[46d50ca] | 1 | """ |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | See the license text in license.txt |
---|
| 7 | |
---|
| 8 | copyright 2010, University of Tennessee |
---|
| 9 | """ |
---|
| 10 | import unittest |
---|
[6939bd4] | 11 | import numpy, math |
---|
[117a1d6] | 12 | from sans.dataloader.loader import Loader |
---|
| 13 | from sans.dataloader.data_info import Data1D |
---|
[46d50ca] | 14 | from sans.invariant import invariant |
---|
| 15 | |
---|
| 16 | class TestLinearFit(unittest.TestCase): |
---|
| 17 | """ |
---|
| 18 | Test Line fit |
---|
| 19 | """ |
---|
| 20 | def setUp(self): |
---|
| 21 | x = numpy.asarray([1.,2.,3.,4.,5.,6.,7.,8.,9.]) |
---|
| 22 | y = numpy.asarray([1.,2.,3.,4.,5.,6.,7.,8.,9.]) |
---|
| 23 | dy = y/10.0 |
---|
| 24 | |
---|
| 25 | self.data = Data1D(x=x,y=y,dy=dy) |
---|
| 26 | |
---|
| 27 | def test_fit_linear_data(self): |
---|
| 28 | """ |
---|
| 29 | Simple linear fit |
---|
| 30 | """ |
---|
| 31 | |
---|
| 32 | # Create invariant object. Background and scale left as defaults. |
---|
[aafa962] | 33 | fit = invariant.Extrapolator(data=self.data) |
---|
[bdd162f] | 34 | #a,b = fit.fit() |
---|
| 35 | p, dp = fit.fit() |
---|
[46d50ca] | 36 | |
---|
| 37 | # Test results |
---|
[bdd162f] | 38 | self.assertAlmostEquals(p[0], 1.0, 5) |
---|
| 39 | self.assertAlmostEquals(p[1], 0.0, 5) |
---|
[46d50ca] | 40 | |
---|
| 41 | def test_fit_linear_data_with_noise(self): |
---|
| 42 | """ |
---|
| 43 | Simple linear fit with noise |
---|
| 44 | """ |
---|
| 45 | import random, math |
---|
| 46 | |
---|
| 47 | for i in range(len(self.data.y)): |
---|
[bdd162f] | 48 | self.data.y[i] = self.data.y[i]+.1*(random.random()-0.5) |
---|
[46d50ca] | 49 | |
---|
| 50 | # Create invariant object. Background and scale left as defaults. |
---|
[aafa962] | 51 | fit = invariant.Extrapolator(data=self.data) |
---|
[bdd162f] | 52 | p, dp = fit.fit() |
---|
[46d50ca] | 53 | |
---|
| 54 | # Test results |
---|
[bdd162f] | 55 | self.assertTrue(math.fabs(p[0]-1.0)<0.05) |
---|
| 56 | self.assertTrue(math.fabs(p[1])<0.1) |
---|
| 57 | |
---|
| 58 | def test_fit_with_fixed_parameter(self): |
---|
| 59 | """ |
---|
| 60 | Linear fit for y=ax+b where a is fixed. |
---|
| 61 | """ |
---|
| 62 | # Create invariant object. Background and scale left as defaults. |
---|
| 63 | fit = invariant.Extrapolator(data=self.data) |
---|
| 64 | p, dp = fit.fit(power=-1.0) |
---|
| 65 | |
---|
| 66 | # Test results |
---|
| 67 | self.assertAlmostEquals(p[0], 1.0, 5) |
---|
| 68 | self.assertAlmostEquals(p[1], 0.0, 5) |
---|
| 69 | |
---|
| 70 | def test_fit_linear_data_with_noise_and_fixed_par(self): |
---|
| 71 | """ |
---|
| 72 | Simple linear fit with noise |
---|
| 73 | """ |
---|
| 74 | import random, math |
---|
| 75 | |
---|
| 76 | for i in range(len(self.data.y)): |
---|
| 77 | self.data.y[i] = self.data.y[i]+.1*(random.random()-0.5) |
---|
| 78 | |
---|
| 79 | # Create invariant object. Background and scale left as defaults. |
---|
| 80 | fit = invariant.Extrapolator(data=self.data) |
---|
| 81 | p, dp = fit.fit(power=-1.0) |
---|
| 82 | |
---|
| 83 | # Test results |
---|
| 84 | self.assertTrue(math.fabs(p[0]-1.0)<0.05) |
---|
| 85 | self.assertTrue(math.fabs(p[1])<0.1) |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | |
---|
[46d50ca] | 89 | class TestInvariantCalculator(unittest.TestCase): |
---|
| 90 | """ |
---|
[bdd162f] | 91 | Test main functionality of the Invariant calculator |
