[c724ccd] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[82c11d3] | 26 | #include "flexcyl_ellipX.h" |
---|
[c724ccd] | 27 | |
---|
| 28 | extern "C" { |
---|
[82c11d3] | 29 | #include "libCylinder.h" |
---|
| 30 | #include "libStructureFactor.h" |
---|
[c724ccd] | 31 | } |
---|
| 32 | |
---|
[82c11d3] | 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double length; |
---|
| 36 | double kuhn_length; |
---|
| 37 | double radius; |
---|
| 38 | double axis_ratio; |
---|
| 39 | double sldCyl; |
---|
| 40 | double sldSolv; |
---|
| 41 | double background; |
---|
| 42 | } FlexCylEXParameters; |
---|
| 43 | |
---|
[c724ccd] | 44 | FlexCylEllipXModel :: FlexCylEllipXModel() { |
---|
[82c11d3] | 45 | scale = Parameter(1.0); |
---|
| 46 | length = Parameter(1000.0, true); |
---|
| 47 | length.set_min(0.0); |
---|
| 48 | kuhn_length = Parameter(100.0, true); |
---|
| 49 | kuhn_length.set_min(0.0); |
---|
| 50 | radius = Parameter(20.0, true); |
---|
| 51 | radius.set_min(0.0); |
---|
| 52 | axis_ratio = Parameter(1.5); |
---|
| 53 | axis_ratio.set_min(0.0); |
---|
| 54 | sldCyl = Parameter(1.0e-6); |
---|
| 55 | sldSolv = Parameter(6.3e-6); |
---|
| 56 | background = Parameter(0.0001); |
---|
[c724ccd] | 57 | } |
---|
| 58 | |
---|
| 59 | /** |
---|
| 60 | * Function to evaluate 1D scattering function |
---|
| 61 | * The NIST IGOR library is used for the actual calculation. |
---|
| 62 | * @param q: q-value |
---|
| 63 | * @return: function value |
---|
| 64 | */ |
---|
| 65 | double FlexCylEllipXModel :: operator()(double q) { |
---|
[82c11d3] | 66 | double dp[8]; |
---|
| 67 | |
---|
| 68 | // Fill parameter array for IGOR library |
---|
| 69 | // Add the background after averaging |
---|
| 70 | dp[0] = scale(); |
---|
| 71 | dp[1] = length(); |
---|
| 72 | dp[2] = kuhn_length(); |
---|
| 73 | dp[3] = radius(); |
---|
| 74 | dp[4] = axis_ratio(); |
---|
| 75 | dp[5] = sldCyl(); |
---|
| 76 | dp[6] = sldSolv(); |
---|
| 77 | dp[7] = 0.0; |
---|
| 78 | |
---|
| 79 | // Get the dispersion points for the length |
---|
| 80 | vector<WeightPoint> weights_len; |
---|
| 81 | length.get_weights(weights_len); |
---|
| 82 | |
---|
| 83 | // Get the dispersion points for the kuhn_length |
---|
| 84 | vector<WeightPoint> weights_kuhn; |
---|
| 85 | kuhn_length.get_weights(weights_kuhn); |
---|
| 86 | |
---|
| 87 | // Get the dispersion points for the radius |
---|
| 88 | vector<WeightPoint> weights_rad; |
---|
| 89 | radius.get_weights(weights_rad); |
---|
| 90 | |
---|
| 91 | // Get the dispersion points for the axis_ratio |
---|
| 92 | vector<WeightPoint> weights_ratio; |
---|
| 93 | axis_ratio.get_weights(weights_ratio); |
---|
| 94 | |
---|
| 95 | // Perform the computation, with all weight points |
---|
| 96 | double sum = 0.0; |
---|
| 97 | double norm = 0.0; |
---|
| 98 | double vol = 0.0; |
---|
| 99 | |
---|
| 100 | // Loop over length weight points |
---|
| 101 | for(int i=0; i< (int)weights_len.size(); i++) { |
---|
| 102 | dp[1] = weights_len[i].value; |
---|
| 103 | |
---|
| 104 | // Loop over kuhn_length weight points |
---|
| 105 | for(int j=0; j< (int)weights_kuhn.size(); j++) { |
---|
| 106 | dp[2] = weights_kuhn[j].value; |
---|
| 107 | |
---|
| 108 | // Loop over radius weight points |
---|
| 109 | for(int k=0; k< (int)weights_rad.size(); k++) { |
---|
| 110 | dp[3] = weights_rad[k].value; |
---|
| 111 | // Loop over axis_ratio weight points |
---|
| 112 | for(int l=0; l< (int)weights_ratio.size(); l++) { |
---|
| 113 | dp[4] = weights_ratio[l].value; |
---|
| 114 | |
---|
| 115 | //Un-normalize by volume |
---|
| 116 | sum += weights_len[i].weight * weights_kuhn[j].weight*weights_rad[k].weight |
---|
| 117 | * weights_ratio[l].weight * FlexCyl_Ellip(dp, q) |
---|
| 118 | * (pow(weights_rad[k].value,2.0) * weights_ratio[l].value * weights_len[i].value); |
---|
| 119 | //Find weighted volume |
---|
| 120 | vol += weights_rad[k].weight * weights_kuhn[j].weight |
---|
| 121 | * weights_len[i].weight * weights_ratio[l].weight |
