[339ce67] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
| 26 | |
---|
| 27 | extern "C" { |
---|
[0c2389e] | 28 | #include "GaussWeights.h" |
---|
[339ce67] | 29 | #include "libCylinder.h" |
---|
| 30 | } |
---|
[0c2389e] | 31 | #include "capcyl.h" |
---|
| 32 | |
---|
| 33 | // Convenience parameter structure |
---|
| 34 | typedef struct { |
---|
| 35 | double scale; |
---|
| 36 | double rad_cyl; |
---|
| 37 | double len_cyl; |
---|
| 38 | double rad_cap; |
---|
| 39 | double sld_capcyl; |
---|
| 40 | double sld_solv; |
---|
| 41 | double background; |
---|
| 42 | double theta; |
---|
| 43 | double phi; |
---|
| 44 | } CapCylParameters; |
---|
[339ce67] | 45 | |
---|
| 46 | CappedCylinderModel :: CappedCylinderModel() { |
---|
| 47 | scale = Parameter(1.0); |
---|
| 48 | rad_cyl = Parameter(20.0); |
---|
| 49 | rad_cyl.set_min(0.0); |
---|
| 50 | len_cyl = Parameter(400.0, true); |
---|
| 51 | len_cyl.set_min(0.0); |
---|
| 52 | rad_cap = Parameter(40.0); |
---|
| 53 | rad_cap.set_min(0.0); |
---|
| 54 | sld_capcyl = Parameter(1.0e-6); |
---|
| 55 | sld_solv = Parameter(6.3e-6); |
---|
| 56 | background = Parameter(0.0); |
---|
| 57 | theta = Parameter(0.0, true); |
---|
| 58 | phi = Parameter(0.0, true); |
---|
| 59 | } |
---|
| 60 | |
---|
[0c2389e] | 61 | static double capcyl2d_kernel(double dp[], double q, double alpha) { |
---|
| 62 | int j; |
---|
| 63 | double Pi; |
---|
| 64 | double scale,contr,bkg,sldc,slds; |
---|
| 65 | double len,rad,hDist,endRad; |
---|
| 66 | int nordj=76; |
---|
| 67 | double zi=alpha,yyy,answer; //running tally of integration |
---|
| 68 | double summj,vaj,vbj,zij; //for the inner integration |
---|
| 69 | double arg1,arg2,inner,be; |
---|
| 70 | |
---|
| 71 | |
---|
| 72 | scale = dp[0]; |
---|
| 73 | rad = dp[1]; |
---|
| 74 | len = dp[2]; |
---|
| 75 | endRad = dp[3]; |
---|
| 76 | sldc = dp[4]; |
---|
| 77 | slds = dp[5]; |
---|
| 78 | bkg = dp[6]; |
---|
| 79 | |
---|
| 80 | hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model |
---|
| 81 | |
---|
| 82 | contr = sldc-slds; |
---|
| 83 | |
---|
| 84 | Pi = 4.0*atan(1.0); |
---|
| 85 | vaj = -1.0*hDist/endRad; |
---|
| 86 | vbj = 1.0; //endpoints of inner integral |
---|
| 87 | |
---|
| 88 | summj=0.0; |
---|
| 89 | |
---|
| 90 | for(j=0;j<nordj;j++) { |
---|
| 91 | //20 gauss points for the inner integral |
---|
| 92 | zij = ( Gauss76Z[j]*(vbj-vaj) + vaj + vbj )/2.0; //the "t" dummy |
---|
| 93 | yyy = Gauss76Wt[j] * ConvLens_kernel(dp,q,zij,zi); //uses the same Kernel as the Dumbbell, here L>0 |
---|
| 94 | summj += yyy; |
---|
| 95 | } |
---|
| 96 | //now calculate the value of the inner integral |
---|
| 97 | inner = (vbj-vaj)/2.0*summj; |
---|
| 98 | inner *= 4.0*Pi*endRad*endRad*endRad; |
---|
| 99 | |
---|
| 100 | //now calculate outer integrand |
---|
| 101 | arg1 = q*len/2.0*cos(zi); |
---|
| 102 | arg2 = q*rad*sin(zi); |
---|
| 103 | yyy = inner; |
---|
| 104 | |
---|
| 105 | if(arg2 == 0) { |
---|
| 106 | be = 0.5; |
---|
| 107 | } else { |
---|
| 108 | be = NR_BessJ1(arg2)/arg2; |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h |
---|
| 112 | yyy += Pi*rad*rad*len*2.0*be; |
---|
| 113 | } else { |
---|
| 114 | yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; |
---|
| 115 | } |
---|
| 116 | yyy *= yyy; //sin(zi); |
---|
| 117 | answer = yyy; |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume |
---|
| 121 | answer *= 1.0e8; //convert to cm^-1 |
---|
| 122 | answer *= contr*contr; |
---|
| 123 | answer *= scale; |
---|
| 124 | answer += bkg; |
---|
| 125 | |
---|
| 126 | return answer; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * Function to evaluate 2D scattering function |
---|
| 131 | * @param pars: parameters of the BarBell |
---|
