1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | * TODO: add 2D function |
---|
21 | */ |
---|
22 | |
---|
23 | #include <math.h> |
---|
24 | #include "parameters.hh" |
---|
25 | #include <stdio.h> |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libCylinder.h" |
---|
30 | #include "libStructureFactor.h" |
---|
31 | } |
---|
32 | #include "parallelepiped.h" |
---|
33 | |
---|
34 | // Convenience parameter structure |
---|
35 | typedef struct { |
---|
36 | double scale; |
---|
37 | double short_a; |
---|
38 | double short_b; |
---|
39 | double long_c; |
---|
40 | double sldPipe; |
---|
41 | double sldSolv; |
---|
42 | double background; |
---|
43 | double parallel_theta; |
---|
44 | double parallel_phi; |
---|
45 | double parallel_psi; |
---|
46 | } ParallelepipedParameters; |
---|
47 | |
---|
48 | |
---|
49 | static double pkernel(double a, double b,double c, double ala, double alb, double alc){ |
---|
50 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
51 | double argA,argB,argC,tmp1,tmp2,tmp3; //local variables |
---|
52 | |
---|
53 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
54 | argA = a*ala/2.0; |
---|
55 | argB = b*alb/2.0; |
---|
56 | argC = c*alc/2.0; |
---|
57 | if(argA==0.0) { |
---|
58 | tmp1 = 1.0; |
---|
59 | } else { |
---|
60 | tmp1 = sin(argA)*sin(argA)/argA/argA; |
---|
61 | } |
---|
62 | if (argB==0.0) { |
---|
63 | tmp2 = 1.0; |
---|
64 | } else { |
---|
65 | tmp2 = sin(argB)*sin(argB)/argB/argB; |
---|
66 | } |
---|
67 | |
---|
68 | if (argC==0.0) { |
---|
69 | tmp3 = 1.0; |
---|
70 | } else { |
---|
71 | tmp3 = sin(argC)*sin(argC)/argC/argC; |
---|
72 | } |
---|
73 | |
---|
74 | return (tmp1*tmp2*tmp3); |
---|
75 | |
---|
76 | } |
---|
77 | |
---|
78 | /** |
---|
79 | * Function to evaluate 2D scattering function |
---|
80 | * @param pars: parameters of the parallelepiped |
---|
81 | * @param q: q-value |
---|
82 | * @param q_x: q_x / q |
---|
83 | * @param q_y: q_y / q |
---|
84 | * @return: function value |
---|
85 | */ |
---|
86 | static double parallelepiped_analytical_2D_scaled(ParallelepipedParameters *pars, double q, double q_x, double q_y) { |
---|
87 | double cparallel_x, cparallel_y, cparallel_z, bparallel_x, bparallel_y, parallel_x, parallel_y; |
---|
88 | double q_z; |
---|
89 | double alpha, vol, cos_val_c, cos_val_b, cos_val_a, edgeA, edgeB, edgeC; |
---|
90 | |
---|
91 | double answer; |
---|
92 | double pi = 4.0*atan(1.0); |
---|
93 | |
---|
94 | //convert angle degree to radian |
---|
95 | double theta = pars->parallel_theta * pi/180.0; |
---|
96 | double phi = pars->parallel_phi * pi/180.0; |
---|
97 | double psi = pars->parallel_psi * pi/180.0; |
---|
98 | |
---|
99 | edgeA = pars->short_a; |
---|
100 | edgeB = pars->short_b; |
---|
101 | edgeC = pars->long_c; |
---|
102 | |
---|
103 | |
---|
104 | // parallelepiped c axis orientation |
---|
105 | cparallel_x = sin(theta) * cos(phi); |
---|
106 | cparallel_y = sin(theta) * sin(phi); |
---|
107 | cparallel_z = cos(theta); |
---|
108 | |
---|
109 | // q vector |
---|
110 | q_z = 0.0; |
---|
111 | |
---|
112 | // Compute the angle btw vector q and the |
---|
113 | // axis of the parallelepiped |
---|
114 | cos_val_c = cparallel_x*q_x + cparallel_y*q_y + cparallel_z*q_z; |
---|
115 | alpha = acos(cos_val_c); |
---|
116 | |
---|
117 | // parallelepiped a axis orientation |
---|
118 | parallel_x = sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)*sin(pars->parallel_psi); |
---|
