1 | """Prototype plottable object support. |
---|
2 | |
---|
3 | The main point of this prototype is to provide a clean separation between |
---|
4 | the style (plotter details: color, grids, widgets, etc.) and substance |
---|
5 | (application details: which information to plot). Programmers should not be |
---|
6 | dictating line colours and plotting symbols. |
---|
7 | |
---|
8 | Unlike the problem of style in CSS or Word, where most paragraphs look |
---|
9 | the same, each line on a graph has to be distinguishable from its neighbours. |
---|
10 | Our solution is to provide parametric styles, in which a number of |
---|
11 | different classes of object (e.g., reflectometry data, reflectometry |
---|
12 | theory) representing multiple graph primitives cycle through a colour |
---|
13 | palette provided by the underlying plotter. |
---|
14 | |
---|
15 | A full treatment would provide perceptual dimensions of prominence and |
---|
16 | distinctiveness rather than a simple colour number. |
---|
17 | """ |
---|
18 | |
---|
19 | # Design question: who owns the color? |
---|
20 | # Is it a property of the plottable? |
---|
21 | # Or of the plottable as it exists on the graph? |
---|
22 | # Or if the graph? |
---|
23 | # If a plottable can appear on multiple graphs, in some case the |
---|
24 | # color should be the same on each graph in which it appears, and |
---|
25 | # in other cases (where multiple plottables from different graphs |
---|
26 | # coexist), the color should be assigned by the graph. In any case |
---|
27 | # once a plottable is placed on the graph its color should not |
---|
28 | # depend on the other plottables on the graph. Furthermore, if |
---|
29 | # a plottable is added and removed from a graph and added again, |
---|
30 | # it may be nice, but not necessary, to have the color persist. |
---|
31 | # |
---|
32 | # The safest approach seems to be to give ownership of color |
---|
33 | # to the graph, which will allocate the colors along with the |
---|
34 | # plottable. The plottable will need to return the number of |
---|
35 | # colors that are needed. |
---|
36 | # |
---|
37 | # The situation is less clear for symbols. It is less clear |
---|
38 | # how much the application requires that symbols be unique across |
---|
39 | # all plots on the graph. |
---|
40 | |
---|
41 | # Support for ancient python versions |
---|
42 | if 'any' not in dir(__builtins__): |
---|
43 | def any(L): |
---|
44 | for cond in L: |
---|
45 | if cond: return True |
---|
46 | return False |
---|
47 | def all(L): |
---|
48 | for cond in L: |
---|
49 | if not cond: return False |
---|
50 | return True |
---|
51 | |
---|
52 | # Graph structure for holding multiple plottables |
---|
53 | class Graph: |
---|
54 | """ |
---|
55 | Generic plottables graph structure. |
---|
56 | |
---|
57 | Plot styles are based on color/symbol lists. The user gets to select |
---|
58 | the list of colors/symbols/sizes to choose from, not the application |
---|
59 | developer. The programmer only gets to add/remove lines from the |
---|
60 | plot and move to the next symbol/color. |
---|
61 | |
---|
62 | Another dimension is prominence, which refers to line sizes/point sizes. |
---|
63 | |
---|
64 | Axis transformations allow the user to select the coordinate view |
---|
65 | which provides clarity to the data. There is no way we can provide |
---|
66 | every possible transformation for every application generically, so |
---|
67 | the plottable objects themselves will need to provide the transformations. |
---|
68 | Here are some examples from reflectometry: |
---|
69 | independent: x -> f(x) |
---|
70 | monitor scaling: y -> M*y |
---|
71 | log: y -> log(y if y > min else min) |
---|
72 | cos: y -> cos(y*pi/180) |
---|
73 | dependent: x -> f(x,y) |
---|
74 | Q4: y -> y*x^4 |
---|
75 | fresnel: y -> y*fresnel(x) |
---|
76 | coordinated: x,y = f(x,y) |
---|
77 | Q: x -> 2*pi/L (cos(x*pi/180) - cos(y*pi/180)) |
---|
78 | y -> 2*pi/L (sin(x*pi/180) + sin(y*pi/180)) |
---|
79 | reducing: x,y = f(x1,x2,y1,y2) |
---|
