[fca6936] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
| 26 | |
---|
| 27 | extern "C" { |
---|
| 28 | #include "libCylinder.h" |
---|
[5eb9154] | 29 | #include "libStructureFactor.h" |
---|
[318b5bbb] | 30 | #include "libmultifunc/libfunc.h" |
---|
[fca6936] | 31 | } |
---|
[0c2389e] | 32 | #include "cylinder.h" |
---|
[fca6936] | 33 | |
---|
[dbddbf5] | 34 | // Convenience parameter structure |
---|
| 35 | typedef struct { |
---|
| 36 | double scale; |
---|
| 37 | double radius; |
---|
| 38 | double length; |
---|
| 39 | double sldCyl; |
---|
| 40 | double sldSolv; |
---|
| 41 | double background; |
---|
| 42 | double cyl_theta; |
---|
| 43 | double cyl_phi; |
---|
[318b5bbb] | 44 | double M0_sld_cyl; |
---|
| 45 | double M_theta_cyl; |
---|
| 46 | double M_phi_cyl; |
---|
| 47 | double M0_sld_solv; |
---|
| 48 | double M_theta_solv; |
---|
| 49 | double M_phi_solv; |
---|
| 50 | double Up_frac_i; |
---|
| 51 | double Up_frac_f; |
---|
| 52 | double Up_theta; |
---|
[dbddbf5] | 53 | } CylinderParameters; |
---|
| 54 | |
---|
[af03ddd] | 55 | CylinderModel :: CylinderModel() { |
---|
[fca6936] | 56 | scale = Parameter(1.0); |
---|
| 57 | radius = Parameter(20.0, true); |
---|
| 58 | radius.set_min(0.0); |
---|
| 59 | length = Parameter(400.0, true); |
---|
| 60 | length.set_min(0.0); |
---|
[f10063e] | 61 | sldCyl = Parameter(4.e-6); |
---|
| 62 | sldSolv = Parameter(1.e-6); |
---|
[fca6936] | 63 | background = Parameter(0.0); |
---|
| 64 | cyl_theta = Parameter(0.0, true); |
---|
| 65 | cyl_phi = Parameter(0.0, true); |
---|
[318b5bbb] | 66 | M0_sld_cyl = Parameter(0.0e-6); |
---|
| 67 | M_theta_cyl = Parameter(0.0); |
---|
| 68 | M_phi_cyl = Parameter(0.0); |
---|
| 69 | M0_sld_solv = Parameter(0.0e-6); |
---|
| 70 | M_theta_solv = Parameter(0.0); |
---|
| 71 | M_phi_solv = Parameter(0.0); |
---|
| 72 | Up_frac_i = Parameter(0.5); |
---|
| 73 | Up_frac_f = Parameter(0.5); |
---|
| 74 | Up_theta = Parameter(0.0); |
---|
[fca6936] | 75 | } |
---|
| 76 | |
---|
| 77 | /** |
---|
| 78 | * Function to evaluate 1D scattering function |
---|
| 79 | * The NIST IGOR library is used for the actual calculation. |
---|
| 80 | * @param q: q-value |
---|
| 81 | * @return: function value |
---|
| 82 | */ |
---|
[af03ddd] | 83 | double CylinderModel :: operator()(double q) { |
---|
[f10063e] | 84 | double dp[6]; |
---|
[fca6936] | 85 | |
---|
| 86 | // Fill parameter array for IGOR library |
---|
| 87 | // Add the background after averaging |
---|
| 88 | dp[0] = scale(); |
---|
| 89 | dp[1] = radius(); |
---|
| 90 | dp[2] = length(); |
---|
[f10063e] | 91 | dp[3] = sldCyl(); |
---|
| 92 | dp[4] = sldSolv(); |
---|
| 93 | dp[5] = 0.0; |
---|
[fca6936] | 94 | |
---|
| 95 | // Get the dispersion points for the radius |
---|
| 96 | vector<WeightPoint> weights_rad; |
---|
| 97 | radius.get_weights(weights_rad); |
---|
| 98 | |
---|
| 99 | // Get the dispersion points for the length |
---|
| 100 | vector<WeightPoint> weights_len; |
---|
| 101 | length.get_weights(weights_len); |
---|
| 102 | |
---|
| 103 | // Perform the computation, with all weight points |
---|
| 104 | double sum = 0.0; |
---|
| 105 | double norm = 0.0; |
---|
[c451be9] | 106 | double vol = 0.0; |
---|
[fca6936] | 107 | |
---|
| 108 | // Loop over radius weight points |
---|
[34c2649] | 109 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[fca6936] | 110 | dp[1] = weights_rad[i].value; |
---|
