[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[011e0e4] | 26 | #include "core_shell_cylinder.h" |
---|
[0f5bc9f] | 27 | |
---|
| 28 | extern "C" { |
---|
[82c11d3] | 29 | #include "libCylinder.h" |
---|
| 30 | #include "libStructureFactor.h" |
---|
[0f5bc9f] | 31 | } |
---|
| 32 | |
---|
[011e0e4] | 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double radius; |
---|
| 36 | double thickness; |
---|
| 37 | double length; |
---|
| 38 | double core_sld; |
---|
| 39 | double shell_sld; |
---|
| 40 | double solvent_sld; |
---|
| 41 | double background; |
---|
| 42 | double axis_theta; |
---|
| 43 | double axis_phi; |
---|
| 44 | } CoreShellCylinderParameters; |
---|
| 45 | |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | * Function to evaluate 2D scattering function |
---|
| 49 | * @param pars: parameters of the core-shell cylinder |
---|
| 50 | * @param q: q-value |
---|
| 51 | * @param q_x: q_x / q |
---|
| 52 | * @param q_y: q_y / q |
---|
| 53 | * @return: function value |
---|
| 54 | */ |
---|
| 55 | static double core_shell_cylinder_analytical_2D_scaled(CoreShellCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
| 56 | double cyl_x, cyl_y, cyl_z; |
---|
| 57 | double q_z; |
---|
| 58 | double alpha, vol, cos_val; |
---|
| 59 | double answer; |
---|
| 60 | //convert angle degree to radian |
---|
| 61 | double pi = 4.0*atan(1.0); |
---|
| 62 | double theta = pars->axis_theta * pi/180.0; |
---|
| 63 | double phi = pars->axis_phi * pi/180.0; |
---|
| 64 | |
---|
[82c11d3] | 65 | // Cylinder orientation |
---|
| 66 | cyl_x = sin(theta) * cos(phi); |
---|
| 67 | cyl_y = sin(theta) * sin(phi); |
---|
| 68 | cyl_z = cos(theta); |
---|
[011e0e4] | 69 | |
---|
[82c11d3] | 70 | // q vector |
---|
| 71 | q_z = 0; |
---|
[011e0e4] | 72 | |
---|
[82c11d3] | 73 | // Compute the angle btw vector q and the |
---|
| 74 | // axis of the cylinder |
---|
| 75 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
[011e0e4] | 76 | |
---|
[82c11d3] | 77 | // The following test should always pass |
---|
| 78 | if (fabs(cos_val)>1.0) { |
---|
| 79 | printf("core_shell_cylinder_analytical_2D: Unexpected error: cos(alpha)=%g\n", cos_val); |
---|
| 80 | return 0; |
---|
| 81 | } |
---|
[011e0e4] | 82 | |
---|
| 83 | alpha = acos( cos_val ); |
---|
| 84 | |
---|
| 85 | // Call the IGOR library function to get the kernel |
---|
| 86 | answer = CoreShellCylKernel(q, pars->radius, pars->thickness, |
---|
[82c11d3] | 87 | pars->core_sld,pars->shell_sld, |
---|
| 88 | pars->solvent_sld, pars->length/2.0, alpha) / fabs(sin(alpha)); |
---|
[011e0e4] | 89 | |
---|
| 90 | //normalize by cylinder volume |
---|
| 91 | vol=pi*(pars->radius+pars->thickness) |
---|
[82c11d3] | 92 | *(pars->radius+pars->thickness) |
---|
| 93 | *(pars->length+2.0*pars->thickness); |
---|
[011e0e4] | 94 | answer /= vol; |
---|
| 95 | |
---|
| 96 | //convert to [cm-1] |
---|
| 97 | answer *= 1.0e8; |
---|
| 98 | |
---|
| 99 | //Scale |
---|
| 100 | answer *= pars->scale; |
---|
| 101 | |
---|
| 102 | // add in the background |
---|
| 103 | answer += pars->background; |
---|
| 104 | |
---|
| 105 | return answer; |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * Function to evaluate 2D scattering function |
---|
| 110 | * @param pars: parameters of the core-shell cylinder |
---|
| 111 | * @param q: q-value |
---|
| 112 | * @return: function value |
---|
| 113 | */ |
---|
| 114 | static double core_shell_cylinder_analytical_2DXY(CoreShellCylinderParameters *pars, double qx, double qy) { |
---|
| 115 | double q; |
---|
| 116 | q = sqrt(qx*qx+qy*qy); |
---|
[82c11d3] | 117 | return core_shell_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[011e0e4] | 118 | } |
---|
| 119 | |
---|
| 120 | |
