1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "models.hh" |
---|
24 | #include "parameters.hh" |
---|
25 | #include <stdio.h> |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libTwoPhase.h" |
---|
30 | #include "polygausscoil.h" |
---|
31 | } |
---|
32 | |
---|
33 | Poly_GaussCoil :: Poly_GaussCoil() { |
---|
34 | scale = Parameter(1.0); |
---|
35 | rg = Parameter(60.0, true); |
---|
36 | rg.set_min(0.0); |
---|
37 | poly_m = Parameter(2.0); |
---|
38 | background = Parameter(0.001); |
---|
39 | } |
---|
40 | |
---|
41 | /** |
---|
42 | * Function to evaluate 1D scattering function |
---|
43 | * The NIST IGOR library is used for the actual calculation. |
---|
44 | * @param q: q-value |
---|
45 | * @return: function value |
---|
46 | */ |
---|
47 | double Poly_GaussCoil :: operator()(double q) { |
---|
48 | double dp[4]; |
---|
49 | |
---|
50 | // Fill parameter array for IGOR library |
---|
51 | // Add the background after averaging |
---|
52 | dp[0] = scale(); |
---|
53 | dp[1] = rg(); |
---|
54 | dp[2] = poly_m(); |
---|
55 | dp[3] = 0.0; |
---|
56 | |
---|
57 | // Get the dispersion points for the radius |
---|
58 | vector<WeightPoint> weights_rad; |
---|
59 | rg.get_weights(weights_rad); |
---|
60 | |
---|
61 | // Perform the computation, with all weight points |
---|
62 | double sum = 0.0; |
---|
63 | |
---|
64 | |
---|
65 | double norm = 0.0; |
---|
66 | double vol = 0.0; |
---|
67 | |
---|
68 | // Loop over radius weight points |
---|
69 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
70 | dp[1] = weights_rad[i].value; |
---|
71 | |
---|
72 | //Un-normalize SphereForm by volume |
---|
73 | sum += weights_rad[i].weight |
---|
74 | * PolyGaussCoil(dp, q) * pow(weights_rad[i].value,3); |
---|
75 | //Find average volume |
---|
76 | vol += weights_rad[i].weight |
---|
77 | * pow(weights_rad[i].value,3); |
---|
78 | |
---|
79 | norm += weights_rad[i].weight; |
---|
80 | } |
---|
81 | |
---|
82 | if (vol != 0.0 && norm != 0.0) { |
---|
83 | //Re-normalize by avg volume |
---|
84 | sum = sum/(vol/norm);} |
---|
85 | return sum/norm + background(); |
---|
86 | |
---|
87 | |
---|
88 | sum = PolyGaussCoil(dp, q); |
---|
89 | return sum + background(); |
---|
90 | } |
---|
91 | |
---|
92 | /** |
---|
93 | * Function to evaluate 2D scattering function |
---|
94 | * @param q_x: value of Q along x |
---|
95 | * @param q_y: value of Q along y |
---|
96 | * @return: function value |
---|
97 | */ |
---|
98 | double Poly_GaussCoil :: operator()(double qx, double qy) { |
---|
99 | double q = sqrt(qx*qx + qy*qy); |
---|
100 | return (*this).operator()(q); |
---|
101 | } |
---|
102 | |
---|
103 | /** |
---|
104 | * Function to evaluate 2D scattering function |
---|
105 | * @param pars: parameters of the sphere |
---|
106 | * @param q: q-value |
---|
107 | * @param phi: angle phi |
---|
108 | * @return: function value |
---|
109 | */ |
---|
110 | double Poly_GaussCoil :: evaluate_rphi(double q, double phi) { |
---|
111 | return (*this).operator()(q); |
---|
112 | } |
---|
113 | |
---|
114 | /** |
---|
115 | * Function to calculate effective radius |
---|
116 | * @return: effective radius value |
---|
117 | */ |
---|
118 | double Poly_GaussCoil :: calculate_ER() { |
---|
119 | double rad_out = 0.0; |
---|
120 | |
---|
121 | // Perform the computation, with all weight points |
---|
122 | double sum = 0.0; |
---|
123 | double norm = 0.0; |
---|
124 | |
---|
125 | // Get the dispersion points for the radius |
---|
126 | vector<WeightPoint> weights_rad; |
---|
127 | rg.get_weights(weights_rad); |
---|
128 | // Loop over radius weight points to average the radius value |
---|
129 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
130 | sum += weights_rad[i].weight |
---|
131 | * weights_rad[i].value; |
---|
132 | norm += weights_rad[i].weight; |
---|
133 | } |
---|
134 | if (norm != 0){ |
---|
135 | //return the averaged value |
---|
136 | rad_out = sum/norm;} |
---|
137 | else{ |
---|
138 | //return normal value |
---|
139 | rad_out = rg();} |
---|
140 | |
---|
141 | return rad_out; |
---|
142 | } |
---|