---|
[46d50ca] | 92 | """ |
---|
| 93 | def setUp(self): |
---|
[bdd162f] | 94 | self.data = Loader().load("latex_smeared_slit.xml") |
---|
[46d50ca] | 95 | |
---|
| 96 | def test_initial_data_processing(self): |
---|
| 97 | """ |
---|
| 98 | Test whether the background and scale are handled properly |
---|
| 99 | when creating an InvariantCalculator object |
---|
| 100 | """ |
---|
| 101 | length = len(self.data.x) |
---|
| 102 | self.assertEqual(length, len(self.data.y)) |
---|
| 103 | inv = invariant.InvariantCalculator(self.data) |
---|
| 104 | |
---|
| 105 | self.assertEqual(length, len(inv._data.x)) |
---|
| 106 | self.assertEqual(inv._data.x[0], self.data.x[0]) |
---|
| 107 | |
---|
| 108 | # Now the same thing with a background value |
---|
| 109 | bck = 0.1 |
---|
| 110 | inv = invariant.InvariantCalculator(self.data, background=bck) |
---|
| 111 | self.assertEqual(inv._background, bck) |
---|
| 112 | |
---|
| 113 | self.assertEqual(length, len(inv._data.x)) |
---|
| 114 | self.assertEqual(inv._data.y[0]+bck, self.data.y[0]) |
---|
| 115 | |
---|
| 116 | # Now the same thing with a scale value |
---|
| 117 | scale = 0.1 |
---|
| 118 | inv = invariant.InvariantCalculator(self.data, scale=scale) |
---|
| 119 | self.assertEqual(inv._scale, scale) |
---|
| 120 | |
---|
| 121 | self.assertEqual(length, len(inv._data.x)) |
---|
| 122 | self.assertAlmostEqual(inv._data.y[0]/scale, self.data.y[0],7) |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | def test_incompatible_data_class(self): |
---|
| 126 | """ |
---|
| 127 | Check that only classes that inherit from Data1D are allowed as data. |
---|
| 128 | """ |
---|
| 129 | class Incompatible(): |
---|
| 130 | pass |
---|
| 131 | self.assertRaises(ValueError, invariant.InvariantCalculator, Incompatible()) |
---|
[bdd162f] | 132 | |
---|
| 133 | def test_error_treatment(self): |
---|
| 134 | x = numpy.asarray(numpy.asarray([0,1,2,3])) |
---|
| 135 | y = numpy.asarray(numpy.asarray([1,1,1,1])) |
---|
| 136 | |
---|
| 137 | # These are all the values of the dy array that would cause |
---|
| 138 | # us to set all dy values to 1.0 at __init__ time. |
---|
| 139 | dy_list = [ [], None, [0,0,0,0] ] |
---|
| 140 | |
---|
| 141 | for dy in dy_list: |
---|
| 142 | data = Data1D(x=x, y=y, dy=dy) |
---|
| 143 | inv = invariant.InvariantCalculator(data) |
---|
| 144 | self.assertEqual(len(inv._data.x), len(inv._data.dy)) |
---|
| 145 | self.assertEqual(len(inv._data.dy), 4) |
---|
| 146 | for i in range(4): |
---|
| 147 | self.assertEqual(inv._data.dy[i],1) |
---|
| 148 | |
---|
| 149 | def test_qstar_low_q_guinier(self): |
---|
| 150 | """ |
---|
| 151 | Test low-q extrapolation with a Guinier |
---|
| 152 | """ |
---|
| 153 | inv = invariant.InvariantCalculator(self.data) |
---|
| 154 | |
---|
| 155 | # Basic sanity check |
---|
| 156 | _qstar = inv.get_qstar() |
---|
| 157 | qstar, dqstar = inv.get_qstar_with_error() |
---|
| 158 | self.assertEqual(qstar, _qstar) |
---|
| 159 | |
---|
| 160 | # Low-Q Extrapolation |
---|
| 161 | # Check that the returned invariant is what we expect given |
---|
| 162 | # the result we got without extrapolation |
---|
| 163 | inv.set_extrapolation('low', npts=10, function='guinier') |
---|
| 164 | qs_extr, dqs_extr = inv.get_qstar_with_error('low') |
---|
| 165 | delta_qs_extr, delta_dqs_extr = inv.get_qstar_low() |
---|
| 166 | |
---|
| 167 | self.assertEqual(qs_extr, _qstar+delta_qs_extr) |
---|
