1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2010, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | */ |
---|
20 | |
---|
21 | #include <math.h> |
---|
22 | #include "parameters.hh" |
---|
23 | #include <stdio.h> |
---|
24 | using namespace std; |
---|
25 | |
---|
26 | extern "C" { |
---|
27 | #include "libCylinder.h" |
---|
28 | #include "libStructureFactor.h" |
---|
29 | } |
---|
30 | #include "csparallelepiped.h" |
---|
31 | |
---|
32 | // Convenience parameter structure |
---|
33 | typedef struct { |
---|
34 | double scale; |
---|
35 | double shortA; |
---|
36 | double midB; |
---|
37 | double longC; |
---|
38 | double rimA; |
---|
39 | double rimB; |
---|
40 | double rimC; |
---|
41 | double sld_rimA; |
---|
42 | double sld_rimB; |
---|
43 | double sld_rimC; |
---|
44 | double sld_pcore; |
---|
45 | double sld_solv; |
---|
46 | double background; |
---|
47 | double parallel_theta; |
---|
48 | double parallel_phi; |
---|
49 | double parallel_psi; |
---|
50 | } CSParallelepipedParameters; |
---|
51 | |
---|
52 | static double cspkernel(double dp[],double q, double ala, double alb, double alc){ |
---|
53 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
54 | double argA,argB,argC,argtA,argtB,argtC,tmp1,tmp2,tmp3,tmpt1,tmpt2,tmpt3; //local variables |
---|
55 | |
---|
56 | double aa,bb,cc, ta,tb,tc; |
---|
57 | double Vin,Vot,V1,V2,V3; |
---|
58 | double rhoA,rhoB,rhoC, rhoP, rhosolv; |
---|
59 | double dr0, drA,drB, drC; |
---|
60 | double retVal; |
---|
61 | |
---|
62 | aa = dp[1]; |
---|
63 | bb = dp[2]; |
---|
64 | cc = dp[3]; |
---|
65 | ta = dp[4]; |
---|
66 | tb = dp[5]; |
---|
67 | tc = dp[6]; |
---|
68 | rhoA=dp[7]; |
---|
69 | rhoB=dp[8]; |
---|
70 | rhoC=dp[9]; |
---|
71 | rhoP=dp[10]; |
---|
72 | rhosolv=dp[11]; |
---|
73 | dr0=rhoP-rhosolv; |
---|
74 | drA=rhoA-rhosolv; |
---|
75 | drB=rhoB-rhosolv; |
---|
76 | drC=rhoC-rhosolv; |
---|
77 | Vin=(aa*bb*cc); |
---|
78 | Vot=(aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc); |
---|
79 | V1=(2.0*ta*bb*cc); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) |
---|
80 | V2=(2.0*aa*tb*cc); // incorrect V2(aa*bb*cc+2*aa*tb*cc) |
---|
81 | V3=(2.0*aa*bb*tc); |
---|
82 | //aa = aa/bb; |
---|
83 | ta=(aa+2.0*ta);///bb; |
---|
84 | tb=(aa+2.0*tb);///bb; |
---|
85 | tc=(aa+2.0*tc); |
---|
86 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
87 | argA = q*aa*ala/2.0; |
---|
88 | argB = q*bb*alb/2.0; |
---|
89 | argC = q*cc*alc/2.0; |
---|
90 | argtA = q*ta*ala/2.0; |
---|
91 | argtB = q*tb*alb/2.0; |
---|
92 | argtC = q*tc*alc/2.0; |
---|
93 | |
---|
94 | if(argA==0.0) { |
---|
95 | tmp1 = 1.0; |
---|
96 | } else { |
---|
97 | tmp1 = sin(argA)/argA; |
---|
98 | } |
---|
99 | if (argB==0.0) { |
---|
100 | tmp2 = 1.0; |
---|
101 | } else { |
---|
102 | tmp2 = sin(argB)/argB; |
---|
103 | } |
---|
104 | |
---|
105 | if (argC==0.0) { |
---|
106 | tmp3 = 1.0; |
---|
107 | } else { |
---|
108 | tmp3 = sin(argC)/argC; |
---|
109 | } |
---|
110 | if(argtA==0.0) { |
---|
111 | tmpt1 = 1.0; |
---|
112 | } else { |
---|
113 | tmpt1 = sin(argtA)/argtA; |
---|
114 | } |
---|
115 | if (argtB==0.0) { |
---|
116 | tmpt2 = 1.0; |
---|
117 | } else { |
---|
118 | tmpt2 = sin(argtB)/argtB; |
---|
119 | } |
---|
120 | if (argtC==0.0) { |
---|
121 | tmpt3 = 1.0; |
---|
122 | } else { |
---|
123 | tmpt3 = sin(argtC)*sin(argtC)/argtC/argtC; |
---|
124 | } |
---|