---|
[0f5bc9f] | 121 | CoreShellCylinderModel :: CoreShellCylinderModel() { |
---|
[82c11d3] | 122 | scale = Parameter(1.0); |
---|
| 123 | radius = Parameter(20.0, true); |
---|
| 124 | radius.set_min(0.0); |
---|
| 125 | thickness = Parameter(10.0, true); |
---|
| 126 | thickness.set_min(0.0); |
---|
| 127 | length = Parameter(400.0, true); |
---|
| 128 | length.set_min(0.0); |
---|
| 129 | core_sld = Parameter(1.e-6); |
---|
| 130 | shell_sld = Parameter(4.e-6); |
---|
| 131 | solvent_sld= Parameter(1.e-6); |
---|
| 132 | background = Parameter(0.0); |
---|
| 133 | axis_theta = Parameter(90.0, true); |
---|
| 134 | axis_phi = Parameter(0.0, true); |
---|
[0f5bc9f] | 135 | } |
---|
| 136 | |
---|
| 137 | /** |
---|
| 138 | * Function to evaluate 1D scattering function |
---|
| 139 | * The NIST IGOR library is used for the actual calculation. |
---|
| 140 | * @param q: q-value |
---|
| 141 | * @return: function value |
---|
| 142 | */ |
---|
| 143 | double CoreShellCylinderModel :: operator()(double q) { |
---|
[82c11d3] | 144 | double dp[8]; |
---|
| 145 | |
---|
| 146 | dp[0] = scale(); |
---|
| 147 | dp[1] = radius(); |
---|
| 148 | dp[2] = thickness(); |
---|
| 149 | dp[3] = length(); |
---|
| 150 | dp[4] = core_sld(); |
---|
| 151 | dp[5] = shell_sld(); |
---|
| 152 | dp[6] = solvent_sld(); |
---|
| 153 | dp[7] = 0.0; |
---|
| 154 | |
---|
| 155 | // Get the dispersion points for the radius |
---|
| 156 | vector<WeightPoint> weights_rad; |
---|
| 157 | radius.get_weights(weights_rad); |
---|
| 158 | |
---|
| 159 | // Get the dispersion points for the thickness |
---|
| 160 | vector<WeightPoint> weights_thick; |
---|
| 161 | thickness.get_weights(weights_thick); |
---|
| 162 | |
---|
| 163 | // Get the dispersion points for the length |
---|
| 164 | vector<WeightPoint> weights_len; |
---|
| 165 | length.get_weights(weights_len); |
---|
| 166 | |
---|
| 167 | // Perform the computation, with all weight points |
---|
| 168 | double sum = 0.0; |
---|
| 169 | double norm = 0.0; |
---|
| 170 | double vol = 0.0; |
---|
| 171 | |
---|
| 172 | // Loop over radius weight points |
---|
| 173 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 174 | dp[1] = weights_rad[i].value; |
---|
| 175 | |
---|
| 176 | // Loop over length weight points |
---|
| 177 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 178 | dp[3] = weights_len[j].value; |
---|
| 179 | |
---|
| 180 | // Loop over thickness weight points |
---|
| 181 | for(size_t k=0; k<weights_thick.size(); k++) { |
---|
| 182 | dp[2] = weights_thick[k].value; |
---|
| 183 | //Un-normalize by volume |
---|
| 184 | sum += weights_rad[i].weight |
---|
| 185 | * weights_len[j].weight |
---|
| 186 | * weights_thick[k].weight |
---|
| 187 | * CoreShellCylinder(dp, q) |
---|
| 188 | * pow(weights_rad[i].value+weights_thick[k].value,2) |
---|
| 189 | *(weights_len[j].value+2.0*weights_thick[k].value); |
---|
| 190 | //Find average volume |
---|
| 191 | vol += weights_rad[i].weight |
---|
| 192 | * weights_len[j].weight |
---|
| 193 | * weights_thick[k].weight |
---|
| 194 | * pow(weights_rad[i].value+weights_thick[k].value,2) |
---|
| 195 | *(weights_len[j].value+2.0*weights_thick[k].value); |
---|
| 196 | norm += weights_rad[i].weight |
---|
| 197 | * weights_len[j].weight |
---|
| 198 | * weights_thick[k].weight; |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | |
---|
| 203 | if (vol != 0.0 && norm != 0.0) { |
---|
| 204 | //Re-normalize by avg volume |
---|
| 205 | sum = sum/(vol/norm);} |
---|
| 206 | |
---|
| 207 | return sum/norm + background(); |
---|
[0f5bc9f] | 208 | } |
---|
| 209 | |
---|
| 210 | /** |
---|
| 211 | * Function to evaluate 2D scattering function |
---|
| 212 | * @param q_x: value of Q along x |