80 | spin asymmetry: x -> x1, y -> (y1 - y2)/(y1 + y2) |
---|
81 | vector net: x -> x1, y -> y1*cos(y2*pi/180) |
---|
82 | Multiple transformations are possible, such as Q4 spin asymmetry |
---|
83 | |
---|
84 | Axes have further complications in that the units of what are being |
---|
85 | plotted should correspond to the units on the axes. Plotting multiple |
---|
86 | types on the same graph should be handled gracefully, e.g., by creating |
---|
87 | a separate tab for each available axis type, breaking into subplots, |
---|
88 | showing multiple axes on the same plot, or generating inset plots. |
---|
89 | Ultimately the decision should be left to the user. |
---|
90 | |
---|
91 | Graph properties such as grids/crosshairs should be under user control, |
---|
92 | as should the sizes of items such as axis fonts, etc. No direct |
---|
93 | access will be provided to the application. |
---|
94 | |
---|
95 | Axis limits are mostly under user control. If the user has zoomed or |
---|
96 | panned then those limits are preserved even if new data is plotted. |
---|
97 | The exception is when, e.g., scanning through a set of related lines |
---|
98 | in which the user may want to fix the limits so that user can compare |
---|
99 | the values directly. Another exception is when creating multiple |
---|
100 | graphs sharing the same limits, though this case may be important |
---|
101 | enough that it is handled by the graph widget itself. Axis limits |
---|
102 | will of course have to understand the effects of axis transformations. |
---|
103 | |
---|
104 | High level plottable objects may be composed of low level primitives. |
---|
105 | Operations such as legend/hide/show copy/paste, etc. need to operate |
---|
106 | on these primitives as a group. E.g., allowing the user to have a |
---|
107 | working canvas where they can drag lines they want to save and annotate |
---|
108 | them. |
---|
109 | |
---|
110 | Graphs need to be printable. A page layout program for entire plots |
---|
111 | would be nice. |
---|
112 | """ |
---|
113 | def xaxis(self,name,units): |
---|
114 | """Properties of the x axis. |
---|
115 | """ |
---|
116 | if self.prop["xunit"] and units != self.prop["xunit"]: |
---|
117 | pass |
---|
118 | #print "Plottable: how do we handle non-commensurate units" |
---|
119 | self.prop["xlabel"] = "%s (%s)"%(name,units) |
---|
120 | self.prop["xunit"] = units |
---|
121 | |
---|
122 | def yaxis(self,name,units): |
---|
123 | """Properties of the y axis. |
---|
124 | """ |
---|
125 | if self.prop["xunit"] and units != self.prop["xunit"]: |
---|
126 | pass |
---|
127 | #print "Plottable: how do we handle non-commensurate units" |
---|
128 | self.prop["ylabel"] = "%s (%s)"%(name,units) |
---|
129 | self.prop["xunit"] = units |
---|
130 | |
---|
131 | def title(self,name): |
---|
132 | """Graph title |
---|
133 | """ |
---|
134 | self.prop["title"] = name |
---|
135 | |
---|
136 | def get(self,key): |
---|
137 | """Get the graph properties""" |
---|
138 | if key=="color": |
---|
139 | return self.color |
---|
140 | elif key == "symbol": |
---|
141 | return self.symbol |
---|
142 | else: |
---|
143 | return self.prop[key] |
---|
144 | |
---|
145 | def set(self,**kw): |
---|
146 | """Set the graph properties""" |
---|
147 | for key in kw: |
---|
148 | if key == "color": |
---|
149 | self.color = kw[key]%len(self.colorlist) |
---|
150 | elif key == "symbol": |
---|
151 | self.symbol = kw[key]%len(self.symbollist) |
---|
152 | else: |
---|
153 | self.prop[key] = kw[key] |
---|
154 | |
---|
155 | def isPlotted(self, plottable): |
---|
156 | """Return True is the plottable is already on the graph""" |
---|
157 | if plottable in self.plottables: |
---|
158 | return True |
---|
159 | return False |
---|
160 | |
---|
161 | def add(self,plottable): |
---|
162 | """Add a new plottable to the graph""" |
---|
163 | # record the colour associated with the plottable |
---|
164 | if not plottable in self.plottables: |
---|
165 | self.plottables[plottable]=self.color |
---|
166 | self.color += plottable.colors() |
---|
167 | |
---|