| 168 | self.assertEqual(dqs_extr, math.sqrt(dqstar*dqstar + delta_dqs_extr*delta_dqs_extr)) |
---|
| 169 | |
---|
| 170 | # We don't expect the extrapolated invariant to be very far from the |
---|
| 171 | # result without extrapolation. Let's test for a result within 10%. |
---|
| 172 | self.assertTrue(math.fabs(qs_extr-qstar)/qstar<0.1) |
---|
| 173 | |
---|
| 174 | # Check that the two results are consistent within errors |
---|
| 175 | # Note that the error on the extrapolated value takes into account |
---|
| 176 | # a systematic error for the fact that we may not know the shape of I(q) at low Q. |
---|
| 177 | self.assertTrue(math.fabs(qs_extr-qstar)<dqs_extr) |
---|
| 178 | |
---|
| 179 | def test_qstar_low_q_power_law(self): |
---|
| 180 | """ |
---|
| 181 | Test low-q extrapolation with a power law |
---|
| 182 | """ |
---|
| 183 | inv = invariant.InvariantCalculator(self.data) |
---|
| 184 | |
---|
| 185 | # Basic sanity check |
---|
| 186 | _qstar = inv.get_qstar() |
---|
| 187 | qstar, dqstar = inv.get_qstar_with_error() |
---|
| 188 | self.assertEqual(qstar, _qstar) |
---|
| 189 | |
---|
| 190 | # Low-Q Extrapolation |
---|
| 191 | # Check that the returned invariant is what we expect given |
---|
| 192 | inv.set_extrapolation('low', npts=10, function='power_law') |
---|
| 193 | qs_extr, dqs_extr = inv.get_qstar_with_error('low') |
---|
| 194 | delta_qs_extr, delta_dqs_extr = inv.get_qstar_low() |
---|
| 195 | |
---|
| 196 | # A fit using SansView gives 0.0655 for the value of the exponent |
---|
| 197 | self.assertAlmostEqual(inv._low_extrapolation_function.power, 0.0655, 3) |
---|
| 198 | |
---|
| 199 | if False: |
---|
| 200 | npts = len(inv._data.x)-1 |
---|
| 201 | import matplotlib.pyplot as plt |
---|
| 202 | plt.loglog(inv._data.x[:npts], inv._data.y[:npts], 'o', label='Original data', markersize=10) |
---|
| 203 | plt.loglog(inv._data.x[:npts], inv._low_extrapolation_function.evaluate_model(inv._data.x[:npts]), 'r', label='Fitted line') |
---|
| 204 | plt.legend() |
---|
| 205 | plt.show() |
---|
| 206 | |
---|
| 207 | self.assertEqual(qs_extr, _qstar+delta_qs_extr) |
---|
[6574940a] | 208 | self.assertAlmostEqual(dqs_extr, math.sqrt(dqstar*dqstar + delta_dqs_extr*delta_dqs_extr), 15) |
---|
[bdd162f] | 209 | |
---|
| 210 | # We don't expect the extrapolated invariant to be very far from the |
---|
| 211 | # result without extrapolation. Let's test for a result within 10%. |
---|
| 212 | self.assertTrue(math.fabs(qs_extr-qstar)/qstar<0.1) |
---|
| 213 | |
---|
| 214 | # Check that the two results are consistent within errors |
---|
| 215 | # Note that the error on the extrapolated value takes into account |
---|
| 216 | # a systematic error for the fact that we may not know the shape of I(q) at low Q. |
---|
| 217 | self.assertTrue(math.fabs(qs_extr-qstar)<dqs_extr) |
---|
| 218 | |
---|
| 219 | def test_qstar_high_q(self): |
---|
| 220 | """ |
---|
| 221 | Test high-q extrapolation |
---|
| 222 | """ |
---|
| 223 | inv = invariant.InvariantCalculator(self.data) |
---|
| 224 | |
---|
| 225 | # Basic sanity check |
---|
| 226 | _qstar = inv.get_qstar() |
---|
| 227 | qstar, dqstar = inv.get_qstar_with_error() |
---|
| 228 | self.assertEqual(qstar, _qstar) |
---|
| 229 | |
---|
| 230 | # High-Q Extrapolation |
---|
| 231 | # Check that the returned invariant is what we expect given |
---|
| 232 | # the result we got without extrapolation |
---|
| 233 | inv.set_extrapolation('high', npts=20, function='power_law') |