125 | // This expression is different from NIST/IGOR package (I strongly believe the IGOR is wrong!!!). 10/15/2010. |
---|
126 | retVal =( dr0*tmp1*tmp2*tmp3*Vin + drA*(tmpt1-tmp1)*tmp2*tmp3*V1+ drB*tmp1*(tmpt2-tmp2)*tmp3*V2 + drC*tmp1*tmp2*(tmpt3-tmp3)*V3)* |
---|
127 | ( dr0*tmp1*tmp2*tmp3*Vin + drA*(tmpt1-tmp1)*tmp2*tmp3*V1+ drB*tmp1*(tmpt2-tmp2)*tmp3*V2 + drC*tmp1*tmp2*(tmpt3-tmp3)*V3); // correct FF : square of sum of phase factors |
---|
128 | //retVal *= (tmp3*tmp3); |
---|
129 | retVal /= Vot; |
---|
130 | |
---|
131 | return (retVal); |
---|
132 | |
---|
133 | }//Function cspkernel() |
---|
134 | |
---|
135 | /** |
---|
136 | * Function to evaluate 2D scattering function |
---|
137 | * @param pars: parameters of the CSparallelepiped |
---|
138 | * @param q: q-value |
---|
139 | * @param q_x: q_x / q |
---|
140 | * @param q_y: q_y / q |
---|
141 | * @return: function value |
---|
142 | */ |
---|
143 | static double csparallelepiped_analytical_2D_scaled(CSParallelepipedParameters *pars, double q, double q_x, double q_y) { |
---|
144 | double dp[13]; |
---|
145 | double cparallel_x, cparallel_y, cparallel_z, bparallel_x, bparallel_y, parallel_x, parallel_y; |
---|
146 | double q_z; |
---|
147 | double alpha, cos_val_c, cos_val_b, cos_val_a, edgeA, edgeB, edgeC; |
---|
148 | |
---|
149 | double answer; |
---|
150 | //convert angle degree to radian |
---|
151 | double pi = 4.0*atan(1.0); |
---|
152 | double theta = pars->parallel_theta * pi/180.0; |
---|
153 | double phi = pars->parallel_phi * pi/180.0; |
---|
154 | double psi = pars->parallel_psi* pi/180.0; |
---|
155 | |
---|
156 | // Fill paramater array |
---|
157 | dp[0] = 1.0; |
---|
158 | dp[1] = pars->shortA; |
---|
159 | dp[2] = pars->midB; |
---|
160 | dp[3] = pars->longC; |
---|
161 | dp[4] = pars->rimA; |
---|
162 | dp[5] = pars->rimB; |
---|
163 | dp[6] = pars->rimC; |
---|
164 | dp[7] = pars->sld_rimA; |
---|
165 | dp[8] = pars->sld_rimB; |
---|
166 | dp[9] = pars->sld_rimC; |
---|
167 | dp[10] = pars->sld_pcore; |
---|
168 | dp[11] = pars->sld_solv; |
---|
169 | dp[12] = 0.0; |
---|
170 | |
---|
171 | |
---|
172 | edgeA = pars->shortA; |
---|
173 | edgeB = pars->midB; |
---|
174 | edgeC = pars->longC; |
---|
175 | |
---|
176 | |
---|
177 | // parallelepiped c axis orientation |
---|
178 | cparallel_x = sin(theta) * cos(phi); |
---|
179 | cparallel_y = sin(theta) * sin(phi); |
---|
180 | cparallel_z = cos(theta); |
---|
181 | |
---|
182 | // q vector |
---|
183 | q_z = 0.0; |
---|
184 | |
---|
185 | // Compute the angle btw vector q and the |
---|
186 | // axis of the parallelepiped |
---|
187 | cos_val_c = cparallel_x*q_x + cparallel_y*q_y + cparallel_z*q_z; |
---|
188 | alpha = acos(cos_val_c); |
---|
189 | |
---|
190 | // parallelepiped a axis orientation |
---|
191 | parallel_x = sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)*sin(pars->parallel_psi); |
---|
192 | parallel_y = cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)*cos(pars->parallel_psi); |
---|
193 | |
---|
194 | cos_val_a = parallel_x*q_x + parallel_y*q_y; |
---|
195 | |
---|
196 | |
---|
197 | |
---|
198 | // parallelepiped b axis orientation |
---|
199 | bparallel_x = sqrt(1.0-sin(theta)*cos(phi))*cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)* cos(pars->parallel_psi); |
---|
200 | bparallel_y = sqrt(1.0-sin(theta)*cos(phi))*sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)* sin(pars->parallel_psi); |
---|
201 | // axis of the parallelepiped |
---|
