[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[011e0e4] | 26 | #include "ellipsoid.h" |
---|
[0f5bc9f] | 27 | |
---|
| 28 | extern "C" { |
---|
[82c11d3] | 29 | #include "libCylinder.h" |
---|
| 30 | #include "libStructureFactor.h" |
---|
[011e0e4] | 31 | } |
---|
| 32 | |
---|
| 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double radius_a; |
---|
| 36 | double radius_b; |
---|
| 37 | double sldEll; |
---|
| 38 | double sldSolv; |
---|
| 39 | double background; |
---|
| 40 | double axis_theta; |
---|
| 41 | double axis_phi; |
---|
| 42 | } EllipsoidParameters; |
---|
| 43 | |
---|
| 44 | /** |
---|
| 45 | * Function to evaluate 2D scattering function |
---|
| 46 | * @param pars: parameters of the ellipsoid |
---|
| 47 | * @param q: q-value |
---|
| 48 | * @param q_x: q_x / q |
---|
| 49 | * @param q_y: q_y / q |
---|
| 50 | * @return: function value |
---|
| 51 | */ |
---|
| 52 | static double ellipsoid_analytical_2D_scaled(EllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
[318b5bbb] | 53 | double cyl_x, cyl_y;//, cyl_z; |
---|
| 54 | //double q_z; |
---|
[011e0e4] | 55 | double alpha, vol, cos_val; |
---|
| 56 | double answer; |
---|
| 57 | //convert angle degree to radian |
---|
| 58 | double pi = 4.0*atan(1.0); |
---|
| 59 | double theta = pars->axis_theta * pi/180.0; |
---|
| 60 | double phi = pars->axis_phi * pi/180.0; |
---|
| 61 | |
---|
[82c11d3] | 62 | // Ellipsoid orientation |
---|
[318b5bbb] | 63 | cyl_x = cos(theta) * cos(phi); |
---|
| 64 | cyl_y = sin(theta); |
---|
| 65 | //cyl_z = -cos(theta) * sin(phi); |
---|
[011e0e4] | 66 | |
---|
[82c11d3] | 67 | // q vector |
---|
[318b5bbb] | 68 | //q_z = 0.0; |
---|
[011e0e4] | 69 | |
---|
[82c11d3] | 70 | // Compute the angle btw vector q and the |
---|
| 71 | // axis of the cylinder |
---|
[318b5bbb] | 72 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
[011e0e4] | 73 | |
---|
[82c11d3] | 74 | // The following test should always pass |
---|
| 75 | if (fabs(cos_val)>1.0) { |
---|
| 76 | printf("ellipsoid_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 77 | return 0; |
---|
| 78 | } |
---|
[011e0e4] | 79 | |
---|
[82c11d3] | 80 | // Angle between rotation axis and q vector |
---|
[011e0e4] | 81 | alpha = acos( cos_val ); |
---|
| 82 | |
---|
| 83 | // Call the IGOR library function to get the kernel |
---|
| 84 | answer = EllipsoidKernel(q, pars->radius_b, pars->radius_a, cos_val); |
---|
| 85 | |
---|
| 86 | // Multiply by contrast^2 |
---|
| 87 | answer *= (pars->sldEll - pars->sldSolv) * (pars->sldEll - pars->sldSolv); |
---|
| 88 | |
---|
| 89 | //normalize by cylinder volume |
---|
[82c11d3] | 90 | vol = 4.0/3.0 * acos(-1.0) * pars->radius_b * pars->radius_b * pars->radius_a; |
---|
[011e0e4] | 91 | answer *= vol; |
---|
| 92 | |
---|
| 93 | //convert to [cm-1] |
---|
| 94 | answer *= 1.0e8; |
---|
| 95 | |
---|
| 96 | //Scale |
---|
| 97 | answer *= pars->scale; |
---|
| 98 | |
---|
| 99 | // add in the background |
---|
| 100 | answer += pars->background; |
---|
| 101 | |
---|
| 102 | return answer; |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Function to evaluate 2D scattering function |
---|
| 107 | * @param pars: parameters of the ellipsoid |
---|
| 108 | * @param q: q-value |
