1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | #include "core_shell.h" |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libSphere.h" |
---|
30 | #include "libmultifunc/libfunc.h" |
---|
31 | } |
---|
32 | |
---|
33 | typedef struct { |
---|
34 | double scale; |
---|
35 | double radius; |
---|
36 | double thickness; |
---|
37 | double core_sld; |
---|
38 | double shell_sld; |
---|
39 | double solvent_sld; |
---|
40 | double background; |
---|
41 | double M0_sld_shell; |
---|
42 | double M_theta_shell; |
---|
43 | double M_phi_shell; |
---|
44 | double M0_sld_core; |
---|
45 | double M_theta_core; |
---|
46 | double M_phi_core; |
---|
47 | double M0_sld_solv; |
---|
48 | double M_theta_solv; |
---|
49 | double M_phi_solv; |
---|
50 | double Up_frac_i; |
---|
51 | double Up_frac_f; |
---|
52 | double Up_theta; |
---|
53 | } CoreShellParameters; |
---|
54 | |
---|
55 | CoreShellModel :: CoreShellModel() { |
---|
56 | scale = Parameter(1.0); |
---|
57 | radius = Parameter(60.0, true); |
---|
58 | radius.set_min(0.0); |
---|
59 | thickness = Parameter(10.0, true); |
---|
60 | thickness.set_min(0.0); |
---|
61 | core_sld = Parameter(1.e-6); |
---|
62 | shell_sld = Parameter(2.e-6); |
---|
63 | solvent_sld = Parameter(3.e-6); |
---|
64 | background = Parameter(0.0); |
---|
65 | M0_sld_shell = Parameter(0.0e-6); |
---|
66 | M_theta_shell = Parameter(0.0); |
---|
67 | M_phi_shell = Parameter(0.0); |
---|
68 | M0_sld_core = Parameter(0.0e-6); |
---|
69 | M_theta_core = Parameter(0.0); |
---|
70 | M_phi_core = Parameter(0.0); |
---|
71 | M0_sld_solv = Parameter(0.0e-6); |
---|
72 | M_theta_solv = Parameter(0.0); |
---|
73 | M_phi_solv = Parameter(0.0); |
---|
74 | Up_frac_i = Parameter(0.5); |
---|
75 | Up_frac_f = Parameter(0.5); |
---|
76 | Up_theta = Parameter(0.0); |
---|
77 | } |
---|
78 | |
---|
79 | /** |
---|
80 | * Function to evaluate 1D scattering function |
---|
81 | * The NIST IGOR library is used for the actual calculation. |
---|
82 | * @param q: q-value |
---|
83 | * @return: function value |
---|
84 | */ |
---|
85 | double CoreShellModel :: operator()(double q) { |
---|
86 | double dp[7]; |
---|
87 | |
---|
88 | // Fill parameter array for IGOR library |
---|
89 | // Add the background after averaging |
---|
90 | |
---|
91 | dp[0] = scale(); |
---|
92 | dp[1] = radius(); |
---|
93 | dp[2] = thickness(); |
---|
94 | dp[3] = core_sld(); |
---|
95 | dp[4] = shell_sld(); |
---|
96 | dp[5] = solvent_sld(); |
---|
97 | dp[6] = 0.0; |
---|
98 | |
---|
99 | //im |
---|
100 | ///dp[7] = 0.0; |
---|
101 | ///dp[8] = 0.0; |
---|
102 | ///dp[9] = 0.0; |
---|
103 | |
---|
104 | // Get the dispersion points for the radius |
---|
105 | vector<WeightPoint> weights_rad; |
---|
106 | radius.get_weights(weights_rad); |
---|
107 | |
---|
108 | // Get the dispersion points for the thickness |
---|
109 | vector<WeightPoint> weights_thick; |
---|
110 | thickness.get_weights(weights_thick); |
---|
111 | |
---|
112 | // Perform the computation, with all weight points |
---|
113 | double sum = 0.0; |
---|
114 | double norm = 0.0; |
---|
115 | double vol = 0.0; |
---|
116 | |
---|
117 | // Loop over radius weight points |
---|
118 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
119 | dp[1] = weights_rad[i].value; |
---|
120 | |
---|
121 | // Loop over thickness weight points |
---|
122 | for(size_t j=0; j<weights_thick.size(); j++) { |