| 111 | |
---|
| 112 | // Loop over length weight points |
---|
[34c2649] | 113 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
[fca6936] | 114 | dp[2] = weights_len[j].value; |
---|
[c451be9] | 115 | //Un-normalize by volume |
---|
[fca6936] | 116 | sum += weights_rad[i].weight |
---|
[c451be9] | 117 | * weights_len[j].weight * CylinderForm(dp, q) |
---|
| 118 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
| 119 | |
---|
| 120 | //Find average volume |
---|
| 121 | vol += weights_rad[i].weight |
---|
| 122 | * weights_len[j].weight *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
[fca6936] | 123 | norm += weights_rad[i].weight |
---|
| 124 | * weights_len[j].weight; |
---|
| 125 | } |
---|
| 126 | } |
---|
[c451be9] | 127 | if (vol != 0.0 && norm != 0.0) { |
---|
| 128 | //Re-normalize by avg volume |
---|
| 129 | sum = sum/(vol/norm);} |
---|
| 130 | |
---|
[fca6936] | 131 | return sum/norm + background(); |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | /** |
---|
| 135 | * Function to evaluate 2D scattering function |
---|
[dbddbf5] | 136 | * @param pars: parameters of the cylinder |
---|
| 137 | * @param q: q-value |
---|
| 138 | * @param q_x: q_x / q |
---|
| 139 | * @param q_y: q_y / q |
---|
| 140 | * @return: function value |
---|
| 141 | */ |
---|
| 142 | static double cylinder_analytical_2D_scaled(CylinderParameters *pars, double q, double q_x, double q_y) { |
---|
[318b5bbb] | 143 | double cyl_x, cyl_y;//, cyl_z; |
---|
| 144 | //double q_z; |
---|
| 145 | double alpha, vol, cos_val; |
---|
| 146 | double answer = 0.0; |
---|
| 147 | double form = 0.0; |
---|
| 148 | //convert angle degree to radian |
---|
| 149 | double pi = 4.0*atan(1.0); |
---|
| 150 | double theta = pars->cyl_theta * pi/180.0; |
---|
| 151 | double phi = pars->cyl_phi * pi/180.0; |
---|
| 152 | double sld_solv = pars->sldSolv; |
---|
| 153 | double sld_cyl = pars->sldCyl; |
---|
| 154 | double m_max = pars->M0_sld_cyl; |
---|
| 155 | double m_max_solv = pars->M0_sld_solv; |
---|
| 156 | double contrast = 0.0; |
---|
[dbddbf5] | 157 | |
---|
| 158 | // Cylinder orientation |
---|
[318b5bbb] | 159 | cyl_x = cos(theta) * cos(phi); |
---|
| 160 | cyl_y = sin(theta); |
---|
| 161 | //cyl_z = -cos(theta) * sin(phi); |
---|
[dbddbf5] | 162 | // q vector |
---|
[318b5bbb] | 163 | //q_z = 0.0; |
---|
[dbddbf5] | 164 | |
---|
| 165 | // Compute the angle btw vector q and the |
---|
| 166 | // axis of the cylinder |
---|
[318b5bbb] | 167 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
[dbddbf5] | 168 | |
---|
| 169 | // The following test should always pass |
---|
| 170 | if (fabs(cos_val)>1.0) { |
---|
[d49c956] | 171 | printf("cyl_ana_2D: Unexpected error: |cos(alpha)=%g|>1\n", cos_val); |
---|
| 172 | printf("cyl_ana_2D: at theta=%g and phi=%g.", theta, phi); |
---|
| 173 | return 1.0; |
---|
[dbddbf5] | 174 | } |
---|
| 175 | |
---|
| 176 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 177 | // undefined value from CylKernel |
---|
| 178 | alpha = acos( cos_val ); |
---|
[20efe7b] | 179 | if (alpha == 0.0){ |
---|
| 180 | alpha = 1.0e-26; |
---|
| 181 | } |
---|
[dbddbf5] | 182 | // Call the IGOR library function to get the kernel |
---|
[318b5bbb] | 183 | //answer = CylKernel(q, pars->radius, pars->length/2.0, alpha) / sin(alpha); |
---|
[dbddbf5] | 184 | |
---|
[318b5bbb] | 185 | // Call the IGOR library function to get the kernel |
---|