---|
| 234 | qs_extr, dqs_extr = inv.get_qstar_with_error('high') |
---|
| 235 | delta_qs_extr, delta_dqs_extr = inv.get_qstar_high() |
---|
| 236 | |
---|
| 237 | # From previous analysis using SansView, we expect an exponent of about 3 |
---|
| 238 | self.assertTrue(math.fabs(inv._high_extrapolation_function.power-3)<0.1) |
---|
| 239 | |
---|
| 240 | self.assertEqual(qs_extr, _qstar+delta_qs_extr) |
---|
| 241 | self.assertEqual(dqs_extr, math.sqrt(dqstar*dqstar + delta_dqs_extr*delta_dqs_extr)) |
---|
| 242 | |
---|
| 243 | # We don't expect the extrapolated invariant to be very far from the |
---|
| 244 | # result without extrapolation. Let's test for a result within 10%. |
---|
| 245 | #TODO: verify whether this test really makes sense |
---|
| 246 | #self.assertTrue(math.fabs(qs_extr-qstar)/qstar<0.1) |
---|
| 247 | |
---|
| 248 | # Check that the two results are consistent within errors |
---|
| 249 | self.assertTrue(math.fabs(qs_extr-qstar)<dqs_extr) |
---|
| 250 | |
---|
| 251 | def test_qstar_full_q(self): |
---|
| 252 | """ |
---|
| 253 | Test high-q extrapolation |
---|
| 254 | """ |
---|
| 255 | inv = invariant.InvariantCalculator(self.data) |
---|
| 256 | |
---|
| 257 | # Basic sanity check |
---|
| 258 | _qstar = inv.get_qstar() |
---|
| 259 | qstar, dqstar = inv.get_qstar_with_error() |
---|
| 260 | self.assertEqual(qstar, _qstar) |
---|
| 261 | |
---|
| 262 | # High-Q Extrapolation |
---|
| 263 | # Check that the returned invariant is what we expect given |
---|
| 264 | # the result we got without extrapolation |
---|
| 265 | inv.set_extrapolation('low', npts=10, function='guinier') |
---|
| 266 | inv.set_extrapolation('high', npts=20, function='power_law') |
---|
| 267 | qs_extr, dqs_extr = inv.get_qstar_with_error('both') |
---|
| 268 | delta_qs_low, delta_dqs_low = inv.get_qstar_low() |
---|
| 269 | delta_qs_hi, delta_dqs_hi = inv.get_qstar_high() |
---|
| 270 | |
---|
| 271 | self.assertAlmostEqual(qs_extr, _qstar+delta_qs_low+delta_qs_hi, 8) |
---|
| 272 | self.assertEqual(dqs_extr, math.sqrt(dqstar*dqstar + delta_dqs_low*delta_dqs_low \ |
---|
| 273 | + delta_dqs_hi*delta_dqs_hi)) |
---|
| 274 | |
---|
| 275 | # We don't expect the extrapolated invariant to be very far from the |
---|
| 276 | # result without extrapolation. Let's test for a result within 10%. |
---|
| 277 | #TODO: verify whether this test really makes sense |
---|
| 278 | #self.assertTrue(math.fabs(qs_extr-qstar)/qstar<0.1) |
---|
| 279 | |
---|
| 280 | # Check that the two results are consistent within errors |
---|
| 281 | self.assertTrue(math.fabs(qs_extr-qstar)<dqs_extr) |
---|
| 282 | |
---|
[c75a8ed] | 283 | def _check_values(to_check, reference, tolerance=0.05): |
---|
| 284 | self.assertTrue( math.fabs(to_check-reference)/reference < tolerance, msg="Tested value = "+str(to_check) ) |
---|
| 285 | |
---|
| 286 | # The following values should be replaced by values pulled from IGOR |
---|
| 287 | # Volume Fraction: |
---|
| 288 | v, dv = inv.get_volume_fraction_with_error(1, None) |
---|
| 289 | _check_values(v, 1.88737914186e-15) |
---|
| 290 | |
---|
| 291 | v_l, dv_l = inv.get_volume_fraction_with_error(1, 'low') |
---|
| 292 | _check_values(v_l, 1.94289029309e-15) |
---|
| 293 | |
---|
| 294 | v_h, dv_h = inv.get_volume_fraction_with_error(1, 'high') |
---|
| 295 | _check_values(v_h, 6.99440505514e-15) |
---|
| 296 | |
---|
| 297 | v_b, dv_b = inv.get_volume_fraction_with_error(1, 'both') |
---|
