"
4#include <stdio.h>
5#include <stdlib.h>
6
7extern "C" {
8#include "libmultifunc/librefl.h"
9}
10
11#include "spheresld.h"
12
13using namespace std;
14
15// Convenience structure
16typedef struct {
17  /// number of shells
18  //  [DEFAULT]=n_shells=1
19  int n_shells;
20  /// Scale factor
21  //  [DEFAULT]=scale= 1.0
22  double scale;
23  /// thick_inter0 [A]
24  //  [DEFAULT]=thick_inter0=50.0 [A]
25  double thick_inter0;
26  /// func_inter0
27  //  [DEFAULT]=func_inter0= 0
28  double func_inter0;
29  /// sld_core0 [1/A^(2)]
30  //  [DEFAULT]=sld_core0= 2.07e-6 [1/A^(2)]
31  double sld_core0;
32  /// sld_solv [1/A^(2)]
33  //  [DEFAULT]=sld_solv= 1.0e-6 [1/A^(2)]
34  double sld_solv;
35  /// Background
36  //  [DEFAULT]=background=0
37  double background;
38
39  //  [DEFAULT]=sld_flat1=4.0e-06 [1/A^(2)]
40  double sld_flat1;
41  //  [DEFAULT]=sld_flat2=3.5e-06 [1/A^(2)]
42  double sld_flat2;
43  //  [DEFAULT]=sld_flat3=4.0e-06 [1/A^(2)]
44  double sld_flat3;
45  //  [DEFAULT]=sld_flat4=3.5e-06 [1/A^(2)]
46  double sld_flat4;
47  //  [DEFAULT]=sld_flat5=4.0e-06 [1/A^(2)]
48  double sld_flat5;
49  //  [DEFAULT]=sld_flat6=3.5e-06 [1/A^(2)]
50  double sld_flat6;
51  //  [DEFAULT]=sld_flat7=4.0e-06 [1/A^(2)]
52  double sld_flat7;
53  //  [DEFAULT]=sld_flat8=3.5e-06 [1/A^(2)]
54  double sld_flat8;
55  //  [DEFAULT]=sld_flat9=4.0e-06 [1/A^(2)]
56  double sld_flat9;
57  //  [DEFAULT]=sld_flat10=3.5e-06 [1/A^(2)]
58  double sld_flat10;
59
60  //  [DEFAULT]=thick_inter1=50.0 [A]
61  double thick_inter1;
62  //  [DEFAULT]=thick_inter2=50.0 [A]
63  double thick_inter2;
64  //  [DEFAULT]=thick_inter3=50.0 [A]
65  double thick_inter3;
66  //  [DEFAULT]=thick_inter4=50.0 [A]
67  double thick_inter4;
68  //  [DEFAULT]=thick_inter5=50.0 [A]
69  double thick_inter5;
70  //  [DEFAULT]=thick_inter6=50.0 [A]
71  double thick_inter6;
72  //  [DEFAULT]=thick_inter7=50.0 [A]
73  double thick_inter7;
74  //  [DEFAULT]=thick_inter8=50.0 [A]
75  double thick_inter8;
76  //  [DEFAULT]=thick_inter9=50.0 [A]
77  double thick_inter9;
78  //  [DEFAULT]=thick_inter10=50.0 [A]
79  double thick_inter10;
80
81  //  [DEFAULT]=thick_flat1=100 [A]
82  double thick_flat1;
83  //  [DEFAULT]=thick_flat2=100 [A]
84  double thick_flat2;
85  //  [DEFAULT]=thick_flat3=100 [A]
86  double thick_flat3;
87  //  [DEFAULT]=thick_flat4=100 [A]
88  double thick_flat4;
89  //  [DEFAULT]=thick_flat5=100 [A]
90  double thick_flat5;
91  //  [DEFAULT]=thick_flat6=100 [A]
92  double thick_flat6;
93  //  [DEFAULT]=thick_flat7=100 [A]
94  double thick_flat7;
95  //  [DEFAULT]=thick_flat8=100 [A]
96  double thick_flat8;
97  //  [DEFAULT]=thick_flat9=100 [A]
98  double thick_flat9;
99  //  [DEFAULT]=thick_flat10=100 [A]
100  double thick_flat10;
101
102  //  [DEFAULT]=func_inter1=0
103  double func_inter1;
104  //  [DEFAULT]=func_inter2=0
105  double func_inter2;
106  //  [DEFAULT]=func_inter3=0
107  double func_inter3;
108  //  [DEFAULT]=func_inter4=0
109  double func_inter4;
110  //  [DEFAULT]=func_inter5=0
111  double func_inter5;
112  //  [DEFAULT]=func_inter6=0
113  double func_inter6;
114  //  [DEFAULT]=func_inter7=0
115  double func_inter7;
116  //  [DEFAULT]=func_inter8=0
117  double func_inter8;
118  //  [DEFAULT]=func_inter9=0
119  double func_inter9;
120  //  [DEFAULT]=func_inter10=0