168 | def changed(self): |
---|
169 | """Detect if any graphed plottables have changed""" |
---|
170 | return any([p.changed() for p in self.plottables]) |
---|
171 | |
---|
172 | def delete(self,plottable): |
---|
173 | """Remove an existing plottable from the graph""" |
---|
174 | if plottable in self.plottables: |
---|
175 | del self.plottables[plottable] |
---|
176 | |
---|
177 | def reset(self): |
---|
178 | """Reset the graph.""" |
---|
179 | self.color = 0 |
---|
180 | self.symbol = 0 |
---|
181 | self.prop = {"xlabel":"", "xunit":None, |
---|
182 | "ylabel":"","yunit":None, |
---|
183 | "title":""} |
---|
184 | self.plottables = {} |
---|
185 | |
---|
186 | def _make_labels(self): |
---|
187 | # Find groups of related plottables |
---|
188 | sets = {} |
---|
189 | for p in self.plottables: |
---|
190 | if p.__class__ in sets: |
---|
191 | sets[p.__class__].append(p) |
---|
192 | else: |
---|
193 | sets[p.__class__] = [p] |
---|
194 | |
---|
195 | # Ask each plottable class for a set of unique labels |
---|
196 | labels = {} |
---|
197 | for c in sets: |
---|
198 | labels.update(c.labels(sets[c])) |
---|
199 | |
---|
200 | return labels |
---|
201 | |
---|
202 | def render(self,plot): |
---|
203 | """Redraw the graph""" |
---|
204 | plot.clear() |
---|
205 | plot.properties(self.prop) |
---|
206 | labels = self._make_labels() |
---|
207 | for p in self.plottables: |
---|
208 | p.render(plot,color=self.plottables[p],symbol=0,label=labels[p]) |
---|
209 | plot.render() |
---|
210 | |
---|
211 | def __init__(self,**kw): |
---|
212 | self.reset() |
---|
213 | self.set(**kw) |
---|
214 | |
---|
215 | |
---|
216 | # Transform interface definition |
---|
217 | # No need to inherit from this class, just need to provide |
---|
218 | # the same methods. |
---|
219 | class Transform: |
---|
220 | """Define a transform plugin to the plottable architecture. |
---|
221 | |
---|
222 | Transforms operate on axes. The plottable defines the |
---|
223 | set of transforms available for it, and the axes on which |
---|
224 | they operate. These transforms can operate on the x axis |
---|
225 | only, the y axis only or on the x and y axes together. |
---|
226 | |
---|
227 | This infrastructure is not able to support transformations |
---|
228 | such as log and polar plots as these require full control |
---|
229 | over the drawing of axes and grids. |
---|
230 | |
---|
231 | A transform has a number of attributes. |
---|
232 | |
---|
233 | name: user visible name for the transform. This will |
---|
234 | appear in the context menu for the axis and the transform |
---|
235 | menu for the graph. |
---|
236 | type: operational axis. This determines whether the |
---|
237 | transform should appear on x,y or z axis context |
---|
238 | menus, or if it should appear in the context menu for |
---|
239 | the graph. |
---|
240 | inventory: (not implemented) |
---|
241 | a dictionary of user settable parameter names and |
---|
242 | their associated types. These should appear as keyword |
---|
243 | arguments to the transform call. For example, Fresnel |
---|
244 | reflectivity requires the substrate density: |
---|
245 | { 'rho': type.Value(10e-6/units.angstrom**2) } |
---|
246 | Supply reasonable defaults in the callback so that |
---|
247 | limited plotting clients work even though they cannot |
---|
248 | set the inventory. |
---|
249 | """ |
---|
250 | |
---|
251 | def __call__(self,plottable,**kwargs): |
---|
252 | """Transform the data. Whenever a plottable is added |
---|
253 | to the axes, the infrastructure will apply all required |
---|
254 | transforms. When the user selects a different representation |
---|
255 | for the axes (via menu, script, or context menu), all |
---|
256 | plottables on the axes will be transformed. The |
---|
257 | plottable should store the underlying data but set |
---|
258 | the standard x,dx,y,dy,z,dz attributes appropriately. |
---|
259 | |
---|
260 | If the call raises a NotImplemented error the dataline |
---|
261 | will not be plotted. The associated string will usually |
---|