| 298 | _check_values(v_b, 6.99440505514e-15) |
---|
| 299 | |
---|
| 300 | # Specific Surface: |
---|
| 301 | s, ds = inv.get_surface_with_error(1, 1, None) |
---|
| 302 | _check_values(s, 3.1603095786e-09) |
---|
| 303 | |
---|
| 304 | s_l, ds_l = inv.get_surface_with_error(1, 1, 'low') |
---|
| 305 | _check_values(s_l, 3.1603095786e-09) |
---|
| 306 | |
---|
| 307 | s_h, ds_h = inv.get_surface_with_error(1, 1, 'high') |
---|
| 308 | _check_values(s_h, 3.1603095786e-09) |
---|
| 309 | |
---|
| 310 | s_b, ds_b = inv.get_surface_with_error(1, 1, 'both') |
---|
| 311 | _check_values(s_b, 3.1603095786e-09) |
---|
| 312 | |
---|
| 313 | |
---|
[bdd162f] | 314 | def test_bad_parameter_name(self): |
---|
| 315 | """ |
---|
| 316 | The set_extrapolation method checks that the name of the extrapolation |
---|
| 317 | function and the name of the q-range to extrapolate (high/low) is |
---|
| 318 | recognized. |
---|
| 319 | """ |
---|
| 320 | inv = invariant.InvariantCalculator(self.data) |
---|
| 321 | self.assertRaises(ValueError, inv.set_extrapolation, 'low', npts=4, function='not_a_name') |
---|
| 322 | self.assertRaises(ValueError, inv.set_extrapolation, 'not_a_range', npts=4, function='guinier') |
---|
| 323 | self.assertRaises(ValueError, inv.set_extrapolation, 'high', npts=4, function='guinier') |
---|
[46d50ca] | 324 | |
---|
[6939bd4] | 325 | |
---|
| 326 | class TestGuinierExtrapolation(unittest.TestCase): |
---|
| 327 | """ |
---|
| 328 | Generate a Guinier distribution and verify that the extrapolation |
---|
| 329 | produce the correct ditribution. |
---|
| 330 | """ |
---|
| 331 | |
---|
| 332 | def setUp(self): |
---|
| 333 | """ |
---|
| 334 | Generate a Guinier distribution. After extrapolating, we will |
---|
| 335 | verify that we obtain the scale and rg parameters |
---|
| 336 | """ |
---|
| 337 | self.scale = 1.5 |
---|
[aafa962] | 338 | self.rg = 30.0 |
---|
[6939bd4] | 339 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
| 340 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
| 341 | dy = y*.1 |
---|
| 342 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
| 343 | |
---|
| 344 | def test_low_q(self): |
---|
| 345 | """ |
---|
| 346 | Invariant with low-Q extrapolation |
---|
| 347 | """ |
---|
| 348 | # Create invariant object. Background and scale left as defaults. |
---|
| 349 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 350 | # Set the extrapolation parameters for the low-Q range |
---|
| 351 | inv.set_extrapolation(range='low', npts=20, function='guinier') |
---|
| 352 | |
---|
| 353 | self.assertEqual(inv._low_extrapolation_npts, 20) |
---|
[aafa962] | 354 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
[6939bd4] | 355 | |
---|
| 356 | # Data boundaries for fiiting |
---|
| 357 | qmin = inv._data.x[0] |
---|
| 358 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
| 359 | |
---|
| 360 | # Extrapolate the low-Q data |
---|
[bdd162f] | 361 | inv._fit(model=inv._low_extrapolation_function, |
---|
[6939bd4] | 362 | qmin=qmin, |
---|
| 363 | qmax=qmax, |
---|
| 364 | power=inv._low_extrapolation_power) |
---|
[bdd162f] | 365 | self.assertAlmostEqual(self.scale, inv._low_extrapolation_function.scale, 6) |
---|
| 366 | self.assertAlmostEqual(self.rg, inv._low_extrapolation_function.radius, 6) |
---|
[6939bd4] | 367 | |
---|
| 368 | |
---|
| 369 | class TestPowerLawExtrapolation(unittest.TestCase): |
---|
| 370 | """ |
---|
| 371 | Generate a power law distribution and verify that the extrapolation |