---|
| 213 | * @param q_y: value of Q along y |
---|
| 214 | * @return: function value |
---|
| 215 | */ |
---|
| 216 | double CoreShellCylinderModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 217 | CoreShellCylinderParameters dp; |
---|
| 218 | // Fill parameter array |
---|
| 219 | dp.scale = scale(); |
---|
| 220 | dp.radius = radius(); |
---|
| 221 | dp.thickness = thickness(); |
---|
| 222 | dp.length = length(); |
---|
| 223 | dp.core_sld = core_sld(); |
---|
| 224 | dp.shell_sld = shell_sld(); |
---|
| 225 | dp.solvent_sld= solvent_sld(); |
---|
| 226 | dp.background = 0.0; |
---|
| 227 | dp.axis_theta = axis_theta(); |
---|
| 228 | dp.axis_phi = axis_phi(); |
---|
| 229 | |
---|
| 230 | // Get the dispersion points for the radius |
---|
| 231 | vector<WeightPoint> weights_rad; |
---|
| 232 | radius.get_weights(weights_rad); |
---|
| 233 | |
---|
| 234 | // Get the dispersion points for the thickness |
---|
| 235 | vector<WeightPoint> weights_thick; |
---|
| 236 | thickness.get_weights(weights_thick); |
---|
| 237 | |
---|
| 238 | // Get the dispersion points for the length |
---|
| 239 | vector<WeightPoint> weights_len; |
---|
| 240 | length.get_weights(weights_len); |
---|
| 241 | |
---|
| 242 | // Get angular averaging for theta |
---|
| 243 | vector<WeightPoint> weights_theta; |
---|
| 244 | axis_theta.get_weights(weights_theta); |
---|
| 245 | |
---|
| 246 | // Get angular averaging for phi |
---|
| 247 | vector<WeightPoint> weights_phi; |
---|
| 248 | axis_phi.get_weights(weights_phi); |
---|
| 249 | |
---|
| 250 | // Perform the computation, with all weight points |
---|
| 251 | double sum = 0.0; |
---|
| 252 | double norm = 0.0; |
---|
| 253 | double norm_vol = 0.0; |
---|
| 254 | double vol = 0.0; |
---|
| 255 | double pi = 4.0*atan(1.0); |
---|
| 256 | // Loop over radius weight points |
---|
| 257 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 258 | dp.radius = weights_rad[i].value; |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | // Loop over length weight points |
---|
| 262 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 263 | dp.length = weights_len[j].value; |
---|
| 264 | |
---|
| 265 | // Loop over thickness weight points |
---|
| 266 | for(size_t m=0; m<weights_thick.size(); m++) { |
---|
| 267 | dp.thickness = weights_thick[m].value; |
---|
| 268 | |
---|
| 269 | // Average over theta distribution |
---|
| 270 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
| 271 | dp.axis_theta = weights_theta[k].value; |
---|
| 272 | |
---|
| 273 | // Average over phi distribution |
---|
| 274 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
| 275 | dp.axis_phi = weights_phi[l].value; |
---|
| 276 | //Un-normalize by volume |
---|
| 277 | double _ptvalue = weights_rad[i].weight |
---|
| 278 | * weights_len[j].weight |
---|
| 279 | * weights_thick[m].weight |
---|
| 280 | * weights_theta[k].weight |
---|
| 281 | * weights_phi[l].weight |
---|
| 282 | * core_shell_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 283 | * pow(weights_rad[i].value+weights_thick[m].value,2) |
---|
| 284 | *(weights_len[j].value+2.0*weights_thick[m].value); |
---|
| 285 | |
---|
| 286 | if (weights_theta.size()>1) { |
---|
| 287 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
| 288 | } |
---|
| 289 | sum += _ptvalue; |
---|
| 290 | |
---|
| 291 | //Find average volume |
---|
| 292 | vol += weights_rad[i].weight |
---|
| 293 | * weights_len[j].weight |
---|
| 294 | * weights_thick[m].weight |
---|
| 295 | * pow(weights_rad[i].value+weights_thick[m].value,2) |
---|
| 296 | *(weights_len[j].value+2.0*weights_thick[m].value); |
---|
| 297 | //Find norm for volume |
---|
| 298 | norm_vol += weights_rad[i].weight |