121  double func_inter10;
122
123  //  [DEFAULT]=nu_inter1=2.5
124  double nu_inter1;
125  //  [DEFAULT]=nu_inter2=2.5
126  double nu_inter2;
127  //  [DEFAULT]=nu_inter3=2.5
128  double nu_inter3;
129  //  [DEFAULT]=nu_inter4=2.5
130  double nu_inter4;
131  //  [DEFAULT]=nu_inter5=2.5
132  double nu_inter5;
133  //  [DEFAULT]=nu_inter6=2.5
134  double nu_inter6;
135  //  [DEFAULT]=nu_inter7=2.5
136  double nu_inter7;
137  //  [DEFAULT]=nu_inter8=2.5
138  double nu_inter8;
139  //  [DEFAULT]=nu_inter9=2.5
140  double nu_inter9;
141  //  [DEFAULT]=nu_inter10=2.5
142  double nu_inter10;
143
144  //  [DEFAULT]=npts_inter=35.0
145  double npts_inter;
146  //  [DEFAULT]=nu_inter0=2.5
147  double nu_inter0;
148  //  [DEFAULT]=rad_core0=50.0 [A]
149  double rad_core0;
150} SphereSLDParameters;
151
152
153static double sphere_sld_kernel(double dp[], double q) {
154  int n = dp[0];
155  int i,j,k;
156
157  double scale = dp[1];
158  double thick_inter_core = dp[2];
159  double sld_core = dp[4];
160  double sld_solv = dp[5];
161  double background = dp[6];
162  double npts = dp[57]; //number of sub_layers in each interface
163  double nsl=npts;//21.0; //nsl = Num_sub_layer:  MUST ODD number in double //no other number works now
164  int n_s;
165
166  double sld_i,sld_f,dz,bes,fun,f,vol,vol_pre,vol_sub,qr,r,contr,f2;
167  double sign,slope=0.0;
168  double pi;
169
170  int* fun_type;
171  double* sld;
172  double* thick_inter;
173  double* thick;
174  double* fun_coef;
175
176  double total_thick=0.0;
177
178  fun_type = (int*)malloc((n+2)*sizeof(int));
179  sld = (double*)malloc((n+2)*sizeof(double));
180  thick_inter = (double*)malloc((n+2)*sizeof(double));
181  thick = (double*)malloc((n+2)*sizeof(double));
182  fun_coef = (double*)malloc((n+2)*sizeof(double));
183
184  fun_type[0] = dp[3];
185  fun_coef[0] = fabs(dp[58]);
186  for (i =1; i<=n; i++){
187    sld[i] = dp[i+6];
188    thick_inter[i]= dp[i+16];
189    thick[i] = dp[i+26];
190    fun_type[i] = dp[i+36];
191    fun_coef[i] = fabs(dp[i+46]);
192    total_thick += thick[i] + thick_inter[i];
193  }
194  sld[0] = sld_core;
195  sld[n+1] = sld_solv;
196  thick[0] = dp[59];
197  thick[n+1] = total_thick/5.0;
198  thick_inter[0] = thick_inter_core;
199  thick_inter[n+1] = 0.0;
200  fun_coef[n+1] = 0.0;
201
202  pi = 4.0*atan(1.0);
203  f = 0.0;
204  r = 0.0;
205  vol = 0.0;
206  vol_pre = 0.0;
207  vol_sub = 0.0;
208  sld_f = sld_core;
209
210  //floor_nsl = floor(nsl/2.0);
211
212  dz = 0.0;
213  // iteration for # of shells + core + solvent
214  for (i=0;i<=n+1; i++){
215    //iteration for N sub-layers
216    //if (fabs(thick[i]) <= 1e-24){
217    //   continue;
218    //}
219    // iteration for flat and interface
220    for (j=0;j<2;j++){
221      // iteration for sub_shells in the interface
222      // starts from #1 sub-layer
223      for (n_s=1;n_s<=nsl; n_s++){
224        // for solvent, it doesn't have an interface
225        if (i==n+1 && j==1)
226          break;
227        // for flat layers
228        if (j==0){
229          dz = thick[i];
230          sld_i = sld[i];
231          slope = 0.0;
232        }
233        // for interfacial sub_shells
234        else{
235          dz = thick_inter[i]/nsl;
236          // find sld_i at the outer boundary of sub-layer #n_s