---|
| 372 | produce the correct ditribution. |
---|
| 373 | """ |
---|
| 374 | |
---|
| 375 | def setUp(self): |
---|
| 376 | """ |
---|
| 377 | Generate a power law distribution. After extrapolating, we will |
---|
| 378 | verify that we obtain the scale and m parameters |
---|
| 379 | """ |
---|
| 380 | self.scale = 1.5 |
---|
| 381 | self.m = 3.0 |
---|
| 382 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
| 383 | y = numpy.asarray([self.scale * math.pow(q ,-1.0*self.m) for q in x]) |
---|
| 384 | dy = y*.1 |
---|
| 385 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
| 386 | |
---|
| 387 | def test_low_q(self): |
---|
| 388 | """ |
---|
| 389 | Invariant with low-Q extrapolation |
---|
| 390 | """ |
---|
| 391 | # Create invariant object. Background and scale left as defaults. |
---|
| 392 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 393 | # Set the extrapolation parameters for the low-Q range |
---|
| 394 | inv.set_extrapolation(range='low', npts=20, function='power_law') |
---|
| 395 | |
---|
| 396 | self.assertEqual(inv._low_extrapolation_npts, 20) |
---|
[aafa962] | 397 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.PowerLaw) |
---|
[6939bd4] | 398 | |
---|
| 399 | # Data boundaries for fitting |
---|
| 400 | qmin = inv._data.x[0] |
---|
| 401 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
| 402 | |
---|
| 403 | # Extrapolate the low-Q data |
---|
[bdd162f] | 404 | inv._fit(model=inv._low_extrapolation_function, |
---|
[6939bd4] | 405 | qmin=qmin, |
---|
| 406 | qmax=qmax, |
---|
| 407 | power=inv._low_extrapolation_power) |
---|
| 408 | |
---|
[bdd162f] | 409 | self.assertAlmostEqual(self.scale, inv._low_extrapolation_function.scale, 6) |
---|
| 410 | self.assertAlmostEqual(self.m, inv._low_extrapolation_function.power, 6) |
---|
[aafa962] | 411 | |
---|
| 412 | class TestLinearization(unittest.TestCase): |
---|
| 413 | |
---|
| 414 | def test_guinier_incompatible_length(self): |
---|
| 415 | g = invariant.Guinier() |
---|
[76c1727] | 416 | data_in = Data1D(x=[1], y=[1,2], dy=None) |
---|
| 417 | self.assertRaises(AssertionError, g.linearize_data, data_in) |
---|
| 418 | data_in = Data1D(x=[1,1], y=[1,2], dy=[1]) |
---|
| 419 | self.assertRaises(AssertionError, g.linearize_data, data_in) |
---|
[aafa962] | 420 | |
---|
| 421 | def test_linearization(self): |
---|
| 422 | """ |
---|
| 423 | Check that the linearization process filters out points |
---|
| 424 | that can't be transformed |
---|
| 425 | """ |
---|
| 426 | x = numpy.asarray(numpy.asarray([0,1,2,3])) |
---|
| 427 | y = numpy.asarray(numpy.asarray([1,1,1,1])) |
---|
| 428 | g = invariant.Guinier() |
---|
[76c1727] | 429 | data_in = Data1D(x=x, y=y) |
---|
| 430 | data_out = g.linearize_data(data_in) |
---|
| 431 | x_out, y_out, dy_out = data_out.x, data_out.y, data_out.dy |
---|
[aafa962] | 432 | self.assertEqual(len(x_out), 3) |
---|
| 433 | self.assertEqual(len(y_out), 3) |
---|
| 434 | self.assertEqual(len(dy_out), 3) |
---|
[bdd162f] | 435 | |
---|
| 436 | def test_allowed_bins(self): |
---|
| 437 | x = numpy.asarray(numpy.asarray([0,1,2,3])) |
---|
| 438 | y = numpy.asarray(numpy.asarray([1,1,1,1])) |
---|
| 439 | dy = numpy.asarray(numpy.asarray([1,1,1,1])) |
---|
| 440 | g = invariant.Guinier() |
---|
| 441 | data = Data1D(x=x, y=y, dy=dy) |
---|
| 442 | self.assertEqual(g.get_allowed_bins(data), [False, True, True, True]) |
---|
| 443 | |
---|
