[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[011e0e4] | 26 | #include "core_shell_cylinder.h" |
---|
[0f5bc9f] | 27 | |
---|
| 28 | extern "C" { |
---|
[82c11d3] | 29 | #include "libCylinder.h" |
---|
| 30 | #include "libStructureFactor.h" |
---|
[0f5bc9f] | 31 | } |
---|
| 32 | |
---|
[011e0e4] | 33 | typedef struct { |
---|
| 34 | double scale; |
---|
| 35 | double radius; |
---|
| 36 | double thickness; |
---|
| 37 | double length; |
---|
| 38 | double core_sld; |
---|
| 39 | double shell_sld; |
---|
| 40 | double solvent_sld; |
---|
| 41 | double background; |
---|
| 42 | double axis_theta; |
---|
| 43 | double axis_phi; |
---|
| 44 | } CoreShellCylinderParameters; |
---|
| 45 | |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | * Function to evaluate 2D scattering function |
---|
| 49 | * @param pars: parameters of the core-shell cylinder |
---|
| 50 | * @param q: q-value |
---|
| 51 | * @param q_x: q_x / q |
---|
| 52 | * @param q_y: q_y / q |
---|
| 53 | * @return: function value |
---|
| 54 | */ |
---|
| 55 | static double core_shell_cylinder_analytical_2D_scaled(CoreShellCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
[318b5bbb] | 56 | double cyl_x, cyl_y;//, cyl_z; |
---|
| 57 | //double q_z; |
---|
[011e0e4] | 58 | double alpha, vol, cos_val; |
---|
| 59 | double answer; |
---|
| 60 | //convert angle degree to radian |
---|
| 61 | double pi = 4.0*atan(1.0); |
---|
| 62 | double theta = pars->axis_theta * pi/180.0; |
---|
| 63 | double phi = pars->axis_phi * pi/180.0; |
---|
| 64 | |
---|
[82c11d3] | 65 | // Cylinder orientation |
---|
[318b5bbb] | 66 | cyl_x = cos(theta) * cos(phi); |
---|
| 67 | cyl_y = sin(theta); |
---|
| 68 | //cyl_z = -cos(theta) * sin(phi); |
---|
[011e0e4] | 69 | |
---|
[82c11d3] | 70 | // q vector |
---|
[318b5bbb] | 71 | //q_z = 0; |
---|
[011e0e4] | 72 | |
---|
[82c11d3] | 73 | // Compute the angle btw vector q and the |
---|
| 74 | // axis of the cylinder |
---|
[318b5bbb] | 75 | cos_val = cyl_x*q_x + cyl_y*q_y;// + cyl_z*q_z; |
---|
[011e0e4] | 76 | |
---|
[82c11d3] | 77 | // The following test should always pass |
---|
| 78 | if (fabs(cos_val)>1.0) { |
---|
| 79 | printf("core_shell_cylinder_analytical_2D: Unexpected error: cos(alpha)=%g\n", cos_val); |
---|
[318b5bbb] | 80 | cos_val = 1.0; |
---|
[82c11d3] | 81 | } |
---|
[011e0e4] | 82 | |
---|
| 83 | alpha = acos( cos_val ); |
---|
[318b5bbb] | 84 | if (alpha == 0.0){ |
---|
| 85 | alpha = 1.0e-26; |
---|
| 86 | } |
---|
[011e0e4] | 87 | // Call the IGOR library function to get the kernel |
---|
| 88 | answer = CoreShellCylKernel(q, pars->radius, pars->thickness, |
---|
[82c11d3] | 89 | pars->core_sld,pars->shell_sld, |
---|
| 90 | pars->solvent_sld, pars->length/2.0, alpha) / fabs(sin(alpha)); |
---|
[011e0e4] | 91 | |
---|
| 92 | //normalize by cylinder volume |
---|
| 93 | vol=pi*(pars->radius+pars->thickness) |
---|
[82c11d3] | 94 | *(pars->radius+pars->thickness) |
---|
| 95 | *(pars->length+2.0*pars->thickness); |
---|
[011e0e4] | 96 | answer /= vol; |
---|
| 97 | |
---|
| 98 | //convert to [cm-1] |
---|
| 99 | answer *= 1.0e8; |
---|
| 100 | |
---|
| 101 | //Scale |
---|
| 102 | answer *= pars->scale; |
---|
| 103 | |
---|
| 104 | // add in the background |
---|
| 105 | answer += pars->background; |
---|
| 106 | |
---|
| 107 | return answer; |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | /** |
---|
| 111 | * Function to evaluate 2D scattering function |
---|
| 112 | * @param pars: parameters of the core-shell cylinder |
---|
| 113 | * @param q: q-value |
---|
| 114 | * @return: function value |
---|
| 115 | */ |
---|
| 116 | static double core_shell_cylinder_analytical_2DXY(CoreShellCylinderParameters *pars, double qx, double qy) { |
---|
| 117 | double q; |
---|
| 118 | q = sqrt(qx*qx+qy*qy); |
---|