---|
| 122 | *pow(weights_rad[k].value,2.0)* weights_ratio[l].weight*weights_len[i].value; |
---|
| 123 | norm += weights_len[i].weight * weights_kuhn[j].weight |
---|
| 124 | *weights_rad[k].weight* weights_ratio[l].weight; |
---|
| 125 | } |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | } |
---|
| 129 | if (vol != 0.0 && norm != 0.0) { |
---|
| 130 | //Re-normalize by avg volume |
---|
| 131 | sum = sum/(vol/norm);} |
---|
| 132 | |
---|
| 133 | return sum/norm + background(); |
---|
[c724ccd] | 134 | } |
---|
| 135 | |
---|
| 136 | /** |
---|
| 137 | * Function to evaluate 2D scattering function |
---|
| 138 | * @param q_x: value of Q along x |
---|
| 139 | * @param q_y: value of Q along y |
---|
| 140 | * @return: function value |
---|
| 141 | */ |
---|
| 142 | double FlexCylEllipXModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 143 | double q = sqrt(qx*qx + qy*qy); |
---|
| 144 | return (*this).operator()(q); |
---|
[c724ccd] | 145 | } |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Function to evaluate 2D scattering function |
---|
| 149 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 150 | * @param q: q-value |
---|
| 151 | * @param phi: angle phi |
---|
| 152 | * @return: function value |
---|
| 153 | */ |
---|
| 154 | double FlexCylEllipXModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 155 | //double qx = q*cos(phi); |
---|
| 156 | //double qy = q*sin(phi); |
---|
| 157 | return (*this).operator()(q); |
---|
[c724ccd] | 158 | } |
---|
| 159 | /** |
---|
| 160 | * Function to calculate effective radius |
---|
| 161 | * @return: effective radius value |
---|
| 162 | */ |
---|
| 163 | double FlexCylEllipXModel :: calculate_ER() { |
---|
[82c11d3] | 164 | FlexCylEXParameters dp; |
---|
| 165 | |
---|
| 166 | dp.radius = radius(); |
---|
| 167 | dp.length = length(); |
---|
| 168 | dp.axis_ratio = axis_ratio(); |
---|
| 169 | |
---|
| 170 | double rad_out = 0.0; |
---|
| 171 | double suf_rad = sqrt(dp.radius*dp.radius*dp.axis_ratio ); |
---|
| 172 | // Perform the computation, with all weight points |
---|
| 173 | double sum = 0.0; |
---|
| 174 | double norm = 0.0; |
---|
| 175 | |
---|
| 176 | // Get the dispersion points for the total length |
---|
| 177 | vector<WeightPoint> weights_length; |
---|
| 178 | length.get_weights(weights_length); |
---|
| 179 | |
---|
| 180 | // Get the dispersion points for minor radius |
---|
| 181 | vector<WeightPoint> weights_radius ; |
---|
| 182 | radius.get_weights(weights_radius); |
---|
| 183 | |
---|
| 184 | // Get the dispersion points for axis ratio = major_radius/minor_radius |
---|
| 185 | vector<WeightPoint> weights_ratio ; |
---|
| 186 | axis_ratio.get_weights(weights_ratio); |
---|
| 187 | |
---|
| 188 | // Loop over major shell weight points |
---|
| 189 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 190 | dp.length = weights_length[i].value; |
---|
| 191 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 192 | dp.radius = weights_radius[k].value; |
---|
| 193 | // Loop over axis_ratio weight points |
---|
| 194 | for(int l=0; l< (int)weights_ratio.size(); l++) { |
---|
| 195 | dp.axis_ratio = weights_ratio[l].value; |
---|
| 196 | suf_rad = sqrt(dp.radius * dp.radius * dp.axis_ratio); |
---|
| 197 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 198 | sum +=weights_length[i].weight * weights_radius[k].weight |
---|
| 199 | * weights_ratio[l].weight *DiamCyl(dp.length,suf_rad)/2.0; |
---|
| 200 | norm += weights_length[i].weight* weights_radius[k].weight* weights_ratio[l].weight; |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | if (norm != 0){ |
---|
| 205 | //return the averaged value |
---|
| 206 | rad_out = sum/norm;} |
---|
| 207 | else{ |
---|
| 208 | //return normal value |
---|
| 209 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 210 | rad_out = DiamCyl(dp.length,suf_rad)/2.0;} |
---|
| 211 | |
---|
| 212 | return rad_out; |
---|
[c724ccd] | 213 | } |
---|