---|
123 | dp[2] = weights_thick[j].value; |
---|
124 | //Un-normalize SphereForm by volume |
---|
125 | sum += weights_rad[i].weight |
---|
126 | * weights_thick[j].weight * CoreShellForm(dp, q)* pow(weights_rad[i].value+weights_thick[j].value,3); |
---|
127 | |
---|
128 | //Find average volume |
---|
129 | vol += weights_rad[i].weight * weights_thick[j].weight |
---|
130 | * pow(weights_rad[i].value+weights_thick[j].value,3); |
---|
131 | norm += weights_rad[i].weight |
---|
132 | * weights_thick[j].weight; |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | if (vol != 0.0 && norm != 0.0) { |
---|
137 | //Re-normalize by avg volume |
---|
138 | sum = sum/(vol/norm);} |
---|
139 | |
---|
140 | return sum/norm + background(); |
---|
141 | } |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | /** |
---|
146 | * Function to evaluate 2D scattering function |
---|
147 | * @param pars: parameters |
---|
148 | * @param q: q-value |
---|
149 | * @param q_x: q_x / q |
---|
150 | * @param q_y: q_y / q |
---|
151 | * @return: function value |
---|
152 | */ |
---|
153 | |
---|
154 | static double coreshell_analytical_2D_scaled(CoreShellParameters *pars, double q, double q_x, double q_y) { |
---|
155 | double dp[7]; |
---|
156 | //convert angle degree to radian |
---|
157 | dp[0] = pars->scale; |
---|
158 | dp[1] = pars->radius; |
---|
159 | dp[2] = pars->thickness; |
---|
160 | dp[3] = 0.0; |
---|
161 | dp[4] = 0.0; |
---|
162 | dp[5] = 0.0; |
---|
163 | dp[6] = 0.0; |
---|
164 | //im |
---|
165 | ///dp[7] = 0.0; |
---|
166 | ///dp[8] = 0.0; |
---|
167 | ///dp[9] = 0.0; |
---|
168 | |
---|
169 | double sld_core = pars->core_sld; |
---|
170 | double sld_shell = pars->shell_sld; |
---|
171 | double sld_solv = pars->solvent_sld; |
---|
172 | double answer = 0.0; |
---|
173 | double m_max = pars->M0_sld_core; |
---|
174 | double m_max_shell = pars->M0_sld_shell; |
---|
175 | double m_max_solv = pars->M0_sld_solv; |
---|
176 | |
---|
177 | if (m_max < 1.0e-32 && m_max_solv < 1.0e-32 && m_max_shell < 1.0e-32){ |
---|
178 | dp[3] = sld_core; |
---|
179 | dp[4] = sld_shell; |
---|
180 | dp[5] = sld_solv; |
---|
181 | answer = CoreShellForm(dp, q); |
---|
182 | } |
---|
183 | else{ |
---|
184 | double qx = q_x; |
---|
185 | double qy = q_y; |
---|
186 | double s_theta = pars->Up_theta; |
---|
187 | double m_phi = pars->M_phi_core; |
---|
188 | double m_theta = pars->M_theta_core; |
---|
189 | double m_phi_shell = pars->M_phi_shell; |
---|
190 | double m_theta_shell = pars->M_theta_shell; |
---|
191 | double m_phi_solv = pars->M_phi_solv; |
---|
192 | double m_theta_solv = pars->M_theta_solv; |
---|
193 | double in_spin = pars->Up_frac_i; |
---|
194 | double out_spin = pars->Up_frac_f; |
---|
195 | polar_sld p_sld_core; |
---|
196 | polar_sld p_sld_shell; |
---|
197 | polar_sld p_sld_solv; |
---|
198 | //Find (b+m) slds |
---|
199 | p_sld_core = cal_msld(1, qx, qy, sld_core, m_max, m_theta, m_phi, |
---|
200 | in_spin, out_spin, s_theta); |
---|
201 | p_sld_shell = cal_msld(1, qx, qy, sld_shell, m_max_shell, m_theta_shell, m_phi_shell, |
---|
202 | in_spin, out_spin, s_theta); |
---|
203 | p_sld_solv = cal_msld(1, qx, qy, sld_solv, m_max_solv, m_theta_solv, m_phi_solv, |
---|
204 | in_spin, out_spin, s_theta); |
---|
205 | //up_up |
---|
206 | if (in_spin > 0.0 && out_spin > 0.0){ |
---|
207 | dp[3] = p_sld_core.uu; |
---|
208 | dp[4] = p_sld_shell.uu; |