| 186 | form = CylKernel(q, pars->radius, pars->length/2.0, alpha) / sin(alpha); |
---|
[dbddbf5] | 187 | |
---|
[318b5bbb] | 188 | if (m_max < 1.0e-32 && m_max_solv < 1.0e-32){ |
---|
| 189 | // Multiply by contrast^2 |
---|
| 190 | contrast = (pars->sldCyl - pars->sldSolv); |
---|
| 191 | answer = contrast * contrast * form; |
---|
| 192 | } |
---|
| 193 | else{ |
---|
| 194 | double qx = q_x; |
---|
| 195 | double qy = q_y; |
---|
| 196 | double s_theta = pars->Up_theta; |
---|
| 197 | double m_phi = pars->M_phi_cyl; |
---|
| 198 | double m_theta = pars->M_theta_cyl; |
---|
| 199 | double m_phi_solv = pars->M_phi_solv; |
---|
| 200 | double m_theta_solv = pars->M_theta_solv; |
---|
| 201 | double in_spin = pars->Up_frac_i; |
---|
| 202 | double out_spin = pars->Up_frac_f; |
---|
| 203 | polar_sld p_sld; |
---|
| 204 | polar_sld p_sld_solv; |
---|
| 205 | p_sld = cal_msld(1, qx, qy, sld_cyl, m_max, m_theta, m_phi, |
---|
| 206 | in_spin, out_spin, s_theta); |
---|
| 207 | p_sld_solv = cal_msld(1, qx, qy, sld_solv, m_max_solv, m_theta_solv, m_phi_solv, |
---|
| 208 | in_spin, out_spin, s_theta); |
---|
| 209 | //up_up |
---|
| 210 | if (in_spin > 0.0 && out_spin > 0.0){ |
---|
| 211 | answer += ((p_sld.uu- p_sld_solv.uu) * (p_sld.uu- p_sld_solv.uu) * form); |
---|
| 212 | } |
---|
| 213 | //down_down |
---|
| 214 | if (in_spin < 1.0 && out_spin < 1.0){ |
---|
| 215 | answer += ((p_sld.dd - p_sld_solv.dd) * (p_sld.dd - p_sld_solv.dd) * form); |
---|
| 216 | } |
---|
| 217 | //up_down |
---|
| 218 | if (in_spin > 0.0 && out_spin < 1.0){ |
---|
| 219 | answer += ((p_sld.re_ud - p_sld_solv.re_ud) * (p_sld.re_ud - p_sld_solv.re_ud) * form); |
---|
| 220 | answer += ((p_sld.im_ud - p_sld_solv.im_ud) * (p_sld.im_ud - p_sld_solv.im_ud) * form); |
---|
| 221 | } |
---|
| 222 | //down_up |
---|
| 223 | if (in_spin < 1.0 && out_spin > 0.0){ |
---|
| 224 | answer += ((p_sld.re_du - p_sld_solv.re_du) * (p_sld.re_du - p_sld_solv.re_du) * form); |
---|
| 225 | answer += ((p_sld.im_du - p_sld_solv.im_du) * (p_sld.im_du - p_sld_solv.im_du) * form); |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | //normalize by cylinder volume |
---|
| 230 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
[dbddbf5] | 231 | vol = acos(-1.0) * pars->radius * pars->radius * pars->length; |
---|
[318b5bbb] | 232 | answer *= vol; |
---|
[dbddbf5] | 233 | |
---|
[318b5bbb] | 234 | //convert to [cm-1] |
---|
| 235 | answer *= 1.0e8; |
---|
[dbddbf5] | 236 | |
---|
[318b5bbb] | 237 | //Scale |
---|
| 238 | answer *= pars->scale; |
---|
[dbddbf5] | 239 | |
---|
[318b5bbb] | 240 | // add in the background |
---|
| 241 | answer += pars->background; |
---|
[dbddbf5] | 242 | |
---|
[318b5bbb] | 243 | return answer; |
---|
[dbddbf5] | 244 | } |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | * Function to evaluate 2D scattering function |
---|
| 248 | * @param pars: parameters of the cylinder |
---|
| 249 | * @param q: q-value |
---|
| 250 | * @return: function value |
---|
| 251 | */ |
---|
| 252 | static double cylinder_analytical_2DXY(CylinderParameters *pars, double qx, double qy) { |
---|
| 253 | double q; |
---|
| 254 | q = sqrt(qx*qx+qy*qy); |
---|
| 255 | return cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | /** |
---|
| 259 | * Function to evaluate 2D scattering function |
---|
[fca6936] | 260 | * @param q_x: value of Q along x |
---|
| 261 | * @param q_y: value of Q along y |
