1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | #include "core_shell_bicelle.h" |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libCylinder.h" |
---|
30 | #include "libStructureFactor.h" |
---|
31 | } |
---|
32 | |
---|
33 | typedef struct { |
---|
34 | double scale; |
---|
35 | double radius; |
---|
36 | double rim_thick; |
---|
37 | double face_thick; |
---|
38 | double length; |
---|
39 | double core_sld; |
---|
40 | double rim_sld; |
---|
41 | double face_sld; |
---|
42 | double solvent_sld; |
---|
43 | double background; |
---|
44 | double axis_theta; |
---|
45 | double axis_phi; |
---|
46 | } CoreShellBicelleParameters; |
---|
47 | |
---|
48 | |
---|
49 | /** |
---|
50 | * Function to evaluate 2D scattering function |
---|
51 | * @param pars: parameters of the core-shell Bicelle |
---|
52 | * @param q: q-value |
---|
53 | * @param q_x: q_x / q |
---|
54 | * @param q_y: q_y / q |
---|
55 | * @return: function value |
---|
56 | */ |
---|
57 | static double core_shell_bicelle_analytical_2D_scaled(CoreShellBicelleParameters *pars, double q, double q_x, double q_y) { |
---|
58 | double cyl_x, cyl_y, cyl_z; |
---|
59 | double q_z; |
---|
60 | double alpha, vol, cos_val; |
---|
61 | double answer; |
---|
62 | //convert angle degree to radian |
---|
63 | double pi = 4.0*atan(1.0); |
---|
64 | double theta = pars->axis_theta * pi/180.0; |
---|
65 | double phi = pars->axis_phi * pi/180.0; |
---|
66 | |
---|
67 | // Cylinder orientation |
---|
68 | cyl_x = sin(theta) * cos(phi); |
---|
69 | cyl_y = sin(theta) * sin(phi); |
---|
70 | cyl_z = cos(theta); |
---|
71 | |
---|
72 | // q vector |
---|
73 | q_z = 0; |
---|
74 | |
---|
75 | // Compute the angle btw vector q and the |
---|
76 | // axis of the cylinder |
---|
77 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
78 | |
---|
79 | // The following test should always pass |
---|
80 | if (fabs(cos_val)>1.0) { |
---|
81 | printf("core_shell_bicelle_analytical_2D: Unexpected error: cos(alpha)=%g\n", cos_val); |
---|
82 | return 0; |
---|
83 | } |
---|
84 | |
---|
85 | alpha = acos( cos_val ); |
---|
86 | |
---|
87 | // Call the IGOR library function to get the kernel |
---|
88 | answer = BicelleKernel(q, pars->radius, pars->rim_thick, pars->face_thick, |
---|
89 | pars->core_sld,pars->face_sld,pars->rim_sld, |
---|
90 | pars->solvent_sld, pars->length/2.0, alpha) / fabs(sin(alpha)); |
---|
91 | |
---|
92 | //normalize by cylinder volume |
---|
93 | vol=pi*(pars->radius+pars->rim_thick) |
---|
94 | *(pars->radius+pars->rim_thick) |
---|
95 | *(pars->length+2.0*pars->face_thick); |
---|
96 | answer /= vol; |
---|
97 | |
---|
98 | //convert to [cm-1] |
---|
99 | answer *= 1.0e8; |
---|
100 | |
---|
101 | //Scale |
---|
102 | answer *= pars->scale; |
---|
103 | |
---|
104 | // add in the background |
---|
105 | answer += pars->background; |
---|
106 | |
---|
107 | return answer; |
---|
108 | } |
---|
109 | |
---|
110 | /** |
---|
111 | * Function to evaluate 2D scattering function |
---|
112 | * @param pars: parameters of the core-shell cylinder |
---|
113 | * @param q: q-value |
---|
114 | * @return: function value |
---|
115 | */ |
---|
116 | static double core_shell_bicelle_analytical_2DXY(CoreShellBicelleParameters *pars, double qx, double qy) { |
---|
117 | double q; |
---|
118 | q = sqrt(qx*qx+qy*qy); |
---|
119 | return core_shell_bicelle_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
120 | } |
---|
121 | |
---|
122 | |
---|
123 | CoreShellBicelleModel :: CoreShellBicelleModel() { |
---|
124 | scale = Parameter(1.0); |
---|
125 | radius = Parameter(20.0, true); |
---|
126 | radius.set_min(0.0); |
---|
127 | face_thick = Parameter(10.0, true); |
---|
128 | face_thick.set_min(0.0); |
---|
129 | rim_thick = Parameter(10.0, true); |
---|
130 | rim_thick.set_min(0.0); |
---|
131 | length = Parameter(400.0, true); |
---|
132 | length.set_min(0.0); |
---|
133 | core_sld = Parameter(1.e-6); |
---|
134 | face_sld = Parameter(4.e-6); |
---|