---|
209 | dp[5] = p_sld_solv.uu; |
---|
210 | answer += CoreShellForm(dp, q); |
---|
211 | } |
---|
212 | //down_down |
---|
213 | if (in_spin < 1.0 && out_spin < 1.0){ |
---|
214 | dp[3] = p_sld_core.dd; |
---|
215 | dp[4] = p_sld_shell.dd; |
---|
216 | dp[5] = p_sld_solv.dd; |
---|
217 | answer += CoreShellForm(dp, q); |
---|
218 | } |
---|
219 | //up_down |
---|
220 | if (in_spin > 0.0 && out_spin < 1.0){ |
---|
221 | dp[3] = p_sld_core.re_ud; |
---|
222 | dp[4] = p_sld_shell.re_ud; |
---|
223 | dp[5] = p_sld_solv.re_ud; |
---|
224 | answer += CoreShellForm(dp, q); |
---|
225 | dp[3] = p_sld_core.im_ud; |
---|
226 | dp[4] = p_sld_shell.im_ud; |
---|
227 | dp[5] = p_sld_solv.im_ud; |
---|
228 | answer += CoreShellForm(dp, q); |
---|
229 | } |
---|
230 | //down_up |
---|
231 | if (in_spin < 1.0 && out_spin > 0.0){ |
---|
232 | dp[3] = p_sld_core.re_du; |
---|
233 | dp[4] = p_sld_shell.re_du; |
---|
234 | dp[5] = p_sld_solv.re_du; |
---|
235 | answer += CoreShellForm(dp, q); |
---|
236 | dp[3] = p_sld_core.im_du; |
---|
237 | dp[4] = p_sld_shell.im_du; |
---|
238 | dp[5] = p_sld_solv.im_du; |
---|
239 | answer += CoreShellForm(dp, q); |
---|
240 | } |
---|
241 | } |
---|
242 | // Already normalized |
---|
243 | // add in the background |
---|
244 | answer += pars->background; |
---|
245 | return answer; |
---|
246 | } |
---|
247 | |
---|
248 | /** |
---|
249 | * Function to evaluate 2D scattering function |
---|
250 | * @param pars: parameters |
---|
251 | * @param q: q-value |
---|
252 | * @return: function value |
---|
253 | */ |
---|
254 | static double coreshell_analytical_2DXY(CoreShellParameters *pars, double qx, double qy) { |
---|
255 | double q; |
---|
256 | q = sqrt(qx*qx+qy*qy); |
---|
257 | return coreshell_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
258 | } |
---|
259 | |
---|
260 | |
---|
261 | /** |
---|
262 | * Function to evaluate 2D scattering function |
---|
263 | * @param q_x: value of Q along x |
---|
264 | * @param q_y: value of Q along y |
---|
265 | * @return: function value |
---|
266 | */ |
---|
267 | double CoreShellModel :: operator()(double qx, double qy) { |
---|
268 | CoreShellParameters dp; |
---|
269 | dp.scale = scale(); |
---|
270 | dp.radius = radius(); |
---|
271 | dp.thickness = thickness(); |
---|
272 | dp.core_sld = core_sld(); |
---|
273 | dp.shell_sld = shell_sld(); |
---|
274 | dp.solvent_sld = solvent_sld(); |
---|
275 | dp.background = 0.0; |
---|
276 | dp.M0_sld_shell = M0_sld_shell(); |
---|
277 | dp.M_theta_shell = M_theta_shell(); |
---|
278 | dp.M_phi_shell = M_phi_shell(); |
---|
279 | dp.M0_sld_core = M0_sld_core(); |
---|
280 | dp.M_theta_core = M_theta_core(); |
---|
281 | dp.M_phi_core = M_phi_core(); |
---|
282 | dp.M0_sld_solv = M0_sld_solv(); |
---|
283 | dp.M_theta_solv = M_theta_solv(); |
---|
284 | dp.M_phi_solv = M_phi_solv(); |
---|
285 | dp.Up_frac_i = Up_frac_i(); |
---|
286 | dp.Up_frac_f = Up_frac_f(); |
---|
287 | dp.Up_theta = Up_theta(); |
---|
288 | |
---|
289 | // Get the dispersion points for the radius |
---|
290 | vector<WeightPoint> weights_rad; |
---|
291 | radius.get_weights(weights_rad); |
---|
292 | |
---|
293 | // Get the dispersion points for the thickness |
---|
294 | vector<WeightPoint> weights_thick; |
---|
295 | thickness.get_weights(weights_thick); |
---|
296 | |
---|
297 | // Perform the computation, with all weight points |