262 | be 'Not a valid transform', though other strings are possible. |
---|
263 | The application may or may not display the message to the |
---|
264 | user, along with an indication of which plottable was at fault. |
---|
265 | """ |
---|
266 | raise NotImplemented,"Not a valid transform" |
---|
267 | |
---|
268 | # Related issues |
---|
269 | # ============== |
---|
270 | # |
---|
271 | # log scale: |
---|
272 | # All axes have implicit log/linear scaling options. |
---|
273 | # |
---|
274 | # normalization: |
---|
275 | # Want to display raw counts vs detector efficiency correction |
---|
276 | # Want to normalize by time/monitor/proton current/intensity. |
---|
277 | # Want to display by eg. counts per 3 sec or counts per 10000 monitor. |
---|
278 | # Want to divide by footprint (ab initio, fitted or measured). |
---|
279 | # Want to scale by attenuator values. |
---|
280 | # |
---|
281 | # compare/contrast: |
---|
282 | # Want to average all visible lines with the same tag, and |
---|
283 | # display difference from one particular line. Not a transform |
---|
284 | # issue? |
---|
285 | # |
---|
286 | # multiline graph: |
---|
287 | # How do we show/hide data parts. E.g., data or theory, or |
---|
288 | # different polarization cross sections? One way is with |
---|
289 | # tags: each plottable has a set of tags and the tags are |
---|
290 | # listed as check boxes above the plotting area. Click a |
---|
291 | # tag and all plottables with that tag are hidden on the |
---|
292 | # plot and on the legend. |
---|
293 | # |
---|
294 | # nonconformant y-axes: |
---|
295 | # What do we do with temperature vs. Q and reflectivity vs. Q |
---|
296 | # on the same graph? |
---|
297 | # |
---|
298 | # 2D -> 1D: |
---|
299 | # Want various slices through the data. Do transforms apply |
---|
300 | # to the sliced data as well? |
---|
301 | |
---|
302 | |
---|
303 | class Plottable: |
---|
304 | def xaxis(self, name, units): |
---|
305 | self._xaxis = name |
---|
306 | self._xunit = units |
---|
307 | |
---|
308 | def yaxis(self, name, units): |
---|
309 | self._yaxis = name |
---|
310 | self._yunit = units |
---|
311 | |
---|
312 | @classmethod |
---|
313 | def labels(cls,collection): |
---|
314 | """ |
---|
315 | Construct a set of unique labels for a collection of plottables of |
---|
316 | the same type. |
---|
317 | |
---|
318 | Returns a map from plottable to name. |
---|
319 | """ |
---|
320 | n = len(collection) |
---|
321 | map = {} |
---|
322 | if n > 0: |
---|
323 | basename = str(cls).split('.')[-1] |
---|
324 | if n == 1: |
---|
325 | map[collection[0]] = basename |
---|
326 | else: |
---|
327 | for i in xrange(len(collection)): |
---|
328 | map[collection[i]] = "%s %d"%(basename,i) |
---|
329 | return map |
---|
330 | ##Use the following if @classmethod doesn't work |
---|
331 | # labels = classmethod(labels) |
---|
332 | |
---|
333 | def __init__(self): |
---|
334 | pass |
---|
335 | |
---|
336 | def render(self,plot): |
---|
337 | """The base class makes sure the correct units are being used for |
---|
338 | subsequent plottable. |
---|
339 | |
---|
340 | For now it is assumed that the graphs are commensurate, and if you |
---|
341 | put a Qx object on a Temperature graph then you had better hope |
---|
342 | that it makes sense. |
---|
343 | """ |
---|
344 | plot.xaxis(self._xaxis, self._xunit) |
---|
345 | plot.yaxis(self._yaxis, self._yunit) |
---|
346 | |
---|
347 | def colors(self): |
---|
348 | """Return the number of colors need to render the object""" |
---|
349 | return 1 |
---|
350 | |
---|
351 | |
---|
352 | class Data1D(Plottable): |
---|
353 | """Data plottable: scatter plot of x,y with errors in x and y. |
---|
354 | """ |
---|
355 | |
---|
356 | def __init__(self,x,y,dx=None,dy=None): |
---|
357 | """Draw points specified by x[i],y[i] in the current color/symbol. |
---|
358 | Uncertainty in x is given by dx[i], or by (xlo[i],xhi[i]) if the |
---|
359 | uncertainty is asymmetric. Similarly for y uncertainty. |
---|
360 | |
---|
361 | The title appears on the legend. |
---|