119 | parallel_y = cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)*cos(pars->parallel_psi); |
---|
120 | |
---|
121 | cos_val_a = parallel_x*q_x + parallel_y*q_y; |
---|
122 | |
---|
123 | |
---|
124 | |
---|
125 | // parallelepiped b axis orientation |
---|
126 | bparallel_x = sqrt(1.0-sin(theta)*cos(phi))*cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)* cos(pars->parallel_psi); |
---|
127 | bparallel_y = sqrt(1.0-sin(theta)*cos(phi))*sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)* sin(pars->parallel_psi); |
---|
128 | // axis of the parallelepiped |
---|
129 | cos_val_b = sin(acos(cos_val_a)) ; |
---|
130 | |
---|
131 | |
---|
132 | |
---|
133 | // The following test should always pass |
---|
134 | if (fabs(cos_val_c)>1.0) { |
---|
135 | printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
136 | return 0; |
---|
137 | } |
---|
138 | |
---|
139 | // Call the IGOR library function to get the kernel |
---|
140 | answer = pkernel( q*edgeA, q*edgeB, q*edgeC, sin(alpha)*cos_val_a,sin(alpha)*cos_val_b,cos_val_c); |
---|
141 | |
---|
142 | // Multiply by contrast^2 |
---|
143 | answer *= (pars->sldPipe - pars->sldSolv) * (pars->sldPipe - pars->sldSolv); |
---|
144 | |
---|
145 | //normalize by cylinder volume |
---|
146 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vparallel |
---|
147 | vol = edgeA* edgeB * edgeC; |
---|
148 | answer *= vol; |
---|
149 | |
---|
150 | //convert to [cm-1] |
---|
151 | answer *= 1.0e8; |
---|
152 | |
---|
153 | //Scale |
---|
154 | answer *= pars->scale; |
---|
155 | |
---|
156 | // add in the background |
---|
157 | answer += pars->background; |
---|
158 | |
---|
159 | return answer; |
---|
160 | } |
---|
161 | |
---|
162 | /** |
---|
163 | * Function to evaluate 2D scattering function |
---|
164 | * @param pars: parameters of the parallelepiped |
---|
165 | * @param q: q-value |
---|
166 | * @return: function value |
---|
167 | */ |
---|
168 | static double parallelepiped_analytical_2DXY(ParallelepipedParameters *pars, double qx, double qy) { |
---|
169 | double q; |
---|
170 | q = sqrt(qx*qx+qy*qy); |
---|
171 | return parallelepiped_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
172 | } |
---|
173 | |
---|
174 | ParallelepipedModel :: ParallelepipedModel() { |
---|
175 | scale = Parameter(1.0); |
---|
176 | short_a = Parameter(35.0, true); |
---|
177 | short_a.set_min(1.0); |
---|
178 | short_b = Parameter(75.0, true); |
---|
179 | short_b.set_min(1.0); |
---|
180 | long_c = Parameter(400.0, true); |
---|
181 | long_c.set_min(1.0); |
---|
182 | sldPipe = Parameter(6.3e-6); |
---|
183 | sldSolv = Parameter(1.0e-6); |
---|
184 | background = Parameter(0.0); |
---|
185 | parallel_theta = Parameter(0.0, true); |
---|
186 | parallel_phi = Parameter(0.0, true); |
---|
187 | parallel_psi = Parameter(0.0, true); |
---|
188 | } |
---|
189 | |
---|
190 | /** |
---|
191 | * Function to evaluate 1D scattering function |
---|
192 | * The NIST IGOR library is used for the actual calculation. |
---|
193 | * @param q: q-value |
---|
194 | * @return: function value |
---|
195 | */ |
---|
196 | double ParallelepipedModel :: operator()(double q) { |
---|
197 | double dp[7]; |
---|
198 | |
---|
199 | // Fill parameter array for IGOR library |
---|
200 | // Add the background after averaging |
---|
201 | dp[0] = scale(); |
---|
202 | dp[1] = short_a(); |
---|
203 | dp[2] = short_b(); |
---|
204 | dp[3] = long_c(); |
---|
205 | dp[4] = sldPipe(); |
---|
206 | dp[5] = sldSolv(); |
---|
207 | dp[6] = 0.0; |
