[c724ccd] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
[011e0e4] | 26 | #include "corefourshell.h" |
---|
[c724ccd] | 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libSphere.h" |
---|
| 30 | } |
---|
| 31 | |
---|
[011e0e4] | 32 | typedef struct { |
---|
| 33 | double scale; |
---|
| 34 | double rad_core0; |
---|
| 35 | double sld_core0; |
---|
| 36 | double thick_shell1; |
---|
| 37 | double sld_shell1; |
---|
| 38 | double thick_shell2; |
---|
| 39 | double sld_shell2; |
---|
| 40 | double thick_shell3; |
---|
| 41 | double sld_shell3; |
---|
| 42 | double thick_shell4; |
---|
| 43 | double sld_shell4; |
---|
| 44 | double sld_solv; |
---|
| 45 | double background; |
---|
| 46 | } CoreFourShellParameters; |
---|
| 47 | |
---|
[c724ccd] | 48 | CoreFourShellModel :: CoreFourShellModel() { |
---|
| 49 | scale = Parameter(1.0); |
---|
[339ce67] | 50 | rad_core0 = Parameter(60.0, true); |
---|
| 51 | rad_core0.set_min(0.0); |
---|
| 52 | sld_core0 = Parameter(6.4e-6); |
---|
[c724ccd] | 53 | thick_shell1 = Parameter(10.0, true); |
---|
| 54 | thick_shell1.set_min(0.0); |
---|
| 55 | sld_shell1 = Parameter(1.0e-6); |
---|
| 56 | thick_shell2 = Parameter(10.0, true); |
---|
| 57 | thick_shell2.set_min(0.0); |
---|
| 58 | sld_shell2 = Parameter(2.0e-6); |
---|
| 59 | thick_shell3 = Parameter(10.0, true); |
---|
| 60 | thick_shell3.set_min(0.0); |
---|
| 61 | sld_shell3 = Parameter(3.0e-6); |
---|
| 62 | thick_shell4 = Parameter(10.0, true); |
---|
| 63 | thick_shell4.set_min(0.0); |
---|
| 64 | sld_shell4 = Parameter(4.0e-6); |
---|
| 65 | sld_solv = Parameter(6.4e-6); |
---|
| 66 | background = Parameter(0.001); |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | /** |
---|
| 70 | * Function to evaluate 1D scattering function |
---|
| 71 | * The NIST IGOR library is used for the actual calculation. |
---|
| 72 | * @param q: q-value |
---|
| 73 | * @return: function value |
---|
| 74 | */ |
---|
| 75 | double CoreFourShellModel :: operator()(double q) { |
---|
| 76 | double dp[13]; |
---|
| 77 | |
---|
| 78 | // Fill parameter array for IGOR library |
---|
| 79 | // Add the background after averaging |
---|
| 80 | dp[0] = scale(); |
---|
[339ce67] | 81 | dp[1] = rad_core0(); |
---|
| 82 | dp[2] = sld_core0(); |
---|
[c724ccd] | 83 | dp[3] = thick_shell1(); |
---|
| 84 | dp[4] = sld_shell1(); |
---|
| 85 | dp[5] = thick_shell2(); |
---|
| 86 | dp[6] = sld_shell2(); |
---|
| 87 | dp[7] = thick_shell3(); |
---|
| 88 | dp[8] = sld_shell3(); |
---|
| 89 | dp[9] = thick_shell4(); |
---|
| 90 | dp[10] = sld_shell4(); |
---|
| 91 | dp[11] = sld_solv(); |
---|
| 92 | dp[12] = 0.0; |
---|
| 93 | |
---|
| 94 | // Get the dispersion points for the radius |
---|
| 95 | vector<WeightPoint> weights_rad; |
---|
[339ce67] | 96 | rad_core0.get_weights(weights_rad); |
---|
[c724ccd] | 97 | |
---|
| 98 | // Get the dispersion points for the thick 1 |
---|
| 99 | vector<WeightPoint> weights_s1; |
---|
| 100 | thick_shell1.get_weights(weights_s1); |
---|
| 101 | |
---|
| 102 | // Get the dispersion points for the thick 2 |
---|
| 103 | vector<WeightPoint> weights_s2; |
---|
| 104 | thick_shell2.get_weights(weights_s2); |
---|
| 105 | |
---|
| 106 | // Get the dispersion points for the thick 3 |
---|
| 107 | vector<WeightPoint> weights_s3; |
---|
| 108 | thick_shell3.get_weights(weights_s3); |
---|
| 109 | |
---|
| 110 | // Get the dispersion points for the thick 4 |