---|
| 109 | * @return: function value |
---|
| 110 | */ |
---|
| 111 | static double ellipsoid_analytical_2DXY(EllipsoidParameters *pars, double qx, double qy) { |
---|
| 112 | double q; |
---|
| 113 | q = sqrt(qx*qx+qy*qy); |
---|
[82c11d3] | 114 | return ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[0f5bc9f] | 115 | } |
---|
| 116 | |
---|
| 117 | EllipsoidModel :: EllipsoidModel() { |
---|
[82c11d3] | 118 | scale = Parameter(1.0); |
---|
| 119 | radius_a = Parameter(20.0, true); |
---|
| 120 | radius_a.set_min(0.0); |
---|
| 121 | radius_b = Parameter(400.0, true); |
---|
| 122 | radius_b.set_min(0.0); |
---|
| 123 | sldEll = Parameter(4.e-6); |
---|
| 124 | sldSolv = Parameter(1.e-6); |
---|
| 125 | background = Parameter(0.0); |
---|
| 126 | axis_theta = Parameter(57.325, true); |
---|
| 127 | axis_phi = Parameter(0.0, true); |
---|
[0f5bc9f] | 128 | } |
---|
| 129 | |
---|
| 130 | /** |
---|
| 131 | * Function to evaluate 1D scattering function |
---|
| 132 | * The NIST IGOR library is used for the actual calculation. |
---|
| 133 | * @param q: q-value |
---|
| 134 | * @return: function value |
---|
| 135 | */ |
---|
| 136 | double EllipsoidModel :: operator()(double q) { |
---|
[82c11d3] | 137 | double dp[6]; |
---|
| 138 | |
---|
| 139 | // Fill parameter array for IGOR library |
---|
| 140 | // Add the background after averaging |
---|
| 141 | dp[0] = scale(); |
---|
| 142 | dp[1] = radius_a(); |
---|
| 143 | dp[2] = radius_b(); |
---|
| 144 | dp[3] = sldEll(); |
---|
| 145 | dp[4] = sldSolv(); |
---|
| 146 | dp[5] = 0.0; |
---|
| 147 | |
---|
| 148 | // Get the dispersion points for the radius_a |
---|
| 149 | vector<WeightPoint> weights_rad_a; |
---|
| 150 | radius_a.get_weights(weights_rad_a); |
---|
| 151 | |
---|
| 152 | // Get the dispersion points for the radius_b |
---|
| 153 | vector<WeightPoint> weights_rad_b; |
---|
| 154 | radius_b.get_weights(weights_rad_b); |
---|
| 155 | |
---|
| 156 | // Perform the computation, with all weight points |
---|
| 157 | double sum = 0.0; |
---|
| 158 | double norm = 0.0; |
---|
| 159 | double vol = 0.0; |
---|
| 160 | |
---|
| 161 | // Loop over radius_a weight points |
---|
| 162 | for(size_t i=0; i<weights_rad_a.size(); i++) { |
---|
| 163 | dp[1] = weights_rad_a[i].value; |
---|
| 164 | |
---|
| 165 | // Loop over radius_b weight points |
---|
| 166 | for(size_t j=0; j<weights_rad_b.size(); j++) { |
---|
| 167 | dp[2] = weights_rad_b[j].value; |
---|
| 168 | //Un-normalize by volume |
---|
| 169 | sum += weights_rad_a[i].weight |
---|
| 170 | * weights_rad_b[j].weight * EllipsoidForm(dp, q) |
---|
| 171 | * pow(weights_rad_b[j].value,2) * weights_rad_a[i].value; |
---|
| 172 | |
---|
| 173 | //Find average volume |
---|
| 174 | vol += weights_rad_a[i].weight |
---|
| 175 | * weights_rad_b[j].weight |
---|
| 176 | * pow(weights_rad_b[j].value,2) |
---|
| 177 | * weights_rad_a[i].value; |
---|
| 178 | norm += weights_rad_a[i].weight |
---|
| 179 | * weights_rad_b[j].weight; |
---|
| 180 | } |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | if (vol != 0.0 && norm != 0.0) { |
---|
| 184 | //Re-normalize by avg volume |
---|
| 185 | sum = sum/(vol/norm);} |
---|
| 186 | |
---|
| 187 | return sum/norm + background(); |