| 132 | * @param q: q-value |
---|
| 133 | * @param q_x: q_x / q |
---|
| 134 | * @param q_y: q_y / q |
---|
| 135 | * @return: function value |
---|
| 136 | */ |
---|
| 137 | static double capcyl_analytical_2D_scaled(CapCylParameters *pars, double q, double q_x, double q_y) { |
---|
| 138 | double cyl_x, cyl_y, cyl_z; |
---|
| 139 | double q_z; |
---|
| 140 | double alpha, cos_val; |
---|
| 141 | double answer; |
---|
| 142 | double dp[7]; |
---|
| 143 | //convert angle degree to radian |
---|
| 144 | double pi = 4.0*atan(1.0); |
---|
| 145 | double theta = pars->theta * pi/180.0; |
---|
| 146 | double phi = pars->phi * pi/180.0; |
---|
| 147 | |
---|
| 148 | dp[0] = pars->scale; |
---|
| 149 | dp[1] = pars->rad_cyl; |
---|
| 150 | dp[2] = pars->len_cyl; |
---|
| 151 | dp[3] = pars->rad_cap; |
---|
| 152 | dp[4] = pars->sld_capcyl; |
---|
| 153 | dp[5] = pars->sld_solv; |
---|
| 154 | dp[6] = pars->background; |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | //double Pi = 4.0*atan(1.0); |
---|
| 158 | // Cylinder orientation |
---|
| 159 | cyl_x = sin(theta) * cos(phi); |
---|
| 160 | cyl_y = sin(theta) * sin(phi); |
---|
| 161 | cyl_z = cos(theta); |
---|
| 162 | |
---|
| 163 | // q vector |
---|
| 164 | q_z = 0; |
---|
| 165 | |
---|
| 166 | // Compute the angle btw vector q and the |
---|
| 167 | // axis of the cylinder |
---|
| 168 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
| 169 | |
---|
| 170 | // The following test should always pass |
---|
| 171 | if (fabs(cos_val)>1.0) { |
---|
| 172 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 173 | return 0; |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 177 | // undefined value from CylKernel |
---|
| 178 | alpha = acos( cos_val ); |
---|
| 179 | |
---|
| 180 | // Call the IGOR library function to get the kernel |
---|
| 181 | answer = capcyl2d_kernel(dp, q, alpha)/sin(alpha); |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | return answer; |
---|
| 185 | |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Function to evaluate 2D scattering function |
---|
| 190 | * @param pars: parameters of the BarBell |
---|
| 191 | * @param q: q-value |
---|
| 192 | * @return: function value |
---|
| 193 | */ |
---|
| 194 | static double capcyl_analytical_2DXY(CapCylParameters *pars, double qx, double qy){ |
---|
| 195 | double q; |
---|
| 196 | q = sqrt(qx*qx+qy*qy); |
---|
| 197 | return capcyl_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 198 | } |
---|
| 199 | |
---|
[339ce67] | 200 | /** |
---|
| 201 | * Function to evaluate 1D scattering function |
---|
| 202 | * The NIST IGOR library is used for the actual calculation. |
---|
| 203 | * @param q: q-value |
---|
| 204 | * @return: function value |
---|
| 205 | */ |
---|
| 206 | double CappedCylinderModel :: operator()(double q) { |
---|
| 207 | double dp[7]; |
---|
| 208 | |
---|
| 209 | // Fill parameter array for IGOR library |
---|
| 210 | // Add the background after averaging |
---|
| 211 | dp[0] = scale(); |
---|
| 212 | dp[1] = rad_cyl(); |
---|
| 213 | dp[2] = len_cyl(); |
---|
| 214 | dp[3] = rad_cap(); |
---|
| 215 | dp[4] = sld_capcyl(); |
---|
| 216 | dp[5] = sld_solv(); |
---|
| 217 | dp[6] = 0.0; |
---|
| 218 | |
---|
| 219 | // Get the dispersion points for the rad_cyl |
---|
| 220 | vector<WeightPoint> weights_rad_cyl; |
---|
| 221 | rad_cyl.get_weights(weights_rad_cyl); |
---|
| 222 | // Get the dispersion points for the len_cyl |
---|
| 223 | vector<WeightPoint> weights_len_cyl; |
---|
| 224 | len_cyl.get_weights(weights_len_cyl); |
---|
| 225 | // Get the dispersion points for the rad_cap |
---|
| 226 | vector<WeightPoint> weights_rad_cap; |
---|
| 227 | rad_cap.get_weights(weights_rad_cap); |
---|
| 228 | |
---|
| 229 | // Perform the computation, with all weight points |
---|
| 230 | double sum = 0.0; |
---|
| 231 | double norm = 0.0; |
---|
| 232 | double vol = 0.0; |
---|
| 233 | double pi,hDist,result; |
---|
| 234 | double vol_i = 0.0; |
---|
| 235 | pi = 4.0*atan(1.0); |
---|
| 236 | // Loop over radius weight points |
---|
[34c2649] | 237 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
[339ce67] | 238 | dp[1] = weights_rad_cyl[i].value; |
---|
[34c2649] | 239 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
[339ce67] | 240 | dp[2] = weights_len_cyl[j].value; |
---|
[34c2649] | 241 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
[339ce67] | 242 | dp[3] = weights_rad_cap[k].value; |
---|
| 243 | |
---|
| 244 | //Un-normalize SphereForm by volume |
---|
| 245 | hDist = -1.0*sqrt(fabs(dp[3]*dp[3]-dp[1]*dp[1])); |
---|
| 246 | vol_i = pi*dp[1]*dp[1]*dp[2]+2.0*pi/3.0*((dp[3]-hDist)*(dp[3]-hDist)* |
---|
| 247 | (2.0*(dp[3]+hDist))); |
---|
| 248 | result = CappedCylinder(dp, q) * vol_i; |
---|
| 249 | // This FIXES a singualrity the kernel in libigor. |
---|
| 250 | if ( result == INFINITY || result == NAN){ |
---|
| 251 | result = 0.0; |
---|
| 252 | } |
---|
| 253 | sum += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
| 254 | * result; |
---|
| 255 | //Find average volume |
---|
| 256 | vol += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
| 257 | * vol_i; |
---|
| 258 | |
---|
| 259 | norm += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight; |
---|
| 260 | } |
---|
| 261 | } |
---|
| 262 | } |
---|
| 263 | |
---|
| 264 | if (vol != 0.0 && norm != 0.0) { |
---|
| 265 | //Re-normalize by avg volume |
---|
| 266 | sum = sum/(vol/norm);} |
---|
| 267 | return sum/norm + background(); |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Function to evaluate 2D scattering function |
---|
| 272 | * @param q_x: value of Q along x |
---|
| 273 | * @param q_y: value of Q along y |
---|
| 274 | * @return: function value |
---|
| 275 | */ |
---|
| 276 | double CappedCylinderModel :: operator()(double qx, double qy) { |
---|
| 277 | CapCylParameters dp; |
---|
| 278 | |
---|
| 279 | dp.scale = scale(); |
---|
| 280 | dp.rad_cyl = rad_cyl(); |
---|
| 281 | dp.len_cyl = len_cyl(); |
---|
| 282 | dp.rad_cap = rad_cap(); |
---|
| 283 | dp.sld_capcyl = sld_capcyl(); |
---|
| 284 | dp.sld_solv = sld_solv(); |
---|
| 285 | dp.background = 0.0; |
---|
| 286 | dp.theta = theta(); |
---|
| 287 | dp.phi = phi(); |
---|
| 288 | |
---|
| 289 | // Get the dispersion points for the rad_bar |
---|
| 290 | vector<WeightPoint> weights_rad_cyl; |
---|
| 291 | rad_cyl.get_weights(weights_rad_cyl); |
---|
| 292 | |
---|
| 293 | // Get the dispersion points for the len_bar |
---|
| 294 | vector<WeightPoint> weights_len_cyl; |
---|
| 295 | len_cyl.get_weights(weights_len_cyl); |
---|
| 296 | |
---|
| 297 | // Get the dispersion points for the rad_bell |
---|
| 298 | vector<WeightPoint> weights_rad_cap; |
---|
| 299 | rad_cap.get_weights(weights_rad_cap); |
---|
| 300 | |
---|
| 301 | // Get angular averaging for theta |
---|
| 302 | vector<WeightPoint> weights_theta; |
---|
| 303 | theta.get_weights(weights_theta); |
---|
| 304 | |
---|
| 305 | // Get angular averaging for phi |
---|
| 306 | vector<WeightPoint> weights_phi; |
---|
| 307 | phi.get_weights(weights_phi); |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | // Perform the computation, with all weight points |
---|
| 311 | double sum = 0.0; |
---|
| 312 | double norm = 0.0; |
---|
| 313 | double norm_vol = 0.0; |
---|
| 314 | double vol = 0.0; |
---|
[34c2649] | 315 | double pi,hDist; |
---|
[339ce67] | 316 | double vol_i = 0.0; |
---|
| 317 | pi = 4.0*atan(1.0); |
---|
| 318 | |
---|
| 319 | // Loop over radius weight points |
---|
