[5068697] | 1 | /** |
---|
| 2 | * Scattering model for a cylinder |
---|
| 3 | * @author: Mathieu Doucet / UTK |
---|
| 4 | */ |
---|
| 5 | |
---|
| 6 | #include "triaxial_ellipsoid.h" |
---|
| 7 | #include <math.h> |
---|
| 8 | #include "libCylinder.h" |
---|
| 9 | #include <stdio.h> |
---|
| 10 | #include <stdlib.h> |
---|
| 11 | |
---|
| 12 | |
---|
| 13 | /** |
---|
| 14 | * Function to evaluate 1D scattering function |
---|
| 15 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 16 | * @param q: q-value |
---|
| 17 | * @return: function value |
---|
| 18 | */ |
---|
| 19 | double triaxial_ellipsoid_analytical_1D(TriaxialEllipsoidParameters *pars, double q) { |
---|
[13eb1c4] | 20 | double dp[7]; |
---|
[975ec8e] | 21 | |
---|
[5068697] | 22 | // Fill paramater array |
---|
| 23 | dp[0] = pars->scale; |
---|
| 24 | dp[1] = pars->semi_axisA; |
---|
| 25 | dp[2] = pars->semi_axisB; |
---|
| 26 | dp[3] = pars->semi_axisC; |
---|
[13eb1c4] | 27 | dp[4] = pars->sldEll; |
---|
| 28 | dp[5] = pars->sldSolv; |
---|
| 29 | dp[6] = pars->background; |
---|
[975ec8e] | 30 | |
---|
[5068697] | 31 | // Call library function to evaluate model |
---|
[975ec8e] | 32 | return TriaxialEllipsoid(dp, q); |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | double triaxial_ellipsoid_kernel(TriaxialEllipsoidParameters *pars, double q, double alpha, double nu) { |
---|
| 36 | double t,a,b,c; |
---|
| 37 | double kernel; |
---|
| 38 | |
---|
| 39 | a = pars->semi_axisA ; |
---|
| 40 | b = pars->semi_axisB ; |
---|
| 41 | c = pars->semi_axisC ; |
---|
| 42 | |
---|
| 43 | t = q * sqrt(a*a*cos(nu)*cos(nu)+b*b*sin(nu)*sin(nu)*sin(alpha)*sin(alpha)+c*c*cos(alpha)*cos(alpha)); |
---|
[3c102d4] | 44 | if (t==0.0){ |
---|
[975ec8e] | 45 | kernel = 1.0; |
---|
| 46 | }else{ |
---|
[3c102d4] | 47 | kernel = 3.0*(sin(t)-t*cos(t))/(t*t*t); |
---|
[975ec8e] | 48 | } |
---|
| 49 | return kernel*kernel; |
---|
[5068697] | 50 | } |
---|
| 51 | |
---|
[975ec8e] | 52 | |
---|
[5068697] | 53 | /** |
---|
| 54 | * Function to evaluate 2D scattering function |
---|
| 55 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 56 | * @param q: q-value |
---|
| 57 | * @return: function value |
---|
| 58 | */ |
---|
| 59 | double triaxial_ellipsoid_analytical_2DXY(TriaxialEllipsoidParameters *pars, double qx, double qy) { |
---|
| 60 | double q; |
---|
| 61 | q = sqrt(qx*qx+qy*qy); |
---|
| 62 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[975ec8e] | 63 | } |
---|
[5068697] | 64 | |
---|
| 65 | |
---|
| 66 | /** |
---|
| 67 | * Function to evaluate 2D scattering function |
---|
| 68 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 69 | * @param q: q-value |
---|
| 70 | * @param phi: angle phi |
---|
| 71 | * @return: function value |
---|
| 72 | */ |
---|
| 73 | double triaxial_ellipsoid_analytical_2D(TriaxialEllipsoidParameters *pars, double q, double phi) { |
---|
| 74 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
[975ec8e] | 75 | } |
---|
| 76 | |
---|
[5068697] | 77 | /** |
---|
| 78 | * Function to evaluate 2D scattering function |
---|
| 79 | * @param pars: parameters of the triaxial ellipsoid |
---|
| 80 | * @param q: q-value |
---|
| 81 | * @param q_x: q_x / q |
---|
| 82 | * @param q_y: q_y / q |
---|