---|
[0f5bc9f] | 188 | } |
---|
| 189 | |
---|
| 190 | /** |
---|
| 191 | * Function to evaluate 2D scattering function |
---|
| 192 | * @param q_x: value of Q along x |
---|
| 193 | * @param q_y: value of Q along y |
---|
| 194 | * @return: function value |
---|
| 195 | */ |
---|
| 196 | double EllipsoidModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 197 | EllipsoidParameters dp; |
---|
| 198 | // Fill parameter array |
---|
| 199 | dp.scale = scale(); |
---|
| 200 | dp.radius_a = radius_a(); |
---|
| 201 | dp.radius_b = radius_b(); |
---|
| 202 | dp.sldEll = sldEll(); |
---|
| 203 | dp.sldSolv = sldSolv(); |
---|
| 204 | dp.background = 0.0; |
---|
| 205 | dp.axis_theta = axis_theta(); |
---|
| 206 | dp.axis_phi = axis_phi(); |
---|
| 207 | |
---|
| 208 | // Get the dispersion points for the radius_a |
---|
| 209 | vector<WeightPoint> weights_rad_a; |
---|
| 210 | radius_a.get_weights(weights_rad_a); |
---|
| 211 | |
---|
| 212 | // Get the dispersion points for the radius_b |
---|
| 213 | vector<WeightPoint> weights_rad_b; |
---|
| 214 | radius_b.get_weights(weights_rad_b); |
---|
| 215 | |
---|
| 216 | // Get angular averaging for theta |
---|
| 217 | vector<WeightPoint> weights_theta; |
---|
| 218 | axis_theta.get_weights(weights_theta); |
---|
| 219 | |
---|
| 220 | // Get angular averaging for phi |
---|
| 221 | vector<WeightPoint> weights_phi; |
---|
| 222 | axis_phi.get_weights(weights_phi); |
---|
| 223 | |
---|
| 224 | // Perform the computation, with all weight points |
---|
| 225 | double sum = 0.0; |
---|
| 226 | double norm = 0.0; |
---|
| 227 | double norm_vol = 0.0; |
---|
| 228 | double vol = 0.0; |
---|
| 229 | double pi = 4.0*atan(1.0); |
---|
| 230 | // Loop over radius weight points |
---|
| 231 | for(size_t i=0; i<weights_rad_a.size(); i++) { |
---|
| 232 | dp.radius_a = weights_rad_a[i].value; |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | // Loop over length weight points |
---|
| 236 | for(size_t j=0; j<weights_rad_b.size(); j++) { |
---|
| 237 | dp.radius_b = weights_rad_b[j].value; |
---|
| 238 | |
---|
| 239 | // Average over theta distribution |
---|
| 240 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
| 241 | dp.axis_theta = weights_theta[k].value; |
---|
| 242 | |
---|
| 243 | // Average over phi distribution |
---|
| 244 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
| 245 | dp.axis_phi = weights_phi[l].value; |
---|
| 246 | //Un-normalize by volume |
---|
| 247 | double _ptvalue = weights_rad_a[i].weight |
---|
| 248 | * weights_rad_b[j].weight |
---|
| 249 | * weights_theta[k].weight |
---|
| 250 | * weights_phi[l].weight |
---|
| 251 | * ellipsoid_analytical_2DXY(&dp, qx, qy) |
---|
| 252 | * pow(weights_rad_b[j].value,2) * weights_rad_a[i].value; |
---|
| 253 | if (weights_theta.size()>1) { |
---|
[318b5bbb] | 254 | _ptvalue *= fabs(cos(weights_theta[k].value*pi/180.0)); |
---|
[82c11d3] | 255 | } |
---|
| 256 | sum += _ptvalue; |
---|
| 257 | //Find average volume |
---|
| 258 | vol += weights_rad_a[i].weight |
---|
| 259 | * weights_rad_b[j].weight |
---|
| 260 | * pow(weights_rad_b[j].value,2) * weights_rad_a[i].value; |
---|
| 261 | //Find norm for volume |
---|
| 262 | norm_vol += weights_rad_a[i].weight |