---|
298 | double sum = 0.0; |
---|
299 | double norm = 0.0; |
---|
300 | double vol = 0.0; |
---|
301 | |
---|
302 | // Loop over radius weight points |
---|
303 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
304 | dp.radius = weights_rad[i].value; |
---|
305 | |
---|
306 | // Loop over thickness weight points |
---|
307 | for(size_t j=0; j<weights_thick.size(); j++) { |
---|
308 | dp.thickness = weights_thick[j].value; |
---|
309 | //Un-normalize SphereForm by volume |
---|
310 | sum += weights_rad[i].weight |
---|
311 | * weights_thick[j].weight * coreshell_analytical_2DXY(&dp, qx, qy) * |
---|
312 | pow(weights_rad[i].value+weights_thick[j].value,3); |
---|
313 | |
---|
314 | //Find average volume |
---|
315 | vol += weights_rad[i].weight * weights_thick[j].weight |
---|
316 | * pow(weights_rad[i].value+weights_thick[j].value,3); |
---|
317 | norm += weights_rad[i].weight |
---|
318 | * weights_thick[j].weight; |
---|
319 | } |
---|
320 | } |
---|
321 | |
---|
322 | if (vol != 0.0 && norm != 0.0) { |
---|
323 | //Re-normalize by avg volume |
---|
324 | sum = sum/(vol/norm);} |
---|
325 | return sum/norm + background(); |
---|
326 | } |
---|
327 | |
---|
328 | /** |
---|
329 | * Function to evaluate 2D scattering function |
---|
330 | * @param pars: parameters of the sphere |
---|
331 | * @param q: q-value |
---|
332 | * @param phi: angle phi |
---|
333 | * @return: function value |
---|
334 | */ |
---|
335 | double CoreShellModel :: evaluate_rphi(double q, double phi) { |
---|
336 | double qx = q*cos(phi); |
---|
337 | double qy = q*sin(phi); |
---|
338 | return (*this).operator()(qx, qy); |
---|
339 | } |
---|
340 | /** |
---|
341 | * Function to calculate effective radius |
---|
342 | * @return: effective radius value |
---|
343 | */ |
---|
344 | double CoreShellModel :: calculate_ER() { |
---|
345 | CoreShellParameters dp; |
---|
346 | |
---|
347 | dp.radius = radius(); |
---|
348 | dp.thickness = thickness(); |
---|
349 | |
---|
350 | double rad_out = 0.0; |
---|
351 | |
---|
352 | // Perform the computation, with all weight points |
---|
353 | double sum = 0.0; |
---|
354 | double norm = 0.0; |
---|
355 | |
---|
356 | |
---|
357 | // Get the dispersion points for the major shell |
---|
358 | vector<WeightPoint> weights_thickness; |
---|
359 | thickness.get_weights(weights_thickness); |
---|
360 | |
---|
361 | // Get the dispersion points for the minor shell |
---|
362 | vector<WeightPoint> weights_radius ; |
---|
363 | radius.get_weights(weights_radius); |
---|
364 | |
---|
365 | // Loop over major shell weight points |
---|
366 | for(int j=0; j< (int)weights_thickness.size(); j++) { |
---|
367 | dp.thickness = weights_thickness[j].value; |
---|
368 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
369 | dp.radius = weights_radius[k].value; |
---|
370 | sum += weights_thickness[j].weight |
---|
371 | * weights_radius[k].weight*(dp.radius+dp.thickness); |
---|
372 | norm += weights_thickness[j].weight* weights_radius[k].weight; |
---|
373 | } |
---|
374 | } |
---|
375 | if (norm != 0){ |
---|
376 | //return the averaged value |
---|
377 | rad_out = sum/norm;} |
---|
378 | else{ |
---|
379 | //return normal value |
---|
380 | rad_out = (dp.radius+dp.thickness);} |
---|
381 | |
---|
382 | return rad_out; |
---|
383 | } |
---|
384 | double CoreShellModel :: calculate_VR() { |
---|
385 | return 1.0; |
---|
386 | } |
---|