135 | rim_sld = Parameter(4.e-6); |
---|
136 | solvent_sld= Parameter(1.e-6); |
---|
137 | background = Parameter(0.0); |
---|
138 | axis_theta = Parameter(90.0, true); |
---|
139 | axis_phi = Parameter(0.0, true); |
---|
140 | } |
---|
141 | |
---|
142 | /** |
---|
143 | * Function to evaluate 1D scattering function |
---|
144 | * The NIST IGOR library is used for the actual calculation. |
---|
145 | * @param q: q-value |
---|
146 | * @return: function value |
---|
147 | */ |
---|
148 | double CoreShellBicelleModel :: operator()(double q) { |
---|
149 | double dp[10]; |
---|
150 | |
---|
151 | dp[0] = scale(); |
---|
152 | dp[1] = radius(); |
---|
153 | dp[2] = rim_thick(); |
---|
154 | dp[3] = face_thick(); |
---|
155 | dp[4] = length(); |
---|
156 | dp[5] = core_sld(); |
---|
157 | dp[6] = face_sld(); |
---|
158 | dp[7] = rim_sld(); |
---|
159 | dp[8] = solvent_sld(); |
---|
160 | dp[9] = 0.0; |
---|
161 | double pi = 4.0*atan(1.0); |
---|
162 | // Get the dispersion points for the radius |
---|
163 | vector<WeightPoint> weights_rad; |
---|
164 | radius.get_weights(weights_rad); |
---|
165 | |
---|
166 | // Get the dispersion points for the thickness |
---|
167 | vector<WeightPoint> weights_rthick; |
---|
168 | rim_thick.get_weights(weights_rthick); |
---|
169 | |
---|
170 | // Get the dispersion points for the thickness |
---|
171 | vector<WeightPoint> weights_fthick; |
---|
172 | face_thick.get_weights(weights_fthick); |
---|
173 | |
---|
174 | // Get the dispersion points for the length |
---|
175 | vector<WeightPoint> weights_len; |
---|
176 | length.get_weights(weights_len); |
---|
177 | |
---|
178 | // Perform the computation, with all weight points |
---|
179 | double sum = 0.0; |
---|
180 | double norm = 0.0; |
---|
181 | double vol = 0.0; |
---|
182 | |
---|
183 | // Loop over radius weight points |
---|
184 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
185 | dp[1] = weights_rad[i].value; |
---|
186 | |
---|
187 | // Loop over length weight points |
---|
188 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
189 | dp[4] = weights_len[j].value; |
---|
190 | |
---|
191 | // Loop over thickness weight points |
---|
192 | for(size_t k=0; k<weights_rthick.size(); k++) { |
---|
193 | dp[2] = weights_rthick[k].value; |
---|
194 | for(size_t l=0; l<weights_fthick.size(); l++) { |
---|
195 | dp[3] = weights_fthick[l].value; |
---|
196 | //Un-normalize by volume |
---|
197 | sum += weights_rad[i].weight |
---|
198 | * weights_len[j].weight |
---|
199 | * weights_rthick[k].weight |
---|
200 | * weights_fthick[l].weight |
---|
201 | * BicelleIntegration(q, dp[1],dp[2], dp[3], |
---|
202 | dp[5],dp[6],dp[7],dp[8], dp[4]); |
---|
203 | //* pow(weights_rad[i].value+weights_rthick[k].value,2) |
---|
204 | //*(weights_len[j].value+2.0*weights_fthick[k].value); |
---|
205 | //Find average volume |
---|
206 | vol += weights_rad[i].weight |
---|
207 | * weights_len[j].weight |
---|
208 | * weights_rthick[k].weight |
---|
209 | * weights_fthick[l].weight |
---|
210 | * pi * pow(weights_rad[i].value+weights_rthick[k].value,2) |
---|
211 | *(weights_len[j].value+2.0*weights_fthick[l].value); |
---|
212 | norm += weights_rad[i].weight |
---|
213 | * weights_len[j].weight |
---|
214 | * weights_rthick[k].weight |
---|
215 | * weights_fthick[l].weight; |
---|
216 | } |
---|
217 | } |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | if (vol != 0.0 && norm != 0.0) { |
---|
222 | //Re-normalize by avg volume |
---|
223 | sum = sum/(vol/norm);} |
---|
224 | //convert to [cm-1] |
---|
225 | sum *= 1.0e8; |
---|
226 | sum *= dp[0]; |
---|
227 | return sum/norm + background(); |
---|
228 | } |
---|
229 | |
---|
230 | /** |
---|
231 | * Function to evaluate 2D scattering function |
---|
232 | * @param q_x: value of Q along x |
---|
233 | * @param q_y: value of Q along y |
---|
234 | * @return: function value |
---|
235 | */ |
---|
236 | double CoreShellBicelleModel :: operator()(double qx, double qy) { |
---|