---|
208 | |
---|
209 | // Get the dispersion points for the short_edgeA |
---|
210 | vector<WeightPoint> weights_short_a; |
---|
211 | short_a.get_weights(weights_short_a); |
---|
212 | |
---|
213 | // Get the dispersion points for the longer_edgeB |
---|
214 | vector<WeightPoint> weights_short_b; |
---|
215 | short_b.get_weights(weights_short_b); |
---|
216 | |
---|
217 | // Get the dispersion points for the longuest_edgeC |
---|
218 | vector<WeightPoint> weights_long_c; |
---|
219 | long_c.get_weights(weights_long_c); |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | // Perform the computation, with all weight points |
---|
224 | double sum = 0.0; |
---|
225 | double norm = 0.0; |
---|
226 | double vol = 0.0; |
---|
227 | |
---|
228 | // Loop over short_edgeA weight points |
---|
229 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
230 | dp[1] = weights_short_a[i].value; |
---|
231 | |
---|
232 | // Loop over longer_edgeB weight points |
---|
233 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
234 | dp[2] = weights_short_b[j].value; |
---|
235 | |
---|
236 | // Loop over longuest_edgeC weight points |
---|
237 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
238 | dp[3] = weights_long_c[k].value; |
---|
239 | //Un-normalize by volume |
---|
240 | sum += weights_short_a[i].weight * weights_short_b[j].weight |
---|
241 | * weights_long_c[k].weight * Parallelepiped(dp, q) |
---|
242 | * weights_short_a[i].value*weights_short_b[j].value |
---|
243 | * weights_long_c[k].value; |
---|
244 | //Find average volume |
---|
245 | vol += weights_short_a[i].weight * weights_short_b[j].weight |
---|
246 | * weights_long_c[k].weight |
---|
247 | * weights_short_a[i].value * weights_short_b[j].value |
---|
248 | * weights_long_c[k].value; |
---|
249 | |
---|
250 | norm += weights_short_a[i].weight |
---|
251 | * weights_short_b[j].weight * weights_long_c[k].weight; |
---|
252 | } |
---|
253 | } |
---|
254 | } |
---|
255 | if (vol != 0.0 && norm != 0.0) { |
---|
256 | //Re-normalize by avg volume |
---|
257 | sum = sum/(vol/norm);} |
---|
258 | |
---|
259 | return sum/norm + background(); |
---|
260 | } |
---|
261 | /** |
---|
262 | * Function to evaluate 2D scattering function |
---|
263 | * @param q_x: value of Q along x |
---|
264 | * @param q_y: value of Q along y |
---|
265 | * @return: function value |
---|
266 | */ |
---|
267 | double ParallelepipedModel :: operator()(double qx, double qy) { |
---|
268 | ParallelepipedParameters dp; |
---|
269 | // Fill parameter array |
---|
270 | dp.scale = scale(); |
---|
271 | dp.short_a = short_a(); |
---|
272 | dp.short_b = short_b(); |
---|
273 | dp.long_c = long_c(); |
---|
274 | dp.sldPipe = sldPipe(); |
---|
275 | dp.sldSolv = sldSolv(); |
---|
276 | dp.background = 0.0; |
---|
277 | //dp.background = background(); |
---|
278 | dp.parallel_theta = parallel_theta(); |
---|
279 | dp.parallel_phi = parallel_phi(); |
---|
280 | dp.parallel_psi = parallel_psi(); |
---|
281 | |
---|
282 | |
---|
283 | // Get the dispersion points for the short_edgeA |
---|
284 | vector<WeightPoint> weights_short_a; |
---|
285 | short_a.get_weights(weights_short_a); |
---|
286 | |
---|
287 | // Get the dispersion points for the longer_edgeB |
---|
288 | vector<WeightPoint> weights_short_b; |
---|
289 | short_b.get_weights(weights_short_b); |
---|
290 | |
---|
291 | // Get angular averaging for the longuest_edgeC |
---|
292 | vector<WeightPoint> weights_long_c; |
---|