202 | cos_val_b = sin(acos(cos_val_a)) ; |
---|
203 | |
---|
204 | |
---|
205 | |
---|
206 | // The following test should always pass |
---|
207 | if (fabs(cos_val_c)>1.0) { |
---|
208 | printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
209 | return 0; |
---|
210 | } |
---|
211 | |
---|
212 | // Call the IGOR library function to get the kernel |
---|
213 | answer = cspkernel( dp,q, sin(alpha)*cos_val_a,sin(alpha)*cos_val_b,cos_val_c); |
---|
214 | |
---|
215 | //convert to [cm-1] |
---|
216 | answer *= 1.0e8; |
---|
217 | |
---|
218 | //Scale |
---|
219 | answer *= pars->scale; |
---|
220 | |
---|
221 | // add in the background |
---|
222 | answer += pars->background; |
---|
223 | |
---|
224 | return answer; |
---|
225 | } |
---|
226 | |
---|
227 | /** |
---|
228 | * Function to evaluate 2D scattering function |
---|
229 | * @param pars: parameters of the CSparallelepiped |
---|
230 | * @param q: q-value |
---|
231 | * @return: function value |
---|
232 | */ |
---|
233 | static double csparallelepiped_analytical_2DXY(CSParallelepipedParameters *pars, double qx, double qy) { |
---|
234 | double q; |
---|
235 | q = sqrt(qx*qx+qy*qy); |
---|
236 | return csparallelepiped_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
237 | } |
---|
238 | |
---|
239 | |
---|
240 | |
---|
241 | |
---|
242 | CSParallelepipedModel :: CSParallelepipedModel() { |
---|
243 | scale = Parameter(1.0); |
---|
244 | shortA = Parameter(35.0, true); |
---|
245 | shortA.set_min(1.0); |
---|
246 | midB = Parameter(75.0, true); |
---|
247 | midB.set_min(1.0); |
---|
248 | longC = Parameter(400.0, true); |
---|
249 | longC.set_min(1.0); |
---|
250 | rimA = Parameter(10.0, true); |
---|
251 | rimB = Parameter(10.0, true); |
---|
252 | rimC = Parameter(10.0, true); |
---|
253 | sld_rimA = Parameter(2.0e-6, true); |
---|
254 | sld_rimB = Parameter(4.0e-6, true); |
---|
255 | sld_rimC = Parameter(2.0e-6, true); |
---|
256 | sld_pcore = Parameter(1.0e-6); |
---|
257 | sld_solv = Parameter(6.0e-6); |
---|
258 | background = Parameter(0.06); |
---|
259 | parallel_theta = Parameter(0.0, true); |
---|
260 | parallel_phi = Parameter(0.0, true); |
---|
261 | parallel_psi = Parameter(0.0, true); |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Function to evaluate 1D scattering function |
---|
266 | * The NIST IGOR library is used for the actual calculation. |
---|
267 | * @param q: q-value |
---|
268 | * @return: function value |
---|
269 | */ |
---|
270 | double CSParallelepipedModel :: operator()(double q) { |
---|
271 | double dp[13]; |
---|
272 | |
---|
273 | // Fill parameter array for IGOR library |
---|
274 | // Add the background after averaging |
---|
275 | dp[0] = scale(); |
---|
276 | dp[1] = shortA(); |
---|
277 | dp[2] = midB(); |
---|
278 | dp[3] = longC(); |
---|
279 | dp[4] = rimA(); |
---|
280 | dp[5] = rimB(); |
---|
281 | dp[6] = rimC(); |
---|
282 | dp[7] = sld_rimA(); |
---|
283 | dp[8] = sld_rimB(); |
---|
284 | dp[9] = sld_rimC(); |
---|
285 | dp[10] = sld_pcore(); |
---|
286 | dp[11] = sld_solv(); |
---|
287 | dp[12] = 0.0; |
---|
288 | |
---|
289 | // Get the dispersion points for the short_edgeA |
---|
290 | vector<WeightPoint> weights_shortA; |
---|
291 | shortA.get_weights(weights_shortA); |
---|
292 | |
---|
293 | // Get the dispersion points for the longer_edgeB |
---|
294 | vector<WeightPoint> weights_midB; |
---|
295 | midB.get_weights(weights_midB); |
---|
296 | |
---|