---|
| 262 | * @return: function value |
---|
| 263 | */ |
---|
[af03ddd] | 264 | double CylinderModel :: operator()(double qx, double qy) { |
---|
[fca6936] | 265 | CylinderParameters dp; |
---|
| 266 | // Fill parameter array |
---|
| 267 | dp.scale = scale(); |
---|
| 268 | dp.radius = radius(); |
---|
| 269 | dp.length = length(); |
---|
[f10063e] | 270 | dp.sldCyl = sldCyl(); |
---|
| 271 | dp.sldSolv = sldSolv(); |
---|
[fca6936] | 272 | dp.background = 0.0; |
---|
| 273 | dp.cyl_theta = cyl_theta(); |
---|
| 274 | dp.cyl_phi = cyl_phi(); |
---|
[318b5bbb] | 275 | dp.Up_theta = Up_theta(); |
---|
| 276 | dp.M_phi_cyl = M_phi_cyl(); |
---|
| 277 | dp.M_theta_cyl = M_theta_cyl(); |
---|
| 278 | dp.M0_sld_cyl = M0_sld_cyl(); |
---|
| 279 | dp.M_phi_solv = M_phi_solv(); |
---|
| 280 | dp.M_theta_solv = M_theta_solv(); |
---|
| 281 | dp.M0_sld_solv = M0_sld_solv(); |
---|
| 282 | dp.Up_frac_i = Up_frac_i(); |
---|
| 283 | dp.Up_frac_f = Up_frac_f(); |
---|
| 284 | |
---|
[fca6936] | 285 | // Get the dispersion points for the radius |
---|
| 286 | vector<WeightPoint> weights_rad; |
---|
| 287 | radius.get_weights(weights_rad); |
---|
| 288 | |
---|
| 289 | // Get the dispersion points for the length |
---|
| 290 | vector<WeightPoint> weights_len; |
---|
| 291 | length.get_weights(weights_len); |
---|
| 292 | |
---|
| 293 | // Get angular averaging for theta |
---|
| 294 | vector<WeightPoint> weights_theta; |
---|
| 295 | cyl_theta.get_weights(weights_theta); |
---|
| 296 | |
---|
| 297 | // Get angular averaging for phi |
---|
| 298 | vector<WeightPoint> weights_phi; |
---|
| 299 | cyl_phi.get_weights(weights_phi); |
---|
| 300 | |
---|
| 301 | // Perform the computation, with all weight points |
---|
| 302 | double sum = 0.0; |
---|
| 303 | double norm = 0.0; |
---|
[c451be9] | 304 | double norm_vol = 0.0; |
---|
| 305 | double vol = 0.0; |
---|
[4628e31] | 306 | double pi = 4.0*atan(1.0); |
---|
[fca6936] | 307 | // Loop over radius weight points |
---|
[34c2649] | 308 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[fca6936] | 309 | dp.radius = weights_rad[i].value; |
---|
| 310 | |
---|
| 311 | |
---|
| 312 | // Loop over length weight points |
---|
[34c2649] | 313 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
[fca6936] | 314 | dp.length = weights_len[j].value; |
---|
| 315 | |
---|
| 316 | // Average over theta distribution |
---|
[34c2649] | 317 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
[fca6936] | 318 | dp.cyl_theta = weights_theta[k].value; |
---|
| 319 | |
---|
| 320 | // Average over phi distribution |
---|
[34c2649] | 321 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
[fca6936] | 322 | dp.cyl_phi = weights_phi[l].value; |
---|
[c451be9] | 323 | //Un-normalize by volume |
---|
[fca6936] | 324 | double _ptvalue = weights_rad[i].weight |
---|
| 325 | * weights_len[j].weight |
---|
| 326 | * weights_theta[k].weight |
---|
| 327 | * weights_phi[l].weight |
---|
[c451be9] | 328 | * cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 329 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
[fca6936] | 330 | if (weights_theta.size()>1) { |
---|
[318b5bbb] | 331 | _ptvalue *= fabs(cos(weights_theta[k].value*pi/180.0)); |
---|
[fca6936] | 332 | } |
---|
| 333 | sum += _ptvalue; |
---|
[c451be9] | 334 | //Find average volume |
---|
| 335 | vol += weights_rad[i].weight |
---|
| 336 | * weights_len[j].weight |
---|