237          sld_i = intersldfunc(fun_type[i],nsl, n_s, fun_coef[i], sld[i], sld[i+1]);
238          // calculate slope
239          slope= (sld_i -sld_f)/dz;
240        }
241        contr = sld_f-slope*r;
242        // iteration for the left and right boundary of the shells(or sub_shells)
243        for (k=0; k<2; k++){
244          // At r=0, the contribution to I is zero, so skip it.
245          if ( i == 0 && j == 0 && k == 0){
246            continue;
247          }
248          // On the top of slovent there is no interface; skip it.
249          if (i == n+1 && k == 1){
250            continue;
251          }
252          // At the right side (outer) boundary
253          if ( k == 1){
254            sign = 1.0;
255            r += dz;
256          }
257          // At the left side (inner) boundary
258          else{
259            sign = -1.0;
260          }
261          qr = q * r;
262          fun = 0.0;
263          if(qr == 0.0){
264            // sigular point
265            bes = sign * 1.0;
266          }
267          else{
268            // for flat sub-layer
269            bes = sign *  3.0 * (sin(qr) - qr * cos(qr)) / (qr * qr * qr);
270            // with linear slope
271            if (fabs(slope) > 0.0 ){
272              fun = sign * 3.0 * r * (2.0*qr*sin(qr)-((qr*qr)-2.0)*cos(qr))/(qr * qr * qr * qr);
273            }
274          }
275          // update total volume
276          vol = 4.0 * pi / 3.0 * r * r * r;
277          // we won't do the following volume correction for now.
278          // substrate empty area of volume
279          //if (k == 1 && fabs(sld_in[i]-sld_solv) < 1e-04*fabs(sld_solv) && fun_type[i]==0){
280          //  vol_sub += (vol_pre - vol);
281          //}
282          f += vol * (bes * contr + fun * slope);
283        }
284        // remember this sld as sld_f
285        sld_f =sld_i;
286        // no sub-layer iteration (n_s loop) for the flat layer
287        if (j==0)
288          break;
289      }
290    }
291  }
292  //vol += vol_sub;
293  f2 = f * f / vol * 1.0e8;
294  f2 *= scale;
295  f2 += background;
296
297  free(fun_type);
298  free(sld);
299  free(thick_inter);
300  free(thick);
301  free(fun_coef);
302
303  return (f2);
304}
305
306
307SphereSLDModel :: SphereSLDModel() {
308  n_shells = Parameter(1.0);
309  scale = Parameter(1.0);
310  thick_inter0 = Parameter(1.0, true);
311  thick_inter0.set_min(0.0);
312  func_inter0 = Parameter(0);
313  sld_core0 = Parameter(2.07e-06);
314  sld_solv = Parameter(1.0e-06);
315  background = Parameter(0.0);
316
317
318  sld_flat1 = Parameter(2.7e-06);
319  sld_flat2 = Parameter(3.5e-06);
320  sld_flat3 = Parameter(4.0e-06);
321  sld_flat4 = Parameter(3.5e-06);
322  sld_flat5 = Parameter(4.0e-06);
323  sld_flat6 = Parameter(3.5e-06);
324  sld_flat7 = Parameter(4.0e-06);
325  sld_flat8 = Parameter(3.5e-06);
326  sld_flat9 = Parameter(4.0e-06);
327  sld_flat10 = Parameter(3.5e-06);
328
329
330  thick_inter1 = Parameter(1.0);
331  thick_inter2 = Parameter(1.0);
332  thick_inter3 = Parameter(1.0);
333  thick_inter4 = Parameter(1.0);
334  thick_inter5 = Parameter(1.0);
335  thick_inter6 = Parameter(1.0);
336  thick_inter7 = Parameter(1.0);
337  thick_inter8 = Parameter(1.0);
338  thick_inter9 = Parameter(1.0);