| 444 | data = Data1D(x=y, y=x, dy=dy) |
---|
| 445 | self.assertEqual(g.get_allowed_bins(data), [False, True, True, True]) |
---|
[97603c0] | 446 | |
---|
[bdd162f] | 447 | data = Data1D(x=dy, y=y, dy=x) |
---|
| 448 | self.assertEqual(g.get_allowed_bins(data), [False, True, True, True]) |
---|
[97603c0] | 449 | |
---|
| 450 | class TestDataExtraLow(unittest.TestCase): |
---|
| 451 | """ |
---|
| 452 | Generate a Guinier distribution and verify that the extrapolation |
---|
| 453 | produce the correct ditribution. Tested if the data generated by the |
---|
| 454 | invariant calculator is correct |
---|
| 455 | """ |
---|
| 456 | |
---|
| 457 | def setUp(self): |
---|
| 458 | """ |
---|
| 459 | Generate a Guinier distribution. After extrapolating, we will |
---|
| 460 | verify that we obtain the scale and rg parameters |
---|
| 461 | """ |
---|
| 462 | self.scale = 1.5 |
---|
| 463 | self.rg = 30.0 |
---|
| 464 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
| 465 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
| 466 | dy = y*.1 |
---|
| 467 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
| 468 | |
---|
| 469 | def test_low_q(self): |
---|
| 470 | """ |
---|
| 471 | Invariant with low-Q extrapolation with no slit smear |
---|
| 472 | """ |
---|
| 473 | # Create invariant object. Background and scale left as defaults. |
---|
| 474 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 475 | # Set the extrapolation parameters for the low-Q range |
---|
[bdd162f] | 476 | inv.set_extrapolation(range='low', npts=10, function='guinier') |
---|
[97603c0] | 477 | |
---|
[bdd162f] | 478 | self.assertEqual(inv._low_extrapolation_npts, 10) |
---|
[97603c0] | 479 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
| 480 | |
---|
| 481 | # Data boundaries for fiiting |
---|
| 482 | qmin = inv._data.x[0] |
---|
| 483 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
| 484 | |
---|
| 485 | # Extrapolate the low-Q data |
---|
[bdd162f] | 486 | inv._fit(model=inv._low_extrapolation_function, |
---|
[97603c0] | 487 | qmin=qmin, |
---|
| 488 | qmax=qmax, |
---|
| 489 | power=inv._low_extrapolation_power) |
---|
[bdd162f] | 490 | self.assertAlmostEqual(self.scale, inv._low_extrapolation_function.scale, 6) |
---|
| 491 | self.assertAlmostEqual(self.rg, inv._low_extrapolation_function.radius, 6) |
---|
[97603c0] | 492 | |
---|
| 493 | qstar = inv.get_qstar(extrapolation='low') |
---|
| 494 | test_y = inv._low_extrapolation_function.evaluate_model(x=self.data.x) |
---|
| 495 | for i in range(len(self.data.x)): |
---|
[c75a8ed] | 496 | value = math.fabs(test_y[i]-self.data.y[i])/self.data.y[i] |
---|
[97603c0] | 497 | self.assert_(value < 0.001) |
---|
| 498 | |
---|
[76c1727] | 499 | class TestDataExtraLowSlitGuinier(unittest.TestCase): |
---|
| 500 | """ |
---|
| 501 | for a smear data, test that the fitting go through |
---|
[c75a8ed] | 502 | real data for atleast the 2 first points |
---|
[76c1727] | 503 | """ |
---|
| 504 | |
---|
| 505 | def setUp(self): |
---|
| 506 | """ |
---|
| 507 | Generate a Guinier distribution. After extrapolating, we will |
---|
| 508 | verify that we obtain the scale and rg parameters |
---|
| 509 | """ |
---|
| 510 | self.scale = 1.5 |
---|
| 511 | self.rg = 30.0 |
---|
| 512 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
| 513 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
| 514 | dy = y*.1 |
---|
| 515 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
| 516 | self.npts = len(x)-10 |