293 | long_c.get_weights(weights_long_c); |
---|
294 | |
---|
295 | // Get angular averaging for theta |
---|
296 | vector<WeightPoint> weights_parallel_theta; |
---|
297 | parallel_theta.get_weights(weights_parallel_theta); |
---|
298 | |
---|
299 | // Get angular averaging for phi |
---|
300 | vector<WeightPoint> weights_parallel_phi; |
---|
301 | parallel_phi.get_weights(weights_parallel_phi); |
---|
302 | |
---|
303 | // Get angular averaging for psi |
---|
304 | vector<WeightPoint> weights_parallel_psi; |
---|
305 | parallel_psi.get_weights(weights_parallel_psi); |
---|
306 | |
---|
307 | // Perform the computation, with all weight points |
---|
308 | double sum = 0.0; |
---|
309 | double norm = 0.0; |
---|
310 | double norm_vol = 0.0; |
---|
311 | double vol = 0.0; |
---|
312 | double pi = 4.0*atan(1.0); |
---|
313 | // Loop over radius weight points |
---|
314 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
315 | dp.short_a = weights_short_a[i].value; |
---|
316 | |
---|
317 | // Loop over longer_edgeB weight points |
---|
318 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
319 | dp.short_b = weights_short_b[j].value; |
---|
320 | |
---|
321 | // Average over longuest_edgeC distribution |
---|
322 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
323 | dp.long_c = weights_long_c[k].value; |
---|
324 | |
---|
325 | // Average over theta distribution |
---|
326 | for(int l=0; l< (int)weights_parallel_theta.size(); l++) { |
---|
327 | dp.parallel_theta = weights_parallel_theta[l].value; |
---|
328 | |
---|
329 | // Average over phi distribution |
---|
330 | for(int m=0; m< (int)weights_parallel_phi.size(); m++) { |
---|
331 | dp.parallel_phi = weights_parallel_phi[m].value; |
---|
332 | |
---|
333 | // Average over phi distribution |
---|
334 | for(int n=0; n< (int)weights_parallel_psi.size(); n++) { |
---|
335 | dp.parallel_psi = weights_parallel_psi[n].value; |
---|
336 | //Un-normalize by volume |
---|
337 | double _ptvalue = weights_short_a[i].weight |
---|
338 | * weights_short_b[j].weight |
---|
339 | * weights_long_c[k].weight |
---|
340 | * weights_parallel_theta[l].weight |
---|
341 | * weights_parallel_phi[m].weight |
---|
342 | * weights_parallel_psi[n].weight |
---|
343 | * parallelepiped_analytical_2DXY(&dp, qx, qy) |
---|
344 | * weights_short_a[i].value*weights_short_b[j].value |
---|
345 | * weights_long_c[k].value; |
---|
346 | |
---|
347 | if (weights_parallel_theta.size()>1) { |
---|
348 | _ptvalue *= fabs(sin(weights_parallel_theta[l].value*pi/180.0)); |
---|
349 | } |
---|
350 | sum += _ptvalue; |
---|
351 | //Find average volume |
---|
352 | vol += weights_short_a[i].weight |
---|
353 | * weights_short_b[j].weight |
---|
354 | * weights_long_c[k].weight |
---|
355 | * weights_short_a[i].value*weights_short_b[j].value |
---|
356 | * weights_long_c[k].value; |
---|
357 | //Find norm for volume |
---|
358 | norm_vol += weights_short_a[i].weight |
---|
359 | * weights_short_b[j].weight |
---|
360 | * weights_long_c[k].weight; |
---|
361 | |
---|
362 | norm += weights_short_a[i].weight |
---|
363 | * weights_short_b[j].weight |
---|
364 | * weights_long_c[k].weight |
---|
365 | * weights_parallel_theta[l].weight |
---|
366 | * weights_parallel_phi[m].weight |
---|
367 | * weights_parallel_psi[n].weight; |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | } |
---|
375 | // Averaging in theta needs an extra normalization |
---|
376 | // factor to account for the sin(theta) term in the |
---|