| 337 | * pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
| 338 | //Find norm for volume |
---|
| 339 | norm_vol += weights_rad[i].weight |
---|
| 340 | * weights_len[j].weight; |
---|
[fca6936] | 341 | |
---|
| 342 | norm += weights_rad[i].weight |
---|
| 343 | * weights_len[j].weight |
---|
| 344 | * weights_theta[k].weight |
---|
| 345 | * weights_phi[l].weight; |
---|
| 346 | |
---|
| 347 | } |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | } |
---|
| 351 | // Averaging in theta needs an extra normalization |
---|
| 352 | // factor to account for the sin(theta) term in the |
---|
| 353 | // integration (see documentation). |
---|
| 354 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
[c451be9] | 355 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 356 | //Re-normalize by avg volume |
---|
| 357 | sum = sum/(vol/norm_vol);} |
---|
| 358 | |
---|
[fca6936] | 359 | return sum/norm + background(); |
---|
| 360 | } |
---|
| 361 | |
---|
| 362 | /** |
---|
| 363 | * Function to evaluate 2D scattering function |
---|
| 364 | * @param pars: parameters of the cylinder |
---|
| 365 | * @param q: q-value |
---|
| 366 | * @param phi: angle phi |
---|
| 367 | * @return: function value |
---|
| 368 | */ |
---|
[af03ddd] | 369 | double CylinderModel :: evaluate_rphi(double q, double phi) { |
---|
[fca6936] | 370 | double qx = q*cos(phi); |
---|
| 371 | double qy = q*sin(phi); |
---|
| 372 | return (*this).operator()(qx, qy); |
---|
| 373 | } |
---|
[f9bf661] | 374 | /** |
---|
| 375 | * Function to calculate effective radius |
---|
| 376 | * @return: effective radius value |
---|
| 377 | */ |
---|
| 378 | double CylinderModel :: calculate_ER() { |
---|
| 379 | CylinderParameters dp; |
---|
| 380 | |
---|
| 381 | dp.radius = radius(); |
---|
| 382 | dp.length = length(); |
---|
| 383 | double rad_out = 0.0; |
---|
| 384 | |
---|
| 385 | // Perform the computation, with all weight points |
---|
| 386 | double sum = 0.0; |
---|
| 387 | double norm = 0.0; |
---|
| 388 | |
---|
| 389 | // Get the dispersion points for the major shell |
---|
| 390 | vector<WeightPoint> weights_length; |
---|
| 391 | length.get_weights(weights_length); |
---|
| 392 | |
---|
| 393 | // Get the dispersion points for the minor shell |
---|
| 394 | vector<WeightPoint> weights_radius ; |
---|
| 395 | radius.get_weights(weights_radius); |
---|
[fca6936] | 396 | |
---|
[f9bf661] | 397 | // Loop over major shell weight points |
---|
| 398 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 399 | dp.length = weights_length[i].value; |
---|
| 400 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 401 | dp.radius = weights_radius[k].value; |
---|
| 402 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 403 | sum +=weights_length[i].weight |
---|
| 404 | * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; |
---|
| 405 | norm += weights_length[i].weight* weights_radius[k].weight; |
---|
| 406 | } |
---|
| 407 | } |
---|
| 408 | if (norm != 0){ |
---|
| 409 | //return the averaged value |
---|
| 410 | rad_out = sum/norm;} |
---|
| 411 | else{ |
---|
| 412 | //return normal value |
---|
| 413 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 414 | rad_out = DiamCyl(dp.length,dp.radius)/2.0;} |
---|
| 415 | |
---|
| 416 | return rad_out; |
---|
| 417 | } |
---|
[e08bd5b] | 418 | double CylinderModel :: calculate_VR() { |
---|
| 419 | return 1.0; |
---|
| 420 | } |
---|