---|
| 299 | * weights_len[j].weight |
---|
| 300 | * weights_thick[m].weight; |
---|
| 301 | |
---|
| 302 | norm += weights_rad[i].weight |
---|
| 303 | * weights_len[j].weight |
---|
| 304 | * weights_thick[m].weight |
---|
| 305 | * weights_theta[k].weight |
---|
| 306 | * weights_phi[l].weight; |
---|
| 307 | |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | } |
---|
| 313 | // Averaging in theta needs an extra normalization |
---|
| 314 | // factor to account for the sin(theta) term in the |
---|
| 315 | // integration (see documentation). |
---|
| 316 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 317 | |
---|
| 318 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 319 | //Re-normalize by avg volume |
---|
| 320 | sum = sum/(vol/norm_vol);} |
---|
| 321 | |
---|
| 322 | return sum/norm + background(); |
---|
[0f5bc9f] | 323 | } |
---|
| 324 | |
---|
| 325 | /** |
---|
| 326 | * Function to evaluate 2D scattering function |
---|
| 327 | * @param pars: parameters of the cylinder |
---|
| 328 | * @param q: q-value |
---|
| 329 | * @param phi: angle phi |
---|
| 330 | * @return: function value |
---|
| 331 | */ |
---|
| 332 | double CoreShellCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 333 | double qx = q*cos(phi); |
---|
| 334 | double qy = q*sin(phi); |
---|
| 335 | return (*this).operator()(qx, qy); |
---|
[0f5bc9f] | 336 | } |
---|
[5eb9154] | 337 | /** |
---|
| 338 | * Function to calculate effective radius |
---|
| 339 | * @return: effective radius value |
---|
| 340 | */ |
---|
| 341 | double CoreShellCylinderModel :: calculate_ER() { |
---|
[82c11d3] | 342 | CoreShellCylinderParameters dp; |
---|
| 343 | |
---|
| 344 | dp.radius = radius(); |
---|
| 345 | dp.thickness = thickness(); |
---|
| 346 | dp.length = length(); |
---|
| 347 | double rad_out = 0.0; |
---|
| 348 | |
---|
| 349 | // Perform the computation, with all weight points |
---|
| 350 | double sum = 0.0; |
---|
| 351 | double norm = 0.0; |
---|
| 352 | |
---|
| 353 | // Get the dispersion points for the length |
---|
| 354 | vector<WeightPoint> weights_length; |
---|
| 355 | length.get_weights(weights_length); |
---|
| 356 | |
---|
| 357 | // Get the dispersion points for the thickness |
---|
| 358 | vector<WeightPoint> weights_thickness; |
---|
| 359 | thickness.get_weights(weights_thickness); |
---|
| 360 | |
---|
| 361 | // Get the dispersion points for the radius |
---|
| 362 | vector<WeightPoint> weights_radius ; |
---|
| 363 | radius.get_weights(weights_radius); |
---|
| 364 | |
---|
| 365 | // Loop over major shell weight points |
---|
| 366 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 367 | dp.length = weights_length[i].value; |
---|
| 368 | for(int j=0; j< (int)weights_thickness.size(); j++) { |
---|
| 369 | dp.thickness = weights_thickness[j].value; |
---|
| 370 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 371 | dp.radius = weights_radius[k].value; |
---|
| 372 | //Note: output of "DiamCyl( )" is DIAMETER. |
---|
| 373 | sum +=weights_length[i].weight * weights_thickness[j].weight |
---|
| 374 | * weights_radius[k].weight*DiamCyl(dp.length+2.0*dp.thickness,dp.radius+dp.thickness)/2.0; |
---|
| 375 | norm += weights_length[i].weight* weights_thickness[j].weight* weights_radius[k].weight; |
---|
| 376 | } |
---|
| 377 | } |
---|
| 378 | } |
---|
| 379 | if (norm != 0){ |
---|
| 380 | //return the averaged value |
---|
| 381 | rad_out = sum/norm;} |
---|
| 382 | else{ |
---|
| 383 | //return normal value |
---|
| 384 | //Note: output of "DiamCyl()" is DIAMETER. |
---|
| 385 | rad_out = DiamCyl(dp.length+2.0*dp.thickness,dp.radius+dp.thickness)/2.0;} |
---|
| 386 | |
---|
| 387 | return rad_out; |
---|
[5eb9154] | 388 | } |
---|