377 | // integration (see documentation). |
---|
378 | if (weights_parallel_theta.size()>1) norm = norm / asin(1.0); |
---|
379 | |
---|
380 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
381 | //Re-normalize by avg volume |
---|
382 | sum = sum/(vol/norm_vol);} |
---|
383 | |
---|
384 | return sum/norm + background(); |
---|
385 | } |
---|
386 | |
---|
387 | |
---|
388 | /** |
---|
389 | * Function to evaluate 2D scattering function |
---|
390 | * @param pars: parameters of the cylinder |
---|
391 | * @param q: q-value |
---|
392 | * @param phi: angle phi |
---|
393 | * @return: function value |
---|
394 | */ |
---|
395 | double ParallelepipedModel :: evaluate_rphi(double q, double phi) { |
---|
396 | double qx = q*cos(phi); |
---|
397 | double qy = q*sin(phi); |
---|
398 | return (*this).operator()(qx, qy); |
---|
399 | } |
---|
400 | /** |
---|
401 | * Function to calculate effective radius |
---|
402 | * @return: effective radius value |
---|
403 | */ |
---|
404 | double ParallelepipedModel :: calculate_ER() { |
---|
405 | ParallelepipedParameters dp; |
---|
406 | dp.short_a = short_a(); |
---|
407 | dp.short_b = short_b(); |
---|
408 | dp.long_c = long_c(); |
---|
409 | double rad_out = 0.0; |
---|
410 | double pi = 4.0*atan(1.0); |
---|
411 | double suf_rad = sqrt(dp.short_a*dp.short_b/pi); |
---|
412 | |
---|
413 | // Perform the computation, with all weight points |
---|
414 | double sum = 0.0; |
---|
415 | double norm = 0.0; |
---|
416 | |
---|
417 | // Get the dispersion points for the short_edgeA |
---|
418 | vector<WeightPoint> weights_short_a; |
---|
419 | short_a.get_weights(weights_short_a); |
---|
420 | |
---|
421 | // Get the dispersion points for the longer_edgeB |
---|
422 | vector<WeightPoint> weights_short_b; |
---|
423 | short_b.get_weights(weights_short_b); |
---|
424 | |
---|
425 | // Get angular averaging for the longuest_edgeC |
---|
426 | vector<WeightPoint> weights_long_c; |
---|
427 | long_c.get_weights(weights_long_c); |
---|
428 | |
---|
429 | // Loop over radius weight points |
---|
430 | for(int i=0; i< (int)weights_short_a.size(); i++) { |
---|
431 | dp.short_a = weights_short_a[i].value; |
---|
432 | |
---|
433 | // Loop over longer_edgeB weight points |
---|
434 | for(int j=0; j< (int)weights_short_b.size(); j++) { |
---|
435 | dp.short_b = weights_short_b[j].value; |
---|
436 | |
---|
437 | // Average over longuest_edgeC distribution |
---|
438 | for(int k=0; k< (int)weights_long_c.size(); k++) { |
---|
439 | dp.long_c = weights_long_c[k].value; |
---|
440 | //Calculate surface averaged radius |
---|
441 | //This is rough approximation. |
---|
442 | suf_rad = sqrt(dp.short_a*dp.short_b/pi); |
---|
443 | |
---|
444 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
445 | sum +=weights_short_a[i].weight* weights_short_b[j].weight |
---|
446 | * weights_long_c[k].weight*DiamCyl(dp.long_c, suf_rad)/2.0; |
---|
447 | norm += weights_short_a[i].weight* weights_short_b[j].weight*weights_long_c[k].weight; |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | |
---|
452 | if (norm != 0){ |
---|
453 | //return the averaged value |
---|
454 | rad_out = sum/norm;} |
---|
455 | else{ |
---|
456 | //return normal value |
---|
457 | //Note: output of "DiamCyl(length,radius)" is DIAMETER. |
---|
458 | rad_out = DiamCyl(dp.long_c, suf_rad)/2.0;} |
---|
459 | return rad_out; |
---|
460 | |
---|
461 | } |
---|
462 | double ParallelepipedModel :: calculate_VR() { |
---|
463 | return 1.0; |
---|
464 | } |
---|