---|
| 517 | |
---|
| 518 | def test_low_q(self): |
---|
| 519 | """ |
---|
| 520 | Invariant with low-Q extrapolation with slit smear |
---|
| 521 | """ |
---|
| 522 | # Create invariant object. Background and scale left as defaults. |
---|
| 523 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 524 | # Set the extrapolation parameters for the low-Q range |
---|
| 525 | inv.set_extrapolation(range='low', npts=self.npts, function='guinier') |
---|
| 526 | |
---|
| 527 | self.assertEqual(inv._low_extrapolation_npts, self.npts) |
---|
[97603c0] | 528 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
| 529 | |
---|
| 530 | # Data boundaries for fiiting |
---|
| 531 | qmin = inv._data.x[0] |
---|
| 532 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
| 533 | |
---|
| 534 | # Extrapolate the low-Q data |
---|
[bdd162f] | 535 | inv._fit(model=inv._low_extrapolation_function, |
---|
[97603c0] | 536 | qmin=qmin, |
---|
| 537 | qmax=qmax, |
---|
| 538 | power=inv._low_extrapolation_power) |
---|
| 539 | |
---|
| 540 | |
---|
| 541 | qstar = inv.get_qstar(extrapolation='low') |
---|
[c75a8ed] | 542 | |
---|
[76c1727] | 543 | test_y = inv._low_extrapolation_function.evaluate_model(x=self.data.x[:inv._low_extrapolation_npts]) |
---|
[c75a8ed] | 544 | self.assert_(len(test_y) == len(self.data.y[:inv._low_extrapolation_npts])) |
---|
[97603c0] | 545 | |
---|
[76c1727] | 546 | for i in range(inv._low_extrapolation_npts): |
---|
[c75a8ed] | 547 | value = math.fabs(test_y[i]-self.data.y[i])/self.data.y[i] |
---|
[97603c0] | 548 | self.assert_(value < 0.001) |
---|
| 549 | |
---|
[76c1727] | 550 | def test_low_data(self): |
---|
| 551 | """ |
---|
| 552 | Invariant with low-Q extrapolation with slit smear |
---|
| 553 | """ |
---|
| 554 | # Create invariant object. Background and scale left as defaults. |
---|
| 555 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 556 | # Set the extrapolation parameters for the low-Q range |
---|
| 557 | inv.set_extrapolation(range='low', npts=self.npts, function='guinier') |
---|
| 558 | |
---|
| 559 | self.assertEqual(inv._low_extrapolation_npts, self.npts) |
---|
| 560 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
| 561 | |
---|
| 562 | # Data boundaries for fiiting |
---|
| 563 | qmin = inv._data.x[0] |
---|
| 564 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
| 565 | |
---|
| 566 | # Extrapolate the low-Q data |
---|
[bdd162f] | 567 | inv._fit(model=inv._low_extrapolation_function, |
---|
[76c1727] | 568 | qmin=qmin, |
---|
| 569 | qmax=qmax, |
---|
| 570 | power=inv._low_extrapolation_power) |
---|
| 571 | |
---|
| 572 | |
---|
| 573 | qstar = inv.get_qstar(extrapolation='low') |
---|
| 574 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
| 575 | #low data . expect the fit engine to have been already called and the guinier |
---|
| 576 | # to have the radius and the scale fitted |
---|
[c75a8ed] | 577 | data_in_range = inv.get_extra_data_low(q_start=self.data.x[0], |
---|
| 578 | npts = inv._low_extrapolation_npts) |
---|
[76c1727] | 579 | test_y = data_in_range.y |
---|
[c75a8ed] | 580 | self.assert_(len(test_y) == len(self.data.y[:inv._low_extrapolation_npts])) |
---|
[76c1727] | 581 | for i in range(inv._low_extrapolation_npts): |
---|
[c75a8ed] | 582 | value = math.fabs(test_y[i]-self.data.y[i])/self.data.y[i] |
---|
[76c1727] | 583 | self.assert_(value < 0.001) |
---|
[c75a8ed] | 584 | |
---|
[97603c0] | 585 | |
---|
[76c1727] | