[ae3ce4e] | 1 | /** |
---|
| 2 | * Straight C disperser |
---|
| 3 | * |
---|
| 4 | * This code was written as part of the DANSE project |
---|
| 5 | * http://danse.us/trac/sans/ |
---|
| 6 | * |
---|
| 7 | * Copyright 2007: University of Tennessee, for the DANSE project |
---|
| 8 | */ |
---|
| 9 | #include "math.h" |
---|
| 10 | #include <stdio.h> |
---|
| 11 | #include <stdlib.h> |
---|
| 12 | |
---|
| 13 | /** |
---|
| 14 | * Weight distribution to give to each point in the dispersion |
---|
| 15 | * The distribution is a Gaussian with |
---|
| 16 | * |
---|
| 17 | * @param mean: mean value of the Gaussian |
---|
| 18 | * @param sigma: sigma of the Gaussian |
---|
| 19 | * @param x: point to evaluate at |
---|
| 20 | * @return: weight value |
---|
| 21 | * |
---|
| 22 | */ |
---|
| 23 | double c_disperser_weight(double mean, double sigma, double x) { |
---|
| 24 | double vary, expo_value; |
---|
| 25 | vary = x-mean; |
---|
| 26 | expo_value = -vary*vary/(2*sigma*sigma); |
---|
| 27 | return exp(expo_value); |
---|
| 28 | } |
---|
| 29 | |
---|
| 30 | /** |
---|
| 31 | * Function to apply dispersion to a list of parameters. |
---|
| 32 | * |
---|
| 33 | * This function is re-entrant. It should be called with iPar=0. |
---|
| 34 | * It will then call itself with increasing values for iPar until |
---|
| 35 | * all parameters to be dispersed have been dealt with. |
---|
| 36 | * |
---|
| 37 | * |
---|
| 38 | * @param eval: pointer to the function used to evaluate the model at |
---|
| 39 | * a particular point. |
---|
| 40 | * @param dp: complete array of parameter values for the model. |
---|
| 41 | * @param n_pars: number of parameters to apply dispersion to. |
---|
| 42 | * @param idList: list of parameter indices for the parameters to apply |
---|
| 43 | * dispersion to. For a given parameter, its index is the |
---|
| 44 | * index of its position in the parameter vector of the model |
---|
| 45 | * function. |
---|
| 46 | * @param sigmaList: list of sigma values for the parameters to apply |
---|
| 47 | * dispersion to. |
---|
| 48 | * @param centers: list of mean values for the parameters to apply |
---|
| 49 | * dispersion to. |
---|
| 50 | * @param n_pts: number of points to use when applying dispersion. |
---|
| 51 | * @param q: q-value to evaluate the model at. |
---|
| 52 | * @param phi: angle of the q-vector with the q_x axis. |
---|
| 53 | * @param iPar: index of the parameter to apply dispersion to (should |
---|
| 54 | * be 0 when called by the user). |
---|
| 55 | * |
---|
| 56 | */ |
---|
| 57 | double c_disperseParam( double (*eval)(double[], double, double), double dp[], int n_pars, |
---|
| 58 | int *idList, double *sigmaList, double *centers, |
---|
| 59 | int n_pts, double q, double phi, int iPar ) { |
---|
| 60 | double min_value, max_value; |
---|
| 61 | double step; |
---|
| 62 | double prev_value; |
---|
| 63 | double value_sum; |
---|
| 64 | double gauss_sum; |
---|
| 65 | double gauss_value; |
---|
| 66 | double func_value; |
---|
| 67 | double error_sys; |
---|
| 68 | double value; |
---|
| 69 | int n_sigma; |
---|
| 70 | int i; |
---|
| 71 | // Number of std variations to average over |
---|
| 72 | n_sigma = 2; |
---|
| 73 | if( iPar < n_pars ) { |
---|
| 74 | |
---|
| 75 | // Average over Gaussian distribution (2 sigmas) |
---|
| 76 | value_sum = 0.0; |
---|
| 77 | gauss_sum = 0.0; |
---|
| 78 | |
---|
| 79 | // Average over 4 sigmas wide |
---|
| 80 | min_value = centers[iPar] - n_sigma*sigmaList[iPar]; |
---|
| 81 | max_value = centers[iPar] + n_sigma*sigmaList[iPar]; |
---|
| 82 | |
---|
| 83 | // Calculate step size |
---|
| 84 | step = (max_value - min_value)/(n_pts-1); |
---|
| 85 | |
---|
| 86 | // If we are not changing the parameter, just return the |
---|
| 87 | // value of the function |
---|
| 88 | if (step == 0.0) { |
---|
| 89 | return c_disperseParam(eval, dp, n_pars, idList, sigmaList, |
---|
| 90 | centers, n_pts, q, phi, iPar+1); |
---|
| 91 | } |
---|
| 92 | |
---|