[34c2649] | 320 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
[339ce67] | 321 | dp.rad_cyl = weights_rad_cyl[i].value; |
---|
[34c2649] | 322 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
[339ce67] | 323 | dp.len_cyl = weights_len_cyl[j].value; |
---|
[34c2649] | 324 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
[339ce67] | 325 | dp.rad_cap = weights_rad_cap[k].value; |
---|
| 326 | // Average over theta distribution |
---|
[34c2649] | 327 | for(size_t l=0; l< weights_theta.size(); l++) { |
---|
[339ce67] | 328 | dp.theta = weights_theta[l].value; |
---|
| 329 | // Average over phi distribution |
---|
[34c2649] | 330 | for(size_t m=0; m< weights_phi.size(); m++) { |
---|
[339ce67] | 331 | dp.phi = weights_phi[m].value; |
---|
| 332 | //Un-normalize Form by volume |
---|
| 333 | hDist = -1.0*sqrt(fabs(dp.rad_cap*dp.rad_cap-dp.rad_cyl*dp.rad_cyl)); |
---|
| 334 | vol_i = pi*dp.rad_cyl*dp.rad_cyl*dp.len_cyl+2.0*pi/3.0*((dp.rad_cap-hDist)*(dp.rad_cap-hDist)* |
---|
| 335 | (2*dp.rad_cap+hDist)); |
---|
| 336 | |
---|
| 337 | double _ptvalue = weights_rad_cyl[i].weight |
---|
| 338 | * weights_len_cyl[j].weight |
---|
| 339 | * weights_rad_cap[k].weight |
---|
| 340 | * weights_theta[l].weight |
---|
| 341 | * weights_phi[m].weight |
---|
| 342 | * vol_i |
---|
| 343 | * capcyl_analytical_2DXY(&dp, qx, qy); |
---|
| 344 | //* pow(weights_rad[i].value,3.0); |
---|
| 345 | // Consider when there is infinte or nan. |
---|
| 346 | if ( _ptvalue == INFINITY || _ptvalue == NAN){ |
---|
| 347 | _ptvalue = 0.0; |
---|
| 348 | } |
---|
| 349 | if (weights_theta.size()>1) { |
---|
[4628e31] | 350 | _ptvalue *= fabs(sin(weights_theta[l].value*pi/180.0)); |
---|
[339ce67] | 351 | } |
---|
| 352 | sum += _ptvalue; |
---|
| 353 | // This model dose not need the volume of spheres correction!!! |
---|
| 354 | //Find average volume |
---|
| 355 | vol += weights_rad_cyl[i].weight |
---|
| 356 | * weights_len_cyl[j].weight |
---|
| 357 | * weights_rad_cap[k].weight |
---|
| 358 | * vol_i; |
---|
| 359 | //Find norm for volume |
---|
| 360 | norm_vol += weights_rad_cyl[i].weight |
---|
| 361 | * weights_len_cyl[j].weight |
---|
| 362 | * weights_rad_cap[k].weight; |
---|
| 363 | |
---|
| 364 | norm += weights_rad_cyl[i].weight |
---|
| 365 | * weights_len_cyl[j].weight |
---|
| 366 | * weights_rad_cap[k].weight |
---|
| 367 | * weights_theta[l].weight |
---|
| 368 | * weights_phi[m].weight; |
---|
| 369 | } |
---|
| 370 | } |
---|
| 371 | } |
---|
| 372 | } |
---|
| 373 | } |
---|
| 374 | // Averaging in theta needs an extra normalization |
---|
| 375 | // factor to account for the sin(theta) term in the |
---|
| 376 | // integration (see documentation). |
---|
| 377 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 378 | |
---|
| 379 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 380 | //Re-normalize by avg volume |
---|
| 381 | sum = sum/(vol/norm_vol);} |
---|
| 382 | |
---|
| 383 | return sum/norm + background(); |
---|
| 384 | } |
---|
| 385 | |
---|
| 386 | /** |
---|
| 387 | * Function to evaluate 2D scattering function |
---|
| 388 | * @param pars: parameters of the SCCrystal |
---|
| 389 | * @param q: q-value |
---|
| 390 | * @param phi: angle phi |
---|
| 391 | * @return: function value |
---|
| 392 | */ |
---|
| 393 | double CappedCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 394 | return (*this).operator()(q); |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | /** |
---|
| 398 | * Function to calculate effective radius |
---|
| 399 | * @return: effective radius value |
---|
| 400 | */ |
---|
| 401 | double CappedCylinderModel :: calculate_ER() { |
---|
| 402 | //NOT implemented yet!!! |
---|
[34c2649] | 403 | return 0.0; |
---|
[339ce67] | 404 | } |
---|