339  thick_inter10 = Parameter(1.0);
340
341
342  thick_flat1 = Parameter(100.0);
343  thick_flat2 = Parameter(100.0);
344  thick_flat3 = Parameter(100.0);
345  thick_flat4 = Parameter(100.0);
346  thick_flat5 = Parameter(100.0);
347  thick_flat6 = Parameter(100.0);
348  thick_flat7 = Parameter(100.0);
349  thick_flat8 = Parameter(100.0);
350  thick_flat9 = Parameter(100.0);
351  thick_flat10 = Parameter(100.0);
352
353
354  func_inter1 = Parameter(0);
355  func_inter2 = Parameter(0);
356  func_inter3 = Parameter(0);
357  func_inter4 = Parameter(0);
358  func_inter5 = Parameter(0);
359  func_inter6 = Parameter(0);
360  func_inter7 = Parameter(0);
361  func_inter8 = Parameter(0);
362  func_inter9 = Parameter(0);
363  func_inter10 = Parameter(0);
364
365  nu_inter1 = Parameter(2.5);
366  nu_inter2 = Parameter(2.5);
367  nu_inter3 = Parameter(2.5);
368  nu_inter4 = Parameter(2.5);
369  nu_inter5 = Parameter(2.5);
370  nu_inter6 = Parameter(2.5);
371  nu_inter7 = Parameter(2.5);
372  nu_inter8 = Parameter(2.5);
373  nu_inter9 = Parameter(2.5);
374  nu_inter10 = Parameter(2.5);
375
376  npts_inter = Parameter(35.0);
377  nu_inter0 = Parameter(2.5);
378  rad_core0 = Parameter(60.0, true);
379  rad_core0.set_min(0.0);
380}
381
382/**
383 * Function to evaluate 1D SphereSLD function
384 * @param q: q-value
385 * @return: function value
386 */
387double SphereSLDModel :: operator()(double q) {
388  double dp[60];
389  // Fill parameter array for IGOR library
390  // Add the background after averaging
391  dp[0] = n_shells();
392  dp[1] = scale();
393  dp[2] = thick_inter0();
394  dp[3] = func_inter0();
395  dp[4] = sld_core0();
396  dp[5] = sld_solv();
397  dp[6] = 0.0;
398
399  dp[7] = sld_flat1();
400  dp[8] = sld_flat2();
401  dp[9] = sld_flat3();
402  dp[10] = sld_flat4();
403  dp[11] = sld_flat5();
404  dp[12] = sld_flat6();
405  dp[13] = sld_flat7();
406  dp[14] = sld_flat8();
407  dp[15] = sld_flat9();
408  dp[16] = sld_flat10();
409
410  dp[17] = thick_inter1();
411  dp[18] = thick_inter2();
412  dp[19] = thick_inter3();
413  dp[20] = thick_inter4();
414  dp[21] = thick_inter5();
415  dp[22] = thick_inter6();
416  dp[23] = thick_inter7();
417  dp[24] = thick_inter8();
418  dp[25] = thick_inter9();
419  dp[26] = thick_inter10();
420
421  dp[27] = thick_flat1();
422  dp[28] = thick_flat2();
423  dp[29] = thick_flat3();
424  dp[30] = thick_flat4();
425  dp[31] = thick_flat5();
426  dp[32] = thick_flat6();
427  dp[33] = thick_flat7();
428  dp[34] = thick_flat8();
429  dp[35] = thick_flat9();
430  dp[36] = thick_flat10();
431
432  dp[37] = func_inter1();
433  dp[38] = func_inter2();
434  dp[39] = func_inter3();
435  dp[40] = func_inter4();
436  dp[41] = func_inter5();
437  dp[42] = func_inter6();
438  dp[43] = func_inter7();
439  dp[44] = func_inter8();
440  dp[45] = func_inter9();
441  dp[46] = func_inter10();
442
443  dp[47] = nu_inter1();
444  dp[48] = nu_inter2();
445  dp[49] = nu_inter3();
446  dp[50] = nu_inter4();
447  dp[51] = nu_inter5();
448  dp[52] = nu_inter6();
449  dp[53] = nu_inter7();
450  dp[54] = nu_inter8();
451  dp[55] = nu_inter9();
452  dp[56] = nu_inter10();
453
454
455  dp[57] = npts_inter();
456  dp[58] = nu_inter0();
457  dp[59] = rad_core0();
458
459  // No polydispersion supported in this model.