297 | // Get the dispersion points for the longuest_edgeC |
---|
298 | vector<WeightPoint> weights_longC; |
---|
299 | longC.get_weights(weights_longC); |
---|
300 | |
---|
301 | |
---|
302 | |
---|
303 | // Perform the computation, with all weight points |
---|
304 | double sum = 0.0; |
---|
305 | double norm = 0.0; |
---|
306 | double vol = 0.0; |
---|
307 | |
---|
308 | // Loop over short_edgeA weight points |
---|
309 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
310 | dp[1] = weights_shortA[i].value; |
---|
311 | |
---|
312 | // Loop over longer_edgeB weight points |
---|
313 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
314 | dp[2] = weights_midB[j].value; |
---|
315 | |
---|
316 | // Loop over longuest_edgeC weight points |
---|
317 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
318 | dp[3] = weights_longC[k].value; |
---|
319 | //Un-normalize by volume |
---|
320 | sum += weights_shortA[i].weight * weights_midB[j].weight |
---|
321 | * weights_longC[k].weight * CSParallelepiped(dp, q) |
---|
322 | * weights_shortA[i].value*weights_midB[j].value |
---|
323 | * weights_longC[k].value; |
---|
324 | //Find average volume |
---|
325 | vol += weights_shortA[i].weight * weights_midB[j].weight |
---|
326 | * weights_longC[k].weight |
---|
327 | * weights_shortA[i].value * weights_midB[j].value |
---|
328 | * weights_longC[k].value; |
---|
329 | |
---|
330 | norm += weights_shortA[i].weight |
---|
331 | * weights_midB[j].weight * weights_longC[k].weight; |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | if (vol != 0.0 && norm != 0.0) { |
---|
336 | //Re-normalize by avg volume |
---|
337 | sum = sum/(vol/norm);} |
---|
338 | |
---|
339 | return sum/norm + background(); |
---|
340 | } |
---|
341 | /** |
---|
342 | * Function to evaluate 2D scattering function |
---|
343 | * @param q_x: value of Q along x |
---|
344 | * @param q_y: value of Q along y |
---|
345 | * @return: function value |
---|
346 | */ |
---|
347 | double CSParallelepipedModel :: operator()(double qx, double qy) { |
---|
348 | CSParallelepipedParameters dp; |
---|
349 | // Fill parameter array |
---|
350 | dp.scale = scale(); |
---|
351 | dp.shortA = shortA(); |
---|
352 | dp.midB = midB(); |
---|
353 | dp.longC = longC(); |
---|
354 | dp.rimA = rimA(); |
---|
355 | dp.rimB = rimB(); |
---|
356 | dp.rimC = rimC(); |
---|
357 | dp.sld_rimA = sld_rimA(); |
---|
358 | dp.sld_rimB = sld_rimB(); |
---|
359 | dp.sld_rimC = sld_rimC(); |
---|
360 | dp.sld_pcore = sld_pcore(); |
---|
361 | dp.sld_solv = sld_solv(); |
---|
362 | dp.background = 0.0; |
---|
363 | //dp.background = background(); |
---|
364 | dp.parallel_theta = parallel_theta(); |
---|
365 | dp.parallel_phi = parallel_phi(); |
---|
366 | dp.parallel_psi = parallel_psi(); |
---|
367 | |
---|
368 | |
---|
369 | |
---|
370 | // Get the dispersion points for the short_edgeA |
---|
371 | vector<WeightPoint> weights_shortA; |
---|
372 | shortA.get_weights(weights_shortA); |
---|
373 | |
---|
374 | // Get the dispersion points for the longer_edgeB |
---|
375 | vector<WeightPoint> weights_midB; |
---|
376 | midB.get_weights(weights_midB); |
---|
377 | |
---|
378 | // Get the dispersion points for the longuest_edgeC |
---|
379 | vector<WeightPoint> weights_longC; |
---|
380 | longC.get_weights(weights_longC); |
---|
381 | |
---|
382 | // Get angular averaging for theta |
---|
383 | vector<WeightPoint> weights_parallel_theta; |
---|
