[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
[836fe6e] | 20 | */ |
---|
[0f5bc9f] | 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[a8eab1c] | 26 | #include "sphere.h" |
---|
[0f5bc9f] | 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libSphere.h" |
---|
[318b5bbb] | 30 | #include "libmultifunc/libfunc.h" |
---|
[0f5bc9f] | 31 | } |
---|
[318b5bbb] | 32 | // Convenience parameter structure |
---|
| 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double radius; |
---|
| 36 | double sldSph; |
---|
| 37 | double sldSolv; |
---|
| 38 | double background; |
---|
| 39 | double M0_sld_sph; |
---|
| 40 | double M_theta_sph; |
---|
| 41 | double M_phi_sph; |
---|
| 42 | double M0_sld_solv; |
---|
| 43 | double M_theta_solv; |
---|
| 44 | double M_phi_solv; |
---|
| 45 | double Up_frac_i; |
---|
| 46 | double Up_frac_f; |
---|
| 47 | double Up_theta; |
---|
| 48 | } SphereParameters; |
---|
[0f5bc9f] | 49 | |
---|
| 50 | SphereModel :: SphereModel() { |
---|
| 51 | scale = Parameter(1.0); |
---|
| 52 | radius = Parameter(20.0, true); |
---|
| 53 | radius.set_min(0.0); |
---|
[f10063e] | 54 | sldSph = Parameter(4.0e-6); |
---|
| 55 | sldSolv = Parameter(1.0e-6); |
---|
[0f5bc9f] | 56 | background = Parameter(0.0); |
---|
[318b5bbb] | 57 | M0_sld_sph = Parameter(0.0e-6); |
---|
| 58 | M_theta_sph = Parameter(0.0); |
---|
| 59 | M_phi_sph = Parameter(0.0); |
---|
| 60 | M0_sld_solv = Parameter(0.0e-6); |
---|
| 61 | M_theta_solv = Parameter(0.0); |
---|
| 62 | M_phi_solv = Parameter(0.0); |
---|
| 63 | Up_frac_i = Parameter(0.5); |
---|
| 64 | Up_frac_f = Parameter(0.5); |
---|
| 65 | Up_theta = Parameter(0.0); |
---|
[0f5bc9f] | 66 | } |
---|
| 67 | |
---|
| 68 | /** |
---|
| 69 | * Function to evaluate 1D scattering function |
---|
| 70 | * The NIST IGOR library is used for the actual calculation. |
---|
| 71 | * @param q: q-value |
---|
| 72 | * @return: function value |
---|
| 73 | */ |
---|
| 74 | double SphereModel :: operator()(double q) { |
---|
[f10063e] | 75 | double dp[5]; |
---|
[0f5bc9f] | 76 | |
---|
| 77 | // Fill parameter array for IGOR library |
---|
| 78 | // Add the background after averaging |
---|
| 79 | dp[0] = scale(); |
---|
| 80 | dp[1] = radius(); |
---|
[f10063e] | 81 | dp[2] = sldSph(); |
---|
| 82 | dp[3] = sldSolv(); |
---|
| 83 | dp[4] = 0.0; |
---|
[0f5bc9f] | 84 | |
---|
| 85 | // Get the dispersion points for the radius |
---|
| 86 | vector<WeightPoint> weights_rad; |
---|
| 87 | radius.get_weights(weights_rad); |
---|
| 88 | |
---|
| 89 | // Perform the computation, with all weight points |
---|
| 90 | double sum = 0.0; |
---|
| 91 | double norm = 0.0; |
---|
[c451be9] | 92 | double vol = 0.0; |
---|
[0f5bc9f] | 93 | |
---|
| 94 | // Loop over radius weight points |
---|
[34c2649] | 95 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[0f5bc9f] | 96 | dp[1] = weights_rad[i].value; |
---|
| 97 | |
---|
[c451be9] | 98 | //Un-normalize SphereForm by volume |
---|
[0f5bc9f] | 99 | sum += weights_rad[i].weight |
---|
[c451be9] | 100 | * SphereForm(dp, q) * pow(weights_rad[i].value,3); |
---|
| 101 | //Find average volume |
---|
| 102 | vol += weights_rad[i].weight |
---|
| 103 | * pow(weights_rad[i].value,3); |
---|
| 104 | |
---|
[0f5bc9f] | 105 | norm += weights_rad[i].weight; |
---|
| 106 | } |
---|
[c451be9] | 107 | |
---|
| 108 | if (vol != 0.0 && norm != 0.0) { |
---|
| 109 | //Re-normalize by avg volume |
---|
| 110 | sum = sum/(vol/norm);} |
---|
[0f5bc9f] | 111 | return sum/norm + background(); |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | /** |
---|
| 115 | * Function to evaluate 2D scattering function |
---|
[318b5bbb] | 116 | * @param pars: parameters |
---|
| 117 | * @param q: q-value |