---|
| 263 | * weights_rad_b[j].weight; |
---|
| 264 | |
---|
| 265 | norm += weights_rad_a[i].weight |
---|
| 266 | * weights_rad_b[j].weight |
---|
| 267 | * weights_theta[k].weight |
---|
| 268 | * weights_phi[l].weight; |
---|
| 269 | |
---|
| 270 | } |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | } |
---|
| 274 | // Averaging in theta needs an extra normalization |
---|
| 275 | // factor to account for the sin(theta) term in the |
---|
| 276 | // integration (see documentation). |
---|
| 277 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 278 | |
---|
| 279 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 280 | //Re-normalize by avg volume |
---|
| 281 | sum = sum/(vol/norm_vol);} |
---|
| 282 | |
---|
| 283 | return sum/norm + background(); |
---|
[0f5bc9f] | 284 | } |
---|
| 285 | |
---|
| 286 | /** |
---|
| 287 | * Function to evaluate 2D scattering function |
---|
| 288 | * @param pars: parameters of the cylinder |
---|
| 289 | * @param q: q-value |
---|
| 290 | * @param phi: angle phi |
---|
| 291 | * @return: function value |
---|
| 292 | */ |
---|
| 293 | double EllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 294 | double qx = q*cos(phi); |
---|
| 295 | double qy = q*sin(phi); |
---|
| 296 | return (*this).operator()(qx, qy); |
---|
[0f5bc9f] | 297 | } |
---|
[5eb9154] | 298 | |
---|
| 299 | /** |
---|
| 300 | * Function to calculate effective radius |
---|
| 301 | * @return: effective radius value |
---|
| 302 | */ |
---|
| 303 | double EllipsoidModel :: calculate_ER() { |
---|
[82c11d3] | 304 | EllipsoidParameters dp; |
---|
| 305 | |
---|
| 306 | dp.radius_a = radius_a(); |
---|
| 307 | dp.radius_b = radius_b(); |
---|
| 308 | |
---|
| 309 | double rad_out = 0.0; |
---|
| 310 | |
---|
| 311 | // Perform the computation, with all weight points |
---|
| 312 | double sum = 0.0; |
---|
| 313 | double norm = 0.0; |
---|
| 314 | |
---|
| 315 | // Get the dispersion points for the major shell |
---|
| 316 | vector<WeightPoint> weights_radius_a; |
---|
| 317 | radius_a.get_weights(weights_radius_a); |
---|
| 318 | |
---|
| 319 | // Get the dispersion points for the minor shell |
---|
| 320 | vector<WeightPoint> weights_radius_b; |
---|
| 321 | radius_b.get_weights(weights_radius_b); |
---|
| 322 | |
---|
| 323 | // Loop over major shell weight points |
---|
| 324 | for(int i=0; i< (int)weights_radius_b.size(); i++) { |
---|
| 325 | dp.radius_b = weights_radius_b[i].value; |
---|
| 326 | for(int k=0; k< (int)weights_radius_a.size(); k++) { |
---|
| 327 | dp.radius_a = weights_radius_a[k].value; |
---|
| 328 | sum +=weights_radius_b[i].weight |
---|
| 329 | * weights_radius_a[k].weight*DiamEllip(dp.radius_a,dp.radius_b)/2.0; |
---|
| 330 | norm += weights_radius_b[i].weight* weights_radius_a[k].weight; |
---|
| 331 | } |
---|
| 332 | } |
---|
| 333 | if (norm != 0){ |
---|
| 334 | //return the averaged value |
---|
| 335 | rad_out = sum/norm;} |
---|
| 336 | else{ |
---|
| 337 | //return normal value |
---|
| 338 | rad_out = DiamEllip(dp.radius_a,dp.radius_b)/2.0;} |
---|
| 339 | |
---|
| 340 | return rad_out; |
---|
[5eb9154] | 341 | } |
---|
[e08bd5b] | 342 | double EllipsoidModel :: calculate_VR() { |
---|
| 343 | return 1.0; |
---|
| 344 | } |
---|