| 83 | * @return: function value |
---|
| 84 | */ |
---|
| 85 | double triaxial_ellipsoid_analytical_2D_scaled(TriaxialEllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
[975ec8e] | 86 | double cyl_x, cyl_y, cyl_z, ell_x, ell_y; |
---|
[5068697] | 87 | double q_z; |
---|
[975ec8e] | 88 | double cos_nu,nu; |
---|
[5068697] | 89 | double alpha, vol, cos_val; |
---|
| 90 | double answer; |
---|
[4628e31] | 91 | double pi = 4.0*atan(1.0); |
---|
| 92 | |
---|
| 93 | //convert angle degree to radian |
---|
| 94 | double theta = pars->axis_theta * pi/180.0; |
---|
| 95 | double phi = pars->axis_phi * pi/180.0; |
---|
| 96 | double psi = pars->axis_psi * pi/180.0; |
---|
| 97 | |
---|
[5068697] | 98 | // Cylinder orientation |
---|
[4628e31] | 99 | cyl_x = sin(theta) * cos(phi); |
---|
| 100 | cyl_y = sin(theta) * sin(phi); |
---|
| 101 | cyl_z = cos(theta); |
---|
[975ec8e] | 102 | |
---|
[5068697] | 103 | // q vector |
---|
[8f20419d] | 104 | q_z = 0.0; |
---|
[975ec8e] | 105 | |
---|
| 106 | //dx = 1.0; |
---|
| 107 | //dy = 1.0; |
---|
[5068697] | 108 | // Compute the angle btw vector q and the |
---|
| 109 | // axis of the cylinder |
---|
| 110 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
[975ec8e] | 111 | |
---|
[5068697] | 112 | // The following test should always pass |
---|
| 113 | if (fabs(cos_val)>1.0) { |
---|
| 114 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 115 | return 0; |
---|
| 116 | } |
---|
[975ec8e] | 117 | |
---|
[5068697] | 118 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 119 | // undefined value from CylKernel |
---|
| 120 | alpha = acos( cos_val ); |
---|
[975ec8e] | 121 | |
---|
| 122 | //ellipse orientation: |
---|
| 123 | // the elliptical corss section was transformed and projected |
---|
| 124 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
| 125 | // on the detector plane. |
---|
| 126 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
| 127 | // the wave vector q. |
---|
| 128 | |
---|
| 129 | //x- y- component on the detector plane. |
---|
[4628e31] | 130 | ell_x = cos(psi); |
---|
| 131 | ell_y = sin(psi); |
---|
[975ec8e] | 132 | |
---|
| 133 | // calculate the axis of the ellipse wrt q-coord. |
---|
| 134 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
| 135 | nu = acos(cos_nu); |
---|
| 136 | |
---|
[5068697] | 137 | // Call the IGOR library function to get the kernel |
---|
[975ec8e] | 138 | answer = triaxial_ellipsoid_kernel(pars, q, alpha, nu); |
---|
| 139 | |
---|
[5068697] | 140 | // Multiply by contrast^2 |
---|
[13eb1c4] | 141 | answer *= (pars->sldEll- pars->sldSolv)*(pars->sldEll- pars->sldSolv); |
---|
[975ec8e] | 142 | |
---|
[5068697] | 143 | //normalize by cylinder volume |
---|
| 144 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
[3c102d4] | 145 | vol = 4.0* pi/3.0 * pars->semi_axisA * pars->semi_axisB * pars->semi_axisC; |
---|
[5068697] | 146 | answer *= vol; |
---|
| 147 | //convert to [cm-1] |
---|
| 148 | answer *= 1.0e8; |
---|
| 149 | //Scale |
---|
| 150 | answer *= pars->scale; |
---|
[975ec8e] | 151 | |
---|
[5068697] | 152 | // add in the background |
---|
| 153 | answer += pars->background; |
---|
[975ec8e] | 154 | |
---|
[5068697] | 155 | return answer; |
---|
| 156 | } |
---|