---|
| 118 | * @param q_x: q_x / q |
---|
| 119 | * @param q_y: q_y / q |
---|
| 120 | * @return: function value |
---|
| 121 | */ |
---|
| 122 | |
---|
| 123 | static double sphere_analytical_2D_scaled(SphereParameters *pars, double q, double q_x, double q_y) { |
---|
| 124 | double dp[5]; |
---|
| 125 | //convert angle degree to radian |
---|
| 126 | dp[0] = 1.0; |
---|
| 127 | dp[1] = pars->radius; |
---|
| 128 | dp[2] = 0.0; |
---|
| 129 | dp[3] = 0.0; |
---|
| 130 | dp[4] = 0.0; |
---|
| 131 | |
---|
| 132 | double sldSph = pars->sldSph; |
---|
| 133 | double sldSolv = pars->sldSolv; |
---|
| 134 | double answer = 0.0; |
---|
| 135 | double m_max = pars->M0_sld_sph; |
---|
| 136 | double m_max_solv = pars->M0_sld_solv; |
---|
| 137 | |
---|
| 138 | if (m_max < 1.0e-32 && m_max_solv < 1.0e-32){ |
---|
| 139 | dp[2] = sldSph; |
---|
| 140 | dp[3] = sldSolv; |
---|
| 141 | answer = SphereForm(dp, q); |
---|
| 142 | } |
---|
| 143 | else{ |
---|
[5b07138] | 144 | //double contrast = sldSph - sldSolv; |
---|
[318b5bbb] | 145 | double qx = q_x; |
---|
| 146 | double qy = q_y; |
---|
| 147 | double s_theta = pars->Up_theta; |
---|
| 148 | double m_phi = pars->M_phi_sph; |
---|
| 149 | double m_theta = pars->M_theta_sph; |
---|
| 150 | double m_phi_solv = pars->M_phi_solv; |
---|
| 151 | double m_theta_solv = pars->M_theta_solv; |
---|
| 152 | double in_spin = pars->Up_frac_i; |
---|
| 153 | double out_spin = pars->Up_frac_f; |
---|
| 154 | polar_sld p_sld; |
---|
| 155 | polar_sld p_sld_solv; |
---|
| 156 | p_sld = cal_msld(1, qx, qy, sldSph, m_max, m_theta, m_phi, |
---|
| 157 | in_spin, out_spin, s_theta); |
---|
| 158 | p_sld_solv = cal_msld(1, qx, qy, sldSolv, m_max_solv, m_theta_solv, m_phi_solv, |
---|
| 159 | in_spin, out_spin, s_theta); |
---|
| 160 | //up_up |
---|
| 161 | if (in_spin > 0.0 && out_spin > 0.0){ |
---|
| 162 | dp[2] = p_sld.uu; |
---|
| 163 | dp[3] = p_sld_solv.uu; |
---|
| 164 | answer += SphereForm(dp, q); |
---|
| 165 | } |
---|
| 166 | //down_down |
---|
| 167 | if (in_spin < 1.0 && out_spin < 1.0){ |
---|
| 168 | dp[2] = p_sld.dd; |
---|
| 169 | dp[3] = p_sld_solv.dd; |
---|
| 170 | answer += SphereForm(dp, q); |
---|
| 171 | } |
---|
| 172 | //up_down |
---|
| 173 | if (in_spin > 0.0 && out_spin < 1.0){ |
---|
| 174 | dp[2] = p_sld.re_ud; |
---|
| 175 | dp[3] = p_sld_solv.re_ud; |
---|
| 176 | answer += SphereForm(dp, q); |
---|
| 177 | dp[2] = p_sld.im_ud; |
---|
| 178 | dp[3] = p_sld_solv.im_ud; |
---|
| 179 | answer += SphereForm(dp, q); |
---|
| 180 | } |
---|
| 181 | //down_up |
---|
| 182 | if (in_spin < 1.0 && out_spin > 0.0){ |
---|
| 183 | dp[2] = p_sld.re_du; |
---|
| 184 | dp[3] = p_sld_solv.re_du; |
---|
| 185 | answer += SphereForm(dp, q); |
---|
| 186 | dp[2] = p_sld.im_du; |
---|
| 187 | dp[3] = p_sld_solv.im_du; |
---|
| 188 | answer += SphereForm(dp, q); |
---|
| 189 | } |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | // add in the background |
---|
| 193 | answer *= pars->scale; |
---|
| 194 | answer += pars->background; |
---|
| 195 | return answer; |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | /** |
---|
| 200 | * Function to evaluate 2D scattering function |
---|
| 201 | * @param pars: parameters |
---|
| 202 | * @param q: q-value |
---|
| 203 | * @return: function value |
---|
| 204 | */ |
---|
| 205 | static double sphere_analytical_2DXY(SphereParameters *pars, double qx, double qy) { |
---|
| 206 | double q; |
---|
| 207 | q = sqrt(qx*qx+qy*qy); |
---|
| 208 | return sphere_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | /** |
---|
| 213 | * Function to evaluate 2D scattering function |
---|
[0f5bc9f] | 214 | * @param q_x: value of Q along x |
---|
| 215 | * @param q_y: value of Q along y |
