source: sasview/sansmodels/src/c_models/DiamEllip.cpp @ 543d1bd

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 543d1bd was 0ba3b08, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

refactored bunch of models

  • Property mode set to 100644
File size: 2.8 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 */
21
22#include <math.h>
23#include "parameters.hh"
24#include <stdio.h>
25using namespace std;
26#include "DiamEllip.h"
27
28extern "C" {
29        #include "libStructureFactor.h"
30}
31
32DiamEllipFunc :: DiamEllipFunc() {
33        radius_a      = Parameter(20.0, true);
34        radius_a.set_min(0.0);
35        radius_b      = Parameter(400, true);
36        radius_b.set_min(0.0);
37}
38
39/**
40 * Function to evaluate 1D scattering function
41 * The NIST IGOR library is used for the actual calculation.
42 * @param q: q-value
43 * @return: function value
44 */
45double DiamEllipFunc :: operator()(double q) {
46        double dp[2];
47
48        // Fill parameter array for IGOR library
49        // Add the background after averaging
50        dp[0] = radius_a();
51        dp[1] = radius_b();
52
53        // Get the dispersion points for the radius a
54        vector<WeightPoint> weights_rad_a;
55        radius_a.get_weights(weights_rad_a);
56
57        // Get the dispersion points for the radius b
58        vector<WeightPoint> weights_rad_b;
59        radius_b.get_weights(weights_rad_b);
60
61        // Perform the computation, with all weight points
62        double sum = 0.0;
63        double norm = 0.0;
64
65        // Loop over radius weight points
66        for(size_t i=0; i<weights_rad_a.size(); i++) {
67                dp[0] = weights_rad_a[i].value;
68                // Loop over length weight points
69                for(size_t j=0; j<weights_rad_b.size(); j++) {
70                        dp[1] = weights_rad_b[j].value;
71
72                        sum += weights_rad_a[i].weight*weights_rad_b[j].weight
73                                * DiamEllip(dp[0], dp[1]);
74                        norm += weights_rad_a[i].weight*weights_rad_b[j].weight;
75                }
76        }
77        return sum/norm ;
78}
79
80/**
81 * Function to evaluate 2D scattering function
82 * @param q_x: value of Q along x
83 * @param q_y: value of Q along y
84 * @return: function value
85 */
86double DiamEllipFunc :: operator()(double qx, double qy) {
87        double q = sqrt(qx*qx + qy*qy);
88        return (*this).operator()(q);
89}
90/**
91 * Function to evaluate 2D scattering function
92 * @param pars: parameters of the cylinder
93 * @param q: q-value
94 * @param phi: angle phi
95 * @return: function value
96 */
97double DiamEllipFunc :: evaluate_rphi(double q, double phi) {
98        double qx = q*cos(phi);
99        double qy = q*sin(phi);
100        return (*this).operator()(qx, qy);
101}
102/**
103 * Function to calculate effective radius
104 * @return: effective radius value
105 */
106double DiamEllipFunc :: calculate_ER() {
107//NOT implemented yet!!!
108  return 0.0;
109}
Note: See TracBrowser for help on using the repository browser.