| 93 | // Compute average |
---|
| 94 | prev_value = 0.0; |
---|
| 95 | error_sys = 0.0; |
---|
| 96 | for( i=0; i<n_pts; i++ ) { |
---|
| 97 | // Set the parameter value |
---|
| 98 | value = min_value + (double)i*step; |
---|
| 99 | dp[idList[iPar]] = value; |
---|
| 100 | |
---|
| 101 | gauss_value = c_disperser_weight(centers[iPar], sigmaList[iPar], value); |
---|
| 102 | func_value = c_disperseParam(eval, dp, n_pars, idList, sigmaList, |
---|
| 103 | centers, n_pts, q, phi, iPar+1); |
---|
| 104 | |
---|
| 105 | value_sum += gauss_value * func_value; |
---|
| 106 | gauss_sum += gauss_value; |
---|
| 107 | } |
---|
| 108 | return value_sum/gauss_sum; |
---|
| 109 | |
---|
| 110 | } else { |
---|
| 111 | return (*eval)(dp, q, phi); |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Function to add dispersion to a model. |
---|
| 118 | * The dispersion is Gaussian around the value of given parameters. |
---|
| 119 | * |
---|
| 120 | * @param eval: pointer to the function used to evaluate the model at |
---|
| 121 | * a particular point. |
---|
| 122 | * @param n_pars: number of parameters to apply dispersion to. |
---|
| 123 | * @param idList: list of parameter indices for the parameters to apply |
---|
| 124 | * dispersion to. For a given parameter, its index is the |
---|
| 125 | * index of its position in the parameter vector of the model |
---|
| 126 | * function. |
---|
| 127 | * @param sigmaList: list of sigma values for the parameters to apply |
---|
| 128 | * dispersion to. |
---|
| 129 | * @param n_pts: number of points to use when applying dispersion. |
---|
| 130 | * @param q: q-value to evaluate the model at. |
---|
| 131 | * @param phi: angle of the q-vector with the q_x axis. |
---|
| 132 | * |
---|
| 133 | */ |
---|
| 134 | double c_disperser( double (*eval)(double[], double, double), double dp[], int n_pars, |
---|
| 135 | int *idList, double *sigmaList, int n_pts, double q, double phi ) { |
---|
| 136 | double *centers; |
---|
| 137 | double value; |
---|
| 138 | int i; |
---|
| 139 | |
---|
| 140 | // Allocate centers array |
---|
| 141 | if( n_pars > 0 ) { |
---|
| 142 | centers = (double *)malloc(n_pars * sizeof(double)); |
---|
| 143 | if(centers==NULL) { |
---|
| 144 | printf("c_disperser could not allocate memory\n"); |
---|
| 145 | return 0.0; |
---|
| 146 | } |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | // Store current values in centers array |
---|
| 150 | for(i=0; i<n_pars; i++) { |
---|
| 151 | centers[i] = dp[idList[i]]; |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | if( n_pars > 0 ) { |
---|
| 156 | value = c_disperseParam(eval, dp, n_pars, idList, sigmaList, centers, n_pts, q, phi, 0); |
---|
| 157 | } else { |
---|
| 158 | value = (*eval)(dp, q, phi); |
---|
| 159 | } |
---|
| 160 | free(centers); |
---|
| 161 | return value; |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * |
---|
| 166 | * Angles are in radian. |
---|
| 167 | * |
---|
| 168 | * |
---|
| 169 | */ |
---|
| 170 | double weight_dispersion( double (*eval)(double[], double, double), |
---|
| 171 | double *par_values, double *weight_values, |
---|
| 172 | int npts, int i_par, |
---|
| 173 | double dp[], double q, double phi ) { |
---|
| 174 | int i; |
---|
| 175 | double value; |
---|
| 176 | double norma; |
---|
| 177 | |
---|
| 178 | value = 0.0; |
---|
| 179 | norma = 0.0; |
---|
| 180 | |
---|
| 181 | // If we have an empty array of points, just |
---|
| 182 | // evaluate the function |
---|
| 183 | if(npts == 0) { |
---|
| 184 | return (*eval)(dp, q, phi); |
---|
| 185 | } else { |
---|
| 186 | for(i=0; i<npts; i++) { |
---|
| 187 | dp[i_par] = par_values[i]; |
---|
| 188 | value += weight_values[i] * (*eval)(dp, q, phi); |
---|
| 189 | //dp[i_par] = -par_values[i]; |
---|
| 190 | //value += weight_values[i] * (*eval)(dp, q, phi); |
---|
| 191 | |
---|
| 192 | norma += weight_values[i]; |
---|
| 193 | } |
---|
| 194 | } |
---|
| 195 | return value/norma/2.0; |
---|
| 196 | |
---|
| 197 | } |
---|