362 | The label, if it is different, appears on the status bar. |
---|
363 | """ |
---|
364 | self.x = x |
---|
365 | self.y = y |
---|
366 | self.dx = dx |
---|
367 | self.dy = dy |
---|
368 | |
---|
369 | def render(self,plot,**kw): |
---|
370 | Plottable.render(self,plot) |
---|
371 | plot.points(self.x,self.y,dx=self.dx,dy=self.dy,**kw) |
---|
372 | |
---|
373 | def changed(self): |
---|
374 | return False |
---|
375 | |
---|
376 | class Theory1D(Plottable): |
---|
377 | """Theory plottable: line plot of x,y with confidence interval y. |
---|
378 | """ |
---|
379 | def __init__(self,x,y,dy=None): |
---|
380 | """Draw lines specified in x[i],y[i] in the current color/symbol. |
---|
381 | Confidence intervals in x are given by dx[i] or by (xlo[i],xhi[i]) |
---|
382 | if the limits are asymmetric. |
---|
383 | |
---|
384 | The title is the name that will show up on the legend. |
---|
385 | """ |
---|
386 | self.x = x |
---|
387 | self.y = y |
---|
388 | |
---|
389 | self.dy = dy |
---|
390 | |
---|
391 | def render(self,plot,**kw): |
---|
392 | plot.curve(self.x,self.y,dy=self.dy,**kw) |
---|
393 | |
---|
394 | def changed(self): |
---|
395 | return False |
---|
396 | |
---|
397 | |
---|
398 | |
---|
399 | class Fit1D(Plottable): |
---|
400 | """Fit plottable: composed of a data line plus a theory line. This |
---|
401 | is treated like a single object from the perspective of the graph, |
---|
402 | except that it will have two legend entries, one for the data and |
---|
403 | one for the theory. |
---|
404 | |
---|
405 | The color of the data and theory will be shared.""" |
---|
406 | |
---|
407 | def __init__(self,data=None,theory=None): |
---|
408 | self.data=data |
---|
409 | self.theory=theory |
---|
410 | |
---|
411 | def render(self,plot,**kw): |
---|
412 | self.data.render(plot,**kw) |
---|
413 | self.theory.render(plot,**kw) |
---|
414 | |
---|
415 | def changed(self): |
---|
416 | return self.data.changed() or self.theory.changed() |
---|
417 | |
---|
418 | ###################################################### |
---|
419 | |
---|
420 | def sample_graph(): |
---|
421 | import numpy as nx |
---|
422 | |
---|
423 | # Construct a simple graph |
---|
424 | if False: |
---|
425 | x = nx.array([1,2,3,4,5,6],'d') |
---|
426 | y = nx.array([4,5,6,5,4,5],'d') |
---|
427 | dy = nx.array([0.2, 0.3, 0.1, 0.2, 0.9, 0.3]) |
---|
428 | else: |
---|
429 | x = nx.linspace(0,1.,10000) |
---|
430 | y = nx.sin(2*nx.pi*x*2.8) |
---|
431 | dy = nx.sqrt(100*nx.abs(y))/100 |
---|
432 | data = Data1D(x,y,dy=dy) |
---|
433 | data.xaxis('distance', 'm') |
---|
434 | data.yaxis('time', 's') |
---|
435 | graph = Graph() |
---|
436 | graph.title('Walking Results') |
---|
437 | graph.add(data) |
---|
438 | graph.add(Theory1D(x,y,dy=dy)) |
---|
439 | |
---|
440 | return graph |
---|
441 | |
---|
442 | def demo_plotter(graph): |
---|
443 | import wx |
---|
444 | #from pylab_plottables import Plotter |
---|
445 | from mplplotter import Plotter |
---|
446 | |
---|
447 | # Make a frame to show it |
---|
448 | app = wx.PySimpleApp() |
---|
449 | frame = wx.Frame(None,-1,'Plottables') |
---|
450 | plotter = Plotter(frame) |
---|
451 | frame.Show() |
---|
452 | |
---|
453 | # render the graph to the pylab plotter |
---|
454 | graph.render(plotter) |
---|
455 | |
---|
456 | class GraphUpdate: |
---|
457 | callnum=0 |
---|
458 | def __init__(self,graph,plotter): |
---|
459 | self.graph,self.plotter = graph,plotter |
---|
460 | def __call__(self): |
---|
461 | if self.graph.changed(): |
---|
462 | self.graph.render(self.plotter) |
---|
463 | return True |
---|
464 | return False |
---|
465 | def onIdle(self,event): |
---|
466 | #print "On Idle checker %d"%(self.callnum) |
---|
467 | self.callnum = self.callnum+1 |
---|
468 | if self.__call__(): |
---|
469 | pass # event.RequestMore() |
---|
470 | update = GraphUpdate(graph,plotter) |
---|
471 | frame.Bind(wx.EVT_IDLE,update.onIdle) |
---|
472 | app.MainLoop() |
---|
473 | |
---|
474 | import sys; print sys.version |
---|
475 | if __name__ == "__main__": |
---|
476 | demo_plotter(sample_graph()) |
---|
477 | |
---|