---|
| 111 | vector<WeightPoint> weights_s4; |
---|
| 112 | thick_shell4.get_weights(weights_s4); |
---|
| 113 | |
---|
| 114 | // Perform the computation, with all weight points |
---|
| 115 | double sum = 0.0; |
---|
| 116 | double norm = 0.0; |
---|
| 117 | double vol = 0.0; |
---|
| 118 | |
---|
| 119 | // Loop over radius weight points |
---|
[34c2649] | 120 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[c724ccd] | 121 | dp[1] = weights_rad[i].value; |
---|
| 122 | // Loop over radius weight points |
---|
[34c2649] | 123 | for(size_t j=0; j<weights_s1.size(); j++) { |
---|
[c724ccd] | 124 | dp[3] = weights_s1[j].value; |
---|
| 125 | // Loop over radius weight points |
---|
[34c2649] | 126 | for(size_t k=0; k<weights_s2.size(); k++) { |
---|
[c724ccd] | 127 | dp[5] = weights_s2[k].value; |
---|
| 128 | // Loop over radius weight points |
---|
[34c2649] | 129 | for(size_t l=0; l<weights_s3.size(); l++) { |
---|
[c724ccd] | 130 | dp[7] = weights_s3[l].value; |
---|
| 131 | // Loop over radius weight points |
---|
[34c2649] | 132 | for(size_t m=0; m<weights_s4.size(); m++) { |
---|
[c724ccd] | 133 | dp[9] = weights_s4[m].value; |
---|
| 134 | //Un-normalize FourShell by volume |
---|
| 135 | sum += weights_rad[i].weight*weights_s1[j].weight*weights_s2[k].weight*weights_s3[l].weight*weights_s4[m].weight |
---|
| 136 | * FourShell(dp, q) * pow((weights_rad[i].value+weights_s1[j].value+weights_s2[k].value+weights_s3[l].value+weights_s4[m].value),3); |
---|
| 137 | //Find average volume |
---|
| 138 | vol += weights_rad[i].weight*weights_s1[j].weight*weights_s2[k].weight*weights_s3[l].weight*weights_s4[m].weight |
---|
| 139 | * pow((weights_rad[i].value+weights_s1[j].value+weights_s2[k].value+weights_s3[l].value+weights_s4[m].value),3); |
---|
| 140 | |
---|
| 141 | norm += weights_rad[i].weight*weights_s1[j].weight*weights_s2[k].weight*weights_s3[l].weight*weights_s4[m].weight; |
---|
| 142 | } |
---|
| 143 | } |
---|
| 144 | } |
---|
| 145 | } |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | if (vol != 0.0 && norm != 0.0) { |
---|
| 149 | //Re-normalize by avg volume |
---|
| 150 | sum = sum/(vol/norm);} |
---|
| 151 | return sum/norm + background(); |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | /** |
---|
| 155 | * Function to evaluate 2D scattering function |
---|
| 156 | * @param q_x: value of Q along x |
---|
| 157 | * @param q_y: value of Q along y |
---|
| 158 | * @return: function value |
---|
| 159 | */ |
---|
| 160 | double CoreFourShellModel :: operator()(double qx, double qy) { |
---|
| 161 | double q = sqrt(qx*qx + qy*qy); |
---|
| 162 | return (*this).operator()(q); |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | /** |
---|
| 166 | * Function to evaluate 2D scattering function |
---|
| 167 | * @param pars: parameters of the sphere |
---|
| 168 | * @param q: q-value |
---|
| 169 | * @param phi: angle phi |
---|
| 170 | * @return: function value |
---|
| 171 | */ |
---|
| 172 | double CoreFourShellModel :: evaluate_rphi(double q, double phi) { |
---|
| 173 | return (*this).operator()(q); |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * Function to calculate effective radius |
---|
| 178 | * @return: effective radius value |
---|
| 179 | */ |
---|
| 180 | double CoreFourShellModel :: calculate_ER() { |
---|
| 181 | CoreFourShellParameters dp; |
---|
| 182 | |
---|
| 183 | dp.scale = scale(); |
---|