384 | parallel_theta.get_weights(weights_parallel_theta); |
---|
385 | |
---|
386 | // Get angular averaging for phi |
---|
387 | vector<WeightPoint> weights_parallel_phi; |
---|
388 | parallel_phi.get_weights(weights_parallel_phi); |
---|
389 | |
---|
390 | // Get angular averaging for psi |
---|
391 | vector<WeightPoint> weights_parallel_psi; |
---|
392 | parallel_psi.get_weights(weights_parallel_psi); |
---|
393 | |
---|
394 | // Perform the computation, with all weight points |
---|
395 | double sum = 0.0; |
---|
396 | double norm = 0.0; |
---|
397 | double norm_vol = 0.0; |
---|
398 | double vol = 0.0; |
---|
399 | double pi = 4.0*atan(1.0); |
---|
400 | |
---|
401 | // Loop over radius weight points |
---|
402 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
403 | dp.shortA = weights_shortA[i].value; |
---|
404 | |
---|
405 | // Loop over longer_edgeB weight points |
---|
406 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
407 | dp.midB = weights_midB[j].value; |
---|
408 | |
---|
409 | // Average over longuest_edgeC distribution |
---|
410 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
411 | dp.longC = weights_longC[k].value; |
---|
412 | |
---|
413 | // Average over theta distribution |
---|
414 | for(int l=0; l< (int)weights_parallel_theta.size(); l++) { |
---|
415 | dp.parallel_theta = weights_parallel_theta[l].value; |
---|
416 | |
---|
417 | // Average over phi distribution |
---|
418 | for(int m=0; m< (int)weights_parallel_phi.size(); m++) { |
---|
419 | dp.parallel_phi = weights_parallel_phi[m].value; |
---|
420 | |
---|
421 | // Average over phi distribution |
---|
422 | for(int n=0; n< (int)weights_parallel_psi.size(); n++) { |
---|
423 | dp.parallel_psi = weights_parallel_psi[n].value; |
---|
424 | //Un-normalize by volume |
---|
425 | double _ptvalue = weights_shortA[i].weight |
---|
426 | * weights_midB[j].weight |
---|
427 | * weights_longC[k].weight |
---|
428 | * weights_parallel_theta[l].weight |
---|
429 | * weights_parallel_phi[m].weight |
---|
430 | * weights_parallel_psi[n].weight |
---|
431 | * csparallelepiped_analytical_2DXY(&dp, qx, qy) |
---|
432 | * weights_shortA[i].value*weights_midB[j].value |
---|
433 | * weights_longC[k].value; |
---|
434 | |
---|
435 | if (weights_parallel_theta.size()>1) { |
---|
436 | _ptvalue *= fabs(sin(weights_parallel_theta[l].value*pi/180.0)); |
---|
437 | } |
---|
438 | sum += _ptvalue; |
---|
439 | //Find average volume |
---|
440 | vol += weights_shortA[i].weight |
---|
441 | * weights_midB[j].weight |
---|
442 | * weights_longC[k].weight |
---|
443 | * weights_shortA[i].value*weights_midB[j].value |
---|
444 | * weights_longC[k].value; |
---|
445 | //Find norm for volume |
---|
446 | norm_vol += weights_shortA[i].weight |
---|
447 | * weights_midB[j].weight |
---|
448 | * weights_longC[k].weight; |
---|
449 | |
---|
450 | norm += weights_shortA[i].weight |
---|
451 | * weights_midB[j].weight |
---|
452 | * weights_longC[k].weight |
---|
453 | * weights_parallel_theta[l].weight |
---|
454 | * weights_parallel_phi[m].weight |
---|
455 | * weights_parallel_psi[n].weight; |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | } |
---|
460 | } |
---|
461 | } |
---|
462 | } |
---|
463 | // Averaging in theta needs an extra normalization |
---|
464 | // factor to account for the sin(theta) term in the |
---|
465 | // integration (see documentation). |
---|
466 | if (weights_parallel_theta.size()>1) norm = norm / asin(1.0); |