---|
| 216 | * @return: function value |
---|
| 217 | */ |
---|
| 218 | double SphereModel :: operator()(double qx, double qy) { |
---|
[318b5bbb] | 219 | SphereParameters dp; |
---|
| 220 | dp.scale = scale(); |
---|
| 221 | dp.radius = radius(); |
---|
| 222 | dp.sldSph = sldSph(); |
---|
| 223 | dp.sldSolv = sldSolv(); |
---|
| 224 | dp.background = 0.0; |
---|
| 225 | dp.Up_theta = Up_theta(); |
---|
| 226 | dp.M_phi_sph = M_phi_sph(); |
---|
| 227 | dp.M_theta_sph = M_theta_sph(); |
---|
| 228 | dp.M0_sld_sph = M0_sld_sph(); |
---|
| 229 | dp.M_phi_solv = M_phi_solv(); |
---|
| 230 | dp.M_theta_solv = M_theta_solv(); |
---|
| 231 | dp.M0_sld_solv = M0_sld_solv(); |
---|
| 232 | dp.Up_frac_i = Up_frac_i(); |
---|
| 233 | dp.Up_frac_f = Up_frac_f(); |
---|
| 234 | |
---|
| 235 | // Get the dispersion points for the radius |
---|
| 236 | vector<WeightPoint> weights_rad; |
---|
| 237 | radius.get_weights(weights_rad); |
---|
| 238 | |
---|
| 239 | // Perform the computation, with all weight points |
---|
| 240 | double sum = 0.0; |
---|
| 241 | double norm = 0.0; |
---|
| 242 | double vol = 0.0; |
---|
| 243 | |
---|
| 244 | // Loop over radius weight points |
---|
| 245 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 246 | dp.radius = weights_rad[i].value; |
---|
| 247 | |
---|
| 248 | //Un-normalize SphereForm by volume |
---|
| 249 | sum += weights_rad[i].weight |
---|
| 250 | * sphere_analytical_2DXY(&dp, qx, qy) * pow(weights_rad[i].value,3); |
---|
| 251 | //Find average volume |
---|
| 252 | vol += weights_rad[i].weight |
---|
| 253 | * pow(weights_rad[i].value,3); |
---|
| 254 | |
---|
| 255 | norm += weights_rad[i].weight; |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | if (vol != 0.0 && norm != 0.0) { |
---|
| 259 | //Re-normalize by avg volume |
---|
| 260 | sum = sum/(vol/norm);} |
---|
| 261 | return sum/norm + background(); |
---|
[0f5bc9f] | 262 | } |
---|
| 263 | |
---|
| 264 | /** |
---|
| 265 | * Function to evaluate 2D scattering function |
---|
| 266 | * @param pars: parameters of the sphere |
---|
| 267 | * @param q: q-value |
---|
| 268 | * @param phi: angle phi |
---|
| 269 | * @return: function value |
---|
| 270 | */ |
---|
| 271 | double SphereModel :: evaluate_rphi(double q, double phi) { |
---|
[318b5bbb] | 272 | double qx = q*cos(phi); |
---|
| 273 | double qy = q*sin(phi); |
---|
| 274 | return (*this).operator()(qx, qy); |
---|
[0f5bc9f] | 275 | } |
---|
[5eb9154] | 276 | |
---|
| 277 | /** |
---|
| 278 | * Function to calculate effective radius |
---|
| 279 | * @return: effective radius value |
---|
| 280 | */ |
---|
| 281 | double SphereModel :: calculate_ER() { |
---|
| 282 | double rad_out = 0.0; |
---|
| 283 | |
---|
| 284 | // Perform the computation, with all weight points |
---|
| 285 | double sum = 0.0; |
---|
| 286 | double norm = 0.0; |
---|
| 287 | |
---|
| 288 | // Get the dispersion points for the radius |
---|
| 289 | vector<WeightPoint> weights_rad; |
---|
| 290 | radius.get_weights(weights_rad); |
---|
| 291 | // Loop over radius weight points to average the radius value |
---|
[34c2649] | 292 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[5eb9154] | 293 | sum += weights_rad[i].weight |
---|
| 294 | * weights_rad[i].value; |
---|
| 295 | norm += weights_rad[i].weight; |
---|
| 296 | } |
---|
| 297 | if (norm != 0){ |
---|
| 298 | //return the averaged value |
---|
| 299 | rad_out = sum/norm;} |
---|
| 300 | else{ |
---|
| 301 | //return normal value |
---|
| 302 | rad_out = radius();} |
---|
| 303 | |
---|
| 304 | return rad_out; |
---|
| 305 | } |
---|
[e08bd5b] | 306 | double SphereModel :: calculate_VR() { |
---|
| 307 | return 1.0; |
---|
[318b5bbb] | 308 | } |
---|