[82c11d3] | 119 | return core_shell_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[011e0e4] | 120 | } |
---|
| 121 | |
---|
| 122 | |
---|
[0f5bc9f] | 123 | CoreShellCylinderModel :: CoreShellCylinderModel() { |
---|
[82c11d3] | 124 | scale = Parameter(1.0); |
---|
| 125 | radius = Parameter(20.0, true); |
---|
| 126 | radius.set_min(0.0); |
---|
| 127 | thickness = Parameter(10.0, true); |
---|
| 128 | thickness.set_min(0.0); |
---|
| 129 | length = Parameter(400.0, true); |
---|
| 130 | length.set_min(0.0); |
---|
| 131 | core_sld = Parameter(1.e-6); |
---|
| 132 | shell_sld = Parameter(4.e-6); |
---|
| 133 | solvent_sld= Parameter(1.e-6); |
---|
| 134 | background = Parameter(0.0); |
---|
| 135 | axis_theta = Parameter(90.0, true); |
---|
| 136 | axis_phi = Parameter(0.0, true); |
---|
[0f5bc9f] | 137 | } |
---|
| 138 | |
---|
| 139 | /** |
---|
| 140 | * Function to evaluate 1D scattering function |
---|
| 141 | * The NIST IGOR library is used for the actual calculation. |
---|
| 142 | * @param q: q-value |
---|
| 143 | * @return: function value |
---|
| 144 | */ |
---|
| 145 | double CoreShellCylinderModel :: operator()(double q) { |
---|
[82c11d3] | 146 | double dp[8]; |
---|
| 147 | |
---|
| 148 | dp[0] = scale(); |
---|
| 149 | dp[1] = radius(); |
---|
| 150 | dp[2] = thickness(); |
---|
| 151 | dp[3] = length(); |
---|
| 152 | dp[4] = core_sld(); |
---|
| 153 | dp[5] = shell_sld(); |
---|
| 154 | dp[6] = solvent_sld(); |
---|
| 155 | dp[7] = 0.0; |
---|
| 156 | |
---|
| 157 | // Get the dispersion points for the radius |
---|
| 158 | vector<WeightPoint> weights_rad; |
---|
| 159 | radius.get_weights(weights_rad); |
---|
| 160 | |
---|
| 161 | // Get the dispersion points for the thickness |
---|
| 162 | vector<WeightPoint> weights_thick; |
---|
| 163 | thickness.get_weights(weights_thick); |
---|
| 164 | |
---|
| 165 | // Get the dispersion points for the length |
---|
| 166 | vector<WeightPoint> weights_len; |
---|
| 167 | length.get_weights(weights_len); |
---|
| 168 | |
---|
| 169 | // Perform the computation, with all weight points |
---|
| 170 | double sum = 0.0; |
---|
| 171 | double norm = 0.0; |
---|
| 172 | double vol = 0.0; |
---|
| 173 | |
---|
| 174 | // Loop over radius weight points |
---|
| 175 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 176 | dp[1] = weights_rad[i].value; |
---|
| 177 | |
---|
| 178 | // Loop over length weight points |
---|
| 179 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 180 | dp[3] = weights_len[j].value; |
---|
| 181 | |
---|
| 182 | // Loop over thickness weight points |
---|
| 183 | for(size_t k=0; k<weights_thick.size(); k++) { |
---|
| 184 | dp[2] = weights_thick[k].value; |
---|
| 185 | //Un-normalize by volume |
---|
| 186 | sum += weights_rad[i].weight |
---|
| 187 | * weights_len[j].weight |
---|
| 188 | * weights_thick[k].weight |
---|
| 189 | * CoreShellCylinder(dp, q) |
---|
| 190 | * pow(weights_rad[i].value+weights_thick[k].value,2) |
---|
| 191 | *(weights_len[j].value+2.0*weights_thick[k].value); |
---|
| 192 | //Find average volume |
---|
| 193 | vol += weights_rad[i].weight |
---|
| 194 | * weights_len[j].weight |
---|
| 195 | * weights_thick[k].weight |
---|
| 196 | * pow(weights_rad[i].value+weights_thick[k].value,2) |
---|
| 197 | *(weights_len[j].value+2.0*weights_thick[k].value); |
---|
| 198 | norm += weights_rad[i].weight |
---|
| 199 | * weights_len[j].weight |
---|
| 200 | * weights_thick[k].weight; |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | if (vol != 0.0 && norm != 0.0) { |
---|
| 206 | //Re-normalize by avg volume |
---|
| 207 | sum = sum/(vol/norm);} |
---|
| 208 | |
---|
| 209 | return sum/norm + background(); |
---|
[0f5bc9f] | 210 | } |
---|
| 211 | |
---|
| 212 | /** |
---|
| 213 | * Function to evaluate 2D scattering function |
---|
| 214 | * @param q_x: value of Q along x |
---|
| 215 | * @param q_y: value of Q along y |
---|
| 216 | * @return: function value |
---|
| 217 | */ |
---|
| 218 | double CoreShellCylinderModel :: operator()(double qx, double qy) { |
---|
[82c11d3] | 219 | CoreShellCylinderParameters dp; |
---|
| 220 | // Fill parameter array |
---|
| 221 | dp.scale = scale(); |
---|
| 222 | dp.radius = radius(); |
---|
| 223 | dp.thickness = thickness(); |
---|
| 224 | dp.length = length(); |
---|
| 225 | dp.core_sld = core_sld(); |
---|
| 226 | dp.shell_sld = shell_sld(); |
---|
| 227 | dp.solvent_sld= solvent_sld(); |
---|
| 228 | dp.background = 0.0; |
---|
| 229 | dp.axis_theta = axis_theta(); |
---|
| 230 | dp.axis_phi = axis_phi(); |
---|
| 231 | |
---|
| 232 | // Get the dispersion points for the radius |
---|
| 233 | vector<WeightPoint> weights_rad; |
---|
| 234 | radius.get_weights(weights_rad); |
---|
| 235 | |
---|
| 236 | // Get the dispersion points for the thickness |
---|
| 237 | vector<WeightPoint> weights_thick; |
---|
| 238 | thickness.get_weights(weights_thick); |
---|
| 239 | |
---|
| 240 | // Get the dispersion points for the length |
---|
| 241 | vector<WeightPoint> weights_len; |
---|
| 242 | length.get_weights(weights_len); |
---|
| 243 | |
---|
| 244 | // Get angular averaging for theta |
---|
| 245 | vector<WeightPoint> weights_theta; |
---|
| 246 | axis_theta.get_weights(weights_theta); |
---|
| 247 | |
---|
| 248 | // Get angular averaging for phi |
---|
| 249 | vector<WeightPoint> weights_phi; |
---|
| 250 | axis_phi.get_weights(weights_phi); |
---|
| 251 | |
---|
| 252 | // Perform the computation, with all weight points |
---|
| 253 | double sum = 0.0; |
---|
| 254 | double norm = 0.0; |
---|
| 255 | double norm_vol = 0.0; |
---|
| 256 | double vol = 0.0; |
---|
| 257 | double pi = 4.0*atan(1.0); |
---|
| 258 | // Loop over radius weight points |
---|
| 259 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
| 260 | dp.radius = weights_rad[i].value; |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | // Loop over length weight points |
---|
| 264 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
| 265 | dp.length = weights_len[j].value; |
---|
| 266 | |
---|
| 267 | // Loop over thickness weight points |
---|
| 268 | for(size_t m=0; m<weights_thick.size(); m++) { |
---|
| 269 | dp.thickness = weights_thick[m].value; |
---|
| 270 | |
---|
| 271 | // Average over theta distribution |
---|
| 272 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
| 273 | dp.axis_theta = weights_theta[k].value; |
---|
| 274 | |
---|
| 275 | // Average over phi distribution |
---|
| 276 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
| 277 | dp.axis_phi = weights_phi[l].value; |
---|
| 278 | //Un-normalize by volume |
---|
| 279 | double _ptvalue = weights_rad[i].weight |
---|
| 280 | * weights_len[j].weight |
---|
| 281 | * weights_thick[m].weight |
---|
| 282 | * weights_theta[k].weight |
---|
| 283 | * weights_phi[l].weight |
---|
| 284 | * core_shell_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 285 | * pow(weights_rad[i].value+weights_thick[m].value,2) |
---|
| 286 | *(weights_len[j].value+2.0*weights_thick[m].value); |
---|
| 287 | |
---|
| 288 | if (weights_theta.size()>1) { |
---|
[318b5bbb] | 289 | _ptvalue *= fabs(cos(weights_theta[k].value*pi/180.0)); |
---|
[82c11d3] | 290 | } |
---|
| 291 | sum += _ptvalue; |
---|
| 292 | |
---|
| 293 | //Find average volume |
---|
| 294 | vol += weights_rad[i].weight |
---|
| 295 | * weights_len[j].weight |
---|
| 296 | * weights_thick[m].weight |
---|
| 297 | * pow(weights_rad[i].value+weights_thick[m].value,2) |
---|
| 298 | *(weights_len[j].value+2.0*weights_thick[m].value); |
---|
| 299 | //Find norm for volume |
---|
| 300 | norm_vol += weights_rad[i].weight |
---|
| 301 | * weights_len[j].weight |
---|
| 302 | * weights_thick[m].weight; |
---|
| 303 | |
---|
| 304 | norm += weights_rad[i].weight |
---|
| 305 | * weights_len[j].weight |
---|
| 306 | * weights_thick[m].weight |
---|
| 307 | * weights_theta[k].weight |
---|
| 308 | * weights_phi[l].weight; |
---|
| 309 | |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | } |
---|
| 315 | // Averaging in theta needs an extra normalization |
---|
| 316 | // factor to account for the sin(theta) term in the |
---|
| 317 | // integration (see documentation). |
---|
| 318 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 319 | |
---|
| 320 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 321 | //Re-normalize by avg volume |
---|
| 322 | sum = sum/(vol/norm_vol);} |
---|
| 323 | |
---|
| 324 | return sum/norm + background(); |
---|
[0f5bc9f] | 325 | } |
---|
| 326 | |
---|
| 327 | /** |
---|
| 328 | * Function to evaluate 2D scattering function |
---|
| 329 | * @param pars: parameters of the cylinder |
---|
| 330 | * @param q: q-value |
---|
| 331 | * @param phi: angle phi |
---|
| 332 | * @return: function value |
---|
| 333 | */ |
---|
| 334 | double CoreShellCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
[82c11d3] | 335 | double qx = q*cos(phi); |
---|
| 336 | double qy = q*sin(phi); |
---|
| 337 | return (*this).operator()(qx, qy); |
---|
[0f5bc9f] | 338 | } |
---|
[5eb9154] | 339 | /** |
---|
| 340 | * Function to calculate effective radius |
---|
| 341 | * @return: effective radius value |
---|
| 342 | */ |
---|
| 343 | double CoreShellCylinderModel :: calculate_ER() { |
---|
[82c11d3] | 344 | CoreShellCylinderParameters dp; |
---|
| 345 | |
---|
| 346 | dp.radius = radius(); |
---|
| 347 | dp.thickness = thickness(); |
---|
| 348 | dp.length = length(); |
---|
| 349 | double rad_out = 0.0; |
---|
| 350 | |
---|
| 351 | // Perform the computation, with all weight points |
---|
| 352 | double sum = 0.0; |
---|
| 353 | double norm = 0.0; |
---|
| 354 | |
---|
| 355 | // Get the dispersion points for the length |
---|
| 356 | vector<WeightPoint> weights_length; |
---|
| 357 | length.get_weights(weights_length); |
---|
| 358 | |
---|
| 359 | // Get the dispersion points for the thickness |
---|
| 360 | vector<WeightPoint> weights_thickness; |
---|
| 361 | thickness.get_weights(weights_thickness); |
---|
| 362 | |
---|
| 363 | // Get the dispersion points for the radius |
---|
| 364 | vector<WeightPoint> weights_radius ; |
---|
| 365 | radius.get_weights(weights_radius); |
---|
| 366 | |
---|
| 367 | // Loop over major shell weight points |
---|
| 368 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 369 | dp.length = weights_length[i].value; |
---|
| 370 | for(int j=0; j< (int)weights_thickness.size(); j++) { |
---|
| 371 | dp.thickness = weights_thickness[j].value; |
---|
| 372 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 373 | dp.radius = weights_radius[k].value; |
---|
| 374 | //Note: output of "DiamCyl( )" is DIAMETER. |
---|
| 375 | sum +=weights_length[i].weight * weights_thickness[j].weight |
---|
| 376 | * weights_radius[k].weight*DiamCyl(dp.length+2.0*dp.thickness,dp.radius+dp.thickness)/2.0; |
---|
| 377 | norm += weights_length[i].weight* weights_thickness[j].weight* weights_radius[k].weight; |
---|
| 378 | } |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | if (norm != 0){ |
---|
| 382 | //return the averaged value |
---|
| 383 | rad_out = sum/norm;} |
---|
| 384 | else{ |
---|
| 385 | //return normal value |
---|
| 386 | //Note: output of "DiamCyl()" is DIAMETER. |
---|
| 387 | rad_out = DiamCyl(dp.length+2.0*dp.thickness,dp.radius+dp.thickness)/2.0;} |
---|
| 388 | |
---|
| 389 | return rad_out; |
---|
[5eb9154] | 390 | } |
---|
[e08bd5b] | 391 | double CoreShellCylinderModel :: calculate_VR() { |
---|
| 392 | return 1.0; |
---|
| 393 | } |
---|