460  // Get the dispersion points for the radius
461  vector<WeightPoint> weights_rad_core0;
462  rad_core0.get_weights(weights_rad_core0);
463  vector<WeightPoint> weights_thick_inter0;
464  thick_inter0.get_weights(weights_thick_inter0);
465  // Perform the computation, with all weight points
466  double sum = 0.0;
467  double norm = 0.0;
468  double vol = 0.0;
469
470  // Loop over core weight points
471  for(size_t i=0; i<weights_rad_core0.size(); i++) {
472    dp[59] = weights_rad_core0[i].value;
473    // Loop over thick_inter0 weight points
474    for(size_t j=0; j<weights_thick_inter0.size(); j++) {
475      dp[2] = weights_thick_inter0[j].value;
476
477      //Un-normalize Sphere by volume
478      sum += weights_rad_core0[i].weight * weights_thick_inter0[j].weight
479          * sphere_sld_kernel(dp,q) * pow((weights_rad_core0[i].value +
480              weights_thick_inter0[j].value),3.0);
481      //Find average volume
482      vol += weights_rad_core0[i].weight * weights_thick_inter0[j].weight
483          * pow((weights_rad_core0[i].value+weights_thick_inter0[j].value),3.0);
484
485      norm += weights_rad_core0[i].weight * weights_thick_inter0[j].weight;
486    }
487  }
488
489  if (vol != 0.0 && norm != 0.0) {
490    //Re-normalize by avg volume
491    sum = sum/(vol/norm);}
492
493  return sum/norm + background();
494}
495
496/**
497 * Function to evaluate 2D SphereSLD function
498 * @param q_x: value of Q along x
499 * @param q_y: value of Q along y
500 * @return: function value
501 */
502double SphereSLDModel :: operator()(double qx, double qy) {
503  double q = sqrt(qx*qx + qy*qy);
504  return (*this).operator()(q);
505}
506
507/**
508 * Function to evaluate SphereSLD function
509 * @param pars: parameters of the SphereSLD
510 * @param q: q-value
511 * @param phi: angle phi
512 * @return: function value
513 */
514double SphereSLDModel :: evaluate_rphi(double q, double phi) {
515  return (*this).operator()(q);
516}
517
518/**
519 * Function to calculate TOTAL radius
520 * ToDo: Find What is the effective radius for this model.
521 * @return: effective radius value
522 */
523// No polydispersion supported in this model.
524// Calculate max radius assumming max_radius = effective radius
525// Note that this max radius is not affected by sld of layer, sld of interface, or
526// sld of solvent.