[339ce67] | 184 | dp.rad_core0 = rad_core0(); |
---|
| 185 | dp.sld_core0 = sld_core0(); |
---|
[c724ccd] | 186 | dp.thick_shell1 = thick_shell1(); |
---|
| 187 | dp.sld_shell1 = sld_shell1(); |
---|
| 188 | dp.thick_shell2 = thick_shell2(); |
---|
| 189 | dp.sld_shell2 = sld_shell2(); |
---|
| 190 | dp.thick_shell3 = thick_shell3(); |
---|
| 191 | dp.sld_shell3 = sld_shell3(); |
---|
| 192 | dp.thick_shell4 = thick_shell4(); |
---|
| 193 | dp.sld_shell4 = sld_shell4(); |
---|
| 194 | dp.sld_solv = sld_solv(); |
---|
| 195 | dp.background = 0.0; |
---|
| 196 | |
---|
| 197 | // Get the dispersion points for the radius |
---|
| 198 | vector<WeightPoint> weights_rad; |
---|
[339ce67] | 199 | rad_core0.get_weights(weights_rad); |
---|
[c724ccd] | 200 | |
---|
| 201 | // Get the dispersion points for the thick 1 |
---|
| 202 | vector<WeightPoint> weights_s1; |
---|
| 203 | thick_shell1.get_weights(weights_s1); |
---|
| 204 | |
---|
| 205 | // Get the dispersion points for the thick 2 |
---|
| 206 | vector<WeightPoint> weights_s2; |
---|
| 207 | thick_shell2.get_weights(weights_s2); |
---|
| 208 | |
---|
| 209 | // Get the dispersion points for the thick 3 |
---|
| 210 | vector<WeightPoint> weights_s3; |
---|
| 211 | thick_shell3.get_weights(weights_s3); |
---|
| 212 | |
---|
| 213 | // Get the dispersion points for the thick 4 |
---|
| 214 | vector<WeightPoint> weights_s4; |
---|
| 215 | thick_shell4.get_weights(weights_s4); |
---|
| 216 | |
---|
| 217 | double rad_out = 0.0; |
---|
| 218 | // Perform the computation, with all weight points |
---|
| 219 | double sum = 0.0; |
---|
| 220 | double norm = 0.0; |
---|
| 221 | |
---|
| 222 | // Loop over radius weight points |
---|
[34c2649] | 223 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[339ce67] | 224 | dp.rad_core0 = weights_rad[i].value; |
---|
[c724ccd] | 225 | // Loop over radius weight points |
---|
[34c2649] | 226 | for(size_t j=0; j<weights_s1.size(); j++) { |
---|
[c724ccd] | 227 | dp.thick_shell1 = weights_s1[j].value; |
---|
| 228 | // Loop over radius weight points |
---|
[34c2649] | 229 | for(size_t k=0; k<weights_s2.size(); k++) { |
---|
[c724ccd] | 230 | dp.thick_shell2 = weights_s2[k].value; |
---|
| 231 | // Loop over radius weight points |
---|
[34c2649] | 232 | for(size_t l=0; l<weights_s3.size(); l++) { |
---|
[c724ccd] | 233 | dp.thick_shell3 = weights_s3[l].value; |
---|
| 234 | // Loop over radius weight points |
---|
[34c2649] | 235 | for(size_t m=0; m<weights_s4.size(); m++) { |
---|
[c724ccd] | 236 | dp.thick_shell4 = weights_s4[m].value; |
---|
| 237 | //Un-normalize FourShell by volume |
---|
| 238 | sum += weights_rad[i].weight*weights_s1[j].weight*weights_s2[k].weight*weights_s3[l].weight*weights_s4[m].weight |
---|
[339ce67] | 239 | * (dp.rad_core0+dp.thick_shell1+dp.thick_shell2+dp.thick_shell3+dp.thick_shell4); |
---|
[c724ccd] | 240 | norm += weights_rad[i].weight*weights_s1[j].weight*weights_s2[k].weight*weights_s3[l].weight*weights_s4[m].weight; |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | } |
---|
| 245 | } |
---|
| 246 | if (norm != 0){ |
---|
| 247 | //return the averaged value |
---|
| 248 | rad_out = sum/norm;} |
---|
| 249 | else{ |
---|
| 250 | //return normal value |
---|
[339ce67] | 251 | rad_out = dp.rad_core0+dp.thick_shell1+dp.thick_shell2+dp.thick_shell3+dp.thick_shell4;} |
---|
[c724ccd] | 252 | |
---|
| 253 | return rad_out; |
---|
| 254 | } |
---|