[f518eef] | 1 | |
---|
| 2 | /* |
---|
| 3 | This software was developed by the University of Tennessee as part of the |
---|
| 4 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | project funded by the US National Science Foundation. |
---|
| 6 | |
---|
| 7 | If you use DANSE applications to do scientific research that leads to |
---|
| 8 | publication, we ask that you acknowledge the use of the software with the |
---|
| 9 | following sentence: |
---|
| 10 | |
---|
| 11 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 12 | |
---|
| 13 | copyright 2008, University of Tennessee |
---|
| 14 | |
---|
| 15 | See Schmidt, J Appl Cryst, 24, (1991), 414-435, Eqn (19) |
---|
| 16 | See Hurd, Schaefer & Martin, 35, (1987), 2361-2364 |
---|
| 17 | |
---|
| 18 | Ported to C++ from Fortran by Robert Whitley (2012) |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | #include <math.h> |
---|
| 22 | #include "parameters.hh" |
---|
| 23 | #include <stdio.h> |
---|
| 24 | #include "FractalQtoN.h" |
---|
| 25 | using namespace std; |
---|
| 26 | |
---|
| 27 | FractalO_Z::FractalO_Z() |
---|
| 28 | { |
---|
| 29 | scale = Parameter(10000.0, true); |
---|
| 30 | m_fractal = Parameter(1.8); |
---|
| 31 | cluster_rg = Parameter(3250.0); |
---|
| 32 | s_fractal = Parameter(2.5); |
---|
| 33 | primary_rg = Parameter(82.0); |
---|
| 34 | background = Parameter(0.01); |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | double FractalO_Z :: operator()(double q) |
---|
| 38 | { |
---|
| 39 | double dp[3]; |
---|
| 40 | dp[0] = m_fractal(); |
---|
| 41 | dp[1] = s_fractal(); |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | if (dp[0] <= 0) |
---|
| 45 | { |
---|
| 46 | //std::cout << "\n\nThe mass fractal dimension must be > 0!"; |
---|
| 47 | //std::cout << "\nWill set to 3."; |
---|
| 48 | dp[0] = 3.0; |
---|
| 49 | } |
---|
| 50 | else |
---|
| 51 | { |
---|
| 52 | if (dp[0] > 6) |
---|
| 53 | { |
---|
| 54 | //std::cout << "\n\nThe mass fractal dimension must be <= 6!"; |
---|
| 55 | //std::cout << "\nWill be set to 3."; |
---|
| 56 | dp[0] = 3.0; |
---|
| 57 | } |
---|
| 58 | } |
---|
| 59 | |
---|
| 60 | if (dp[1] <= 0) |
---|
| 61 | { |
---|
| 62 | //std::cout << "\n\nThe surface dimension must be > 0!"; |
---|
| 63 | //std::cout << "\nWill be set to 2."; |
---|
| 64 | dp[1] = 2.0; |
---|
| 65 | } |
---|
| 66 | else |
---|
| 67 | { |
---|
| 68 | if (dp[1] > 6) |
---|
| 69 | { |
---|
| 70 | //std::cout << "\n\nThe surface dimension must be <= 6!"; |
---|
| 71 | //std::cout << "\nWill be set to 2."; |
---|
| 72 | dp[1] = 2.0; |
---|
| 73 | } |
---|
| 74 | } |
---|
| 75 | |
---|
| 76 | double a(dp[0]/2.0); |
---|
| 77 | double b((cluster_rg() * cluster_rg())/(3.0*a) ); |
---|
| 78 | |
---|
| 79 | // If C goes negative, it will crash with undefined exponentiation. |
---|
| 80 | // So (Ds + Dm) <= 6 |
---|
| 81 | // c = ((ds-6.0)/-2.0)-a |
---|
| 82 | if ((dp[1] > (6.0-dp[0])) && (primary_rg() > 0.0)) |
---|
| 83 | { |
---|
| 84 | dp[1] = 6.0 - dp[0]; |
---|
| 85 | //std::cout << "\n\nThe surface fractal dimension must be <= (6-Dm)!\n"; |
---|
| 86 | //std::cout << setprecision(5) << fixed << dp[1]; |
---|
| 87 | } |
---|
| 88 | |
---|
| 89 | // c = (ds -6.0 + dm)/-2.0; |
---|
| 90 | double c = (6.0 - dp[1] - dp[0])/2.0; |
---|
| 91 | double d(0.0); |
---|
| 92 | |
---|
| 93 | // If c = 0 then it will crash with a floating divide by zero. |
---|
| 94 | if (c == 0) |
---|
| 95 | { |
---|
| 96 | d = 1.0e+37; |
---|
| 97 | } |
---|
| 98 | else |
---|
| 99 | { |
---|
| 100 | d = (primary_rg() * primary_rg()) / (3.0 * c); |
---|
| 101 | } |
---|
| 102 | |
---|
| 103 | double eVar = q*q*b; |
---|
| 104 | double fVar = q*q*d; |
---|
| 105 | double g = pow((1.0+eVar),a); |
---|
| 106 | double h = pow((1.0+fVar),c); |
---|
| 107 | double i = g*h; |
---|
| 108 | double result((scale()/i) + background() ); |
---|
| 109 | return result; |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | /** |
---|
| 114 | * Function to evaluate 2D scattering function |
---|
| 115 | * @param q_x: value of Q along x |
---|
| 116 | * @param q_y: value of Q along y |
---|
| 117 | * @return: function value |
---|
| 118 | */ |
---|
| 119 | double FractalO_Z :: operator()(double qx, double qy) { |
---|
| 120 | double q = sqrt(qx*qx + qy*qy); |
---|
| 121 | return (*this).operator()(q); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | /** |
---|
| 125 | * Function to evaluate 2D scattering function |
---|
| 126 | * @param pars: parameters of the cylinder |
---|
| 127 | * @param q: q-value |
---|
| 128 | * @param phi: angle phi |
---|
| 129 | * @return: function value |
---|
| 130 | */ |
---|
| 131 | double FractalO_Z :: evaluate_rphi(double q, double phi) { |
---|
| 132 | double qx = q*cos(phi); |
---|
| 133 | double qy = q*sin(phi); |
---|
| 134 | return (*this).operator()(qx, qy); |
---|
| 135 | } |
---|
| 136 | /** |
---|
| 137 | * Function to calculate effective radius |
---|
| 138 | * @return: effective radius value |
---|
| 139 | */ |
---|
| 140 | double FractalO_Z :: calculate_ER() { |
---|
| 141 | //NOT implemented yet!!! |
---|
| 142 | return 0.0; |
---|
| 143 | } |
---|
| 144 | double FractalO_Z :: calculate_VR() { |
---|
| 145 | return 1.0; |
---|
| 146 | } |
---|