527double SphereSLDModel :: calculate_ER() {
528  SphereSLDParameters dp;
529
530  dp.n_shells = n_shells();
531
532  dp.rad_core0 = rad_core0();
533  dp.thick_flat1 = thick_flat1();
534  dp.thick_flat2 = thick_flat2();
535  dp.thick_flat3 = thick_flat3();
536  dp.thick_flat4 = thick_flat4();
537  dp.thick_flat5 = thick_flat5();
538  dp.thick_flat6 = thick_flat6();
539  dp.thick_flat7 = thick_flat7();
540  dp.thick_flat8 = thick_flat8();
541  dp.thick_flat9 = thick_flat9();
542  dp.thick_flat10 = thick_flat10();
543
544  dp.thick_inter0 = thick_inter0();
545  dp.thick_inter1 = thick_inter1();
546  dp.thick_inter2 = thick_inter2();
547  dp.thick_inter3 = thick_inter3();
548  dp.thick_inter4 = thick_inter4();
549  dp.thick_inter5 = thick_inter5();
550  dp.thick_inter6 = thick_inter6();
551  dp.thick_inter7 = thick_inter7();
552  dp.thick_inter8 = thick_inter8();
553  dp.thick_inter9 = thick_inter9();
554  dp.thick_inter10 = thick_inter10();
555
556  double rad_out = 0.0;
557  double out = 0.0;
558  // Perform the computation, with all weight points
559  double sum = 0.0;
560  double norm = 0.0;
561
562  // Get the dispersion points for the radius
563  vector<WeightPoint> weights_rad_core0;
564  rad_core0.get_weights(weights_rad_core0);
565
566  // Get the dispersion points for the thick 1
567  vector<WeightPoint> weights_thick_inter0;
568  thick_inter0.get_weights(weights_thick_inter0);
569  // Loop over radius weight points
570  for(size_t i=0; i<weights_rad_core0.size(); i++) {
571    dp.rad_core0 = weights_rad_core0[i].value;
572    // Loop over radius weight points
573    for(size_t j=0; j<weights_thick_inter0.size(); j++) {
574      dp.thick_inter0 = weights_thick_inter0[j].value;
575      rad_out = dp.rad_core0 + dp.thick_inter0;
576      if (dp.n_shells > 0)
577        rad_out += dp.thick_flat1 + dp.thick_inter1;
578      if (dp.n_shells > 1)
579        rad_out += dp.thick_flat2 + dp.thick_inter2;
580      if (dp.n_shells > 2)
581        rad_out += dp.thick_flat3 + dp.thick_inter3;
582      if (dp.n_shells > 3)
583        rad_out += dp.thick_flat4 + dp.thick_inter4;
584      if (dp.n_shells > 4)
585        rad_out += dp.thick_flat5 + dp.thick_inter5;
586      if (dp.n_shells > 5)
587        rad_out += dp.thick_flat6 + dp.thick_inter6;
588      if (dp.n_shells > 6)
589        rad_out += dp.thick_flat7 + dp.thick_inter7;
590      if (dp.n_shells > 7)
591        rad_out += dp.thick_flat8 + dp.thick_inter8;
592      if (dp.n_shells > 8)
593        rad_out += dp.thick_flat9 + dp.thick_inter9;
594      if (dp.n_shells > 9)
595        rad_out += dp.thick_flat10 + dp.thick_inter10;
596      sum += weights_rad_core0[i].weight*weights_thick_inter0[j].weight
597          * (rad_out);
598      norm += weights_rad_core0[i].weight*weights_thick_inter0[j].weight;
599    }
600  }
601  if (norm != 0){
602    //return the averaged value
603    out =  sum/norm;}
604  else{
605    //return normal value
606    out = dp.rad_core0 + dp.thick_inter0;
607    if (dp.n_shells > 0)
608      out += dp.thick_flat1 + dp.thick_inter1;
609    if (dp.n_shells > 1)
610      out += dp.thick_flat2 + dp.thick_inter2;
611    if (dp.n_shells > 2)
612      out += dp.thick_flat3 + dp.thick_inter3;
613    if (dp.n_shells > 3)
614      out += dp.thick_flat4 + dp.thick_inter4;
615    if (dp.n_shells > 4)
616      out += dp.thick_flat5 + dp.thick_inter5;
617    if (dp.n_shells > 5)
618      out += dp.thick_flat6 + dp.thick_inter6;
619    if (dp.n_shells > 6)
620      out += dp.thick_flat7 + dp.thick_inter7;
621    if (dp.n_shells > 7)
622      out += dp.thick_flat8 + dp.thick_inter8;
623    if (dp.n_shells > 8)
624      out += dp.thick_flat9 + dp.thick_inter9;
625    if (dp.n_shells > 9)
626      out += dp.thick_flat10 + dp.thick_inter10;
627  }
628
629  return out;
630
631}
632double SphereSLDModel :: calculate_VR() {
633  return 1.0;
634}
Note: See TracBrowser for help on using the repository browser.