---|
467 | |
---|
468 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
469 | //Re-normalize by avg volume |
---|
470 | sum = sum/(vol/norm_vol);} |
---|
471 | |
---|
472 | return sum/norm + background(); |
---|
473 | } |
---|
474 | |
---|
475 | |
---|
476 | /** |
---|
477 | * Function to evaluate 2D scattering function |
---|
478 | * @param pars: parameters of the cylinder |
---|
479 | * @param q: q-value |
---|
480 | * @param phi: angle phi |
---|
481 | * @return: function value |
---|
482 | */ |
---|
483 | double CSParallelepipedModel :: evaluate_rphi(double q, double phi) { |
---|
484 | double qx = q*cos(phi); |
---|
485 | double qy = q*sin(phi); |
---|
486 | return (*this).operator()(qx, qy); |
---|
487 | } |
---|
488 | /** |
---|
489 | * Function to calculate effective radius |
---|
490 | * @return: effective radius value |
---|
491 | */ |
---|
492 | double CSParallelepipedModel :: calculate_ER() { |
---|
493 | CSParallelepipedParameters dp; |
---|
494 | dp.shortA = shortA(); |
---|
495 | dp.midB = midB(); |
---|
496 | dp.longC = longC(); |
---|
497 | dp.rimA = rimA(); |
---|
498 | dp.rimB = rimB(); |
---|
499 | dp.rimC = rimC(); |
---|
500 | |
---|
501 | double rad_out = 0.0; |
---|
502 | double pi = 4.0*atan(1.0); |
---|
503 | double suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
504 | double height =(dp.longC + 2.0*dp.rimC); |
---|
505 | // Perform the computation, with all weight points |
---|
506 | double sum = 0.0; |
---|
507 | double norm = 0.0; |
---|
508 | |
---|
509 | // Get the dispersion points for the short_edgeA |
---|
510 | vector<WeightPoint> weights_shortA; |
---|
511 | shortA.get_weights(weights_shortA); |
---|
512 | |
---|
513 | // Get the dispersion points for the longer_edgeB |
---|
514 | vector<WeightPoint> weights_midB; |
---|
515 | midB.get_weights(weights_midB); |
---|
516 | |
---|
517 | // Get angular averaging for the longuest_edgeC |
---|
518 | vector<WeightPoint> weights_longC; |
---|
519 | longC.get_weights(weights_longC); |
---|
520 | |
---|
521 | // Loop over radius weight points |
---|
522 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
523 | dp.shortA = weights_shortA[i].value; |
---|
524 | |
---|
525 | // Loop over longer_edgeB weight points |
---|
526 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
527 | dp.midB = weights_midB[j].value; |
---|
528 | |
---|
529 | // Average over longuest_edgeC distribution |
---|
530 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
531 | dp.longC = weights_longC[k].value; |
---|
532 | //Calculate surface averaged radius |
---|
533 | //This is rough approximation. |
---|
534 | suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
535 | height =(dp.longC + 2.0*dp.rimC); |
---|
536 | //Note: output of "DiamCyl(dp.length,dp.radius)" is a DIAMETER. |
---|
537 | sum +=weights_shortA[i].weight* weights_midB[j].weight |
---|
538 | * weights_longC[k].weight*DiamCyl(height, suf_rad)/2.0; |
---|
539 | norm += weights_shortA[i].weight* weights_midB[j].weight*weights_longC[k].weight; |
---|
540 | } |
---|
541 | } |
---|
542 | } |
---|
543 | |
---|
544 | if (norm != 0){ |
---|
545 | //return the averaged value |
---|
546 | rad_out = sum/norm;} |
---|
547 | else{ |
---|
548 | //return normal value |
---|
549 | //Note: output of "DiamCyl(length,radius)" is DIAMETER. |
---|
550 | rad_out = DiamCyl(dp.longC, suf_rad)/2.0;} |
---|
551 | return rad_out; |
---|
552 | |
---|
553 | } |
---|