237 | CoreShellBicelleParameters dp; |
---|
238 | // Fill parameter array |
---|
239 | dp.scale = scale(); |
---|
240 | dp.radius = radius(); |
---|
241 | dp.rim_thick = rim_thick(); |
---|
242 | dp.face_thick = face_thick(); |
---|
243 | dp.length = length(); |
---|
244 | dp.core_sld = core_sld(); |
---|
245 | dp.rim_sld = rim_sld(); |
---|
246 | dp.face_sld = face_sld(); |
---|
247 | dp.solvent_sld= solvent_sld(); |
---|
248 | dp.background = 0.0; |
---|
249 | dp.axis_theta = axis_theta(); |
---|
250 | dp.axis_phi = axis_phi(); |
---|
251 | |
---|
252 | // Get the dispersion points for the radius |
---|
253 | vector<WeightPoint> weights_rad; |
---|
254 | radius.get_weights(weights_rad); |
---|
255 | |
---|
256 | // Get the dispersion points for the thickness |
---|
257 | vector<WeightPoint> weights_rthick; |
---|
258 | rim_thick.get_weights(weights_rthick); |
---|
259 | |
---|
260 | // Get the dispersion points for the thickness |
---|
261 | vector<WeightPoint> weights_fthick; |
---|
262 | face_thick.get_weights(weights_fthick); |
---|
263 | |
---|
264 | // Get the dispersion points for the length |
---|
265 | vector<WeightPoint> weights_len; |
---|
266 | length.get_weights(weights_len); |
---|
267 | |
---|
268 | // Get angular averaging for theta |
---|
269 | vector<WeightPoint> weights_theta; |
---|
270 | axis_theta.get_weights(weights_theta); |
---|
271 | |
---|
272 | // Get angular averaging for phi |
---|
273 | vector<WeightPoint> weights_phi; |
---|
274 | axis_phi.get_weights(weights_phi); |
---|
275 | |
---|
276 | // Perform the computation, with all weight points |
---|
277 | double sum = 0.0; |
---|
278 | double norm = 0.0; |
---|
279 | double norm_vol = 0.0; |
---|
280 | double vol = 0.0; |
---|
281 | double pi = 4.0*atan(1.0); |
---|
282 | // Loop over radius weight points |
---|
283 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
284 | dp.radius = weights_rad[i].value; |
---|
285 | |
---|
286 | // Loop over length weight points |
---|
287 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
288 | dp.length = weights_len[j].value; |
---|
289 | |
---|
290 | // Loop over thickness weight points |
---|
291 | for(size_t m=0; m<weights_rthick.size(); m++) { |
---|
292 | dp.rim_thick = weights_rthick[m].value; |
---|
293 | |
---|
294 | // Loop over thickness weight points |
---|
295 | for(size_t n=0; n<weights_fthick.size(); n++) { |
---|
296 | dp.face_thick = weights_fthick[n].value; |
---|
297 | |
---|
298 | // Average over theta distribution |
---|
299 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
300 | dp.axis_theta = weights_theta[k].value; |
---|
301 | |
---|
302 | // Average over phi distribution |
---|
303 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
304 | dp.axis_phi = weights_phi[l].value; |
---|
305 | //Un-normalize by volume |
---|
306 | double _ptvalue = weights_rad[i].weight |
---|
307 | * weights_len[j].weight |
---|
308 | * weights_rthick[m].weight |
---|
309 | * weights_fthick[n].weight |
---|
310 | * weights_theta[k].weight |
---|
311 | * weights_phi[l].weight |
---|
312 | * core_shell_bicelle_analytical_2DXY(&dp, qx, qy) |
---|
313 | * pow(weights_rad[i].value+weights_rthick[m].value,2) |
---|
314 | *(weights_len[j].value+2.0*weights_fthick[n].value); |
---|
315 | |
---|
316 | if (weights_theta.size()>1) { |
---|
317 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
318 | } |
---|
319 | sum += _ptvalue; |
---|
320 | |
---|
321 | //Find average volume |
---|
322 | vol += weights_rad[i].weight |
---|
323 | * weights_len[j].weight |
---|
324 | * weights_rthick[m].weight |
---|
325 | * weights_fthick[n].weight |
---|
326 | * pow(weights_rad[i].value+weights_rthick[m].value,2) |
---|
327 | *(weights_len[j].value+2.0*weights_fthick[n].value); |
---|
328 | //Find norm for volume |
---|
329 | norm_vol += weights_rad[i].weight |
---|
330 | * weights_len[j].weight |
---|
331 | * weights_rthick[m].weight |
---|
332 | * weights_fthick[n].weight; |
---|
333 | |
---|
334 | norm += weights_rad[i].weight |
---|
335 | * weights_len[j].weight |
---|
336 | * weights_rthick[m].weight |
---|
337 | * weights_fthick[n].weight |
---|
338 | * weights_theta[k].weight |
---|
339 | * weights_phi[l].weight; |
---|
340 | |
---|
341 | } |
---|
342 | } |
---|
343 | } |
---|
344 | } |
---|
345 | } |
---|
346 | } |
---|
347 | // Averaging in theta needs an extra normalization |
---|
348 | // factor to account for the sin(theta) term in the |
---|
349 | // integration (see documentation). |
---|
350 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
351 | |
---|
352 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
353 | //Re-normalize by avg volume |
---|
354 | sum = sum/(vol/norm_vol);} |
---|
355 | |
---|
356 | return sum/norm + background(); |
---|
357 | } |
---|
358 | |
---|
359 | /** |
---|
360 | * Function to evaluate 2D scattering function |
---|
361 | * @param pars: parameters of the cylinder |
---|
362 | * @param q: q-value |
---|
363 | * @param phi: angle phi |
---|
364 | * @return: function value |
---|
365 | */ |
---|
366 | double CoreShellBicelleModel :: evaluate_rphi(double q, double phi) { |
---|
367 | double qx = q*cos(phi); |
---|
368 | double qy = q*sin(phi); |
---|
369 | return (*this).operator()(qx, qy); |
---|
370 | } |
---|
371 | /** |
---|
372 | * Function to calculate effective radius |
---|
373 | * @return: effective radius value |
---|
374 | */ |
---|
375 | double CoreShellBicelleModel :: calculate_ER() { |
---|
376 | CoreShellBicelleParameters dp; |
---|
377 | |
---|
378 | dp.radius = radius(); |
---|
379 | dp.rim_thick = rim_thick(); |
---|
380 | dp.face_thick = face_thick(); |
---|
381 | dp.length = length(); |
---|
382 | double rad_out = 0.0; |
---|
383 | |
---|
384 | // Perform the computation, with all weight points |
---|
385 | double sum = 0.0; |
---|
386 | double norm = 0.0; |
---|
387 | |
---|
388 | // Get the dispersion points for the length |
---|
389 | vector<WeightPoint> weights_length; |
---|
390 | length.get_weights(weights_length); |
---|
391 | |
---|
392 | // Get the dispersion points for the thickness |
---|
393 | vector<WeightPoint> weights_rthick; |
---|
394 | rim_thick.get_weights(weights_rthick); |
---|
395 | |
---|
396 | // Get the dispersion points for the thickness |
---|
397 | vector<WeightPoint> weights_fthick; |
---|
398 | face_thick.get_weights(weights_fthick); |
---|
399 | |
---|
400 | // Get the dispersion points for the radius |
---|
401 | vector<WeightPoint> weights_radius ; |
---|
402 | radius.get_weights(weights_radius); |
---|
403 | |
---|
404 | // Loop over major shell weight points |
---|
405 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
406 | dp.length = weights_length[i].value; |
---|
407 | for(int j=0; j< (int)weights_rthick.size(); j++) { |
---|
408 | dp.rim_thick = weights_rthick[j].value; |
---|
409 | for(int l=0; l< (int)weights_fthick.size(); l++) { |
---|
410 | dp.face_thick = weights_fthick[l].value; |
---|
411 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
412 | dp.radius = weights_radius[k].value; |
---|
413 | //Note: output of "DiamCyl( )" is DIAMETER. |
---|
414 | sum +=weights_length[i].weight * weights_rthick[j].weight * weights_fthick[l].weight |
---|
415 | * weights_radius[k].weight*DiamCyl(dp.length+2.0*dp.face_thick,dp.radius+dp.rim_thick)/2.0; |
---|
416 | norm += weights_length[i].weight* weights_rthick[j].weight * weights_fthick[l].weight* weights_radius[k].weight; |
---|
417 | } |
---|
418 | } |
---|
419 | } |
---|
420 | } |
---|
421 | if (norm != 0){ |
---|
422 | //return the averaged value |
---|
423 | rad_out = sum/norm;} |
---|
424 | else{ |
---|
425 | //return normal value |
---|
426 | //Note: output of "DiamCyl()" is DIAMETER. |
---|
427 | rad_out = DiamCyl(dp.length+2.0*dp.face_thick,dp.radius+dp.rim_thick)/2.0;} |
---|
428 | |
---|
429 | return rad_out; |
---|
430 | } |
---|
431 | double CoreShellBicelleModel :: calculate_VR() { |
---|
432 | return 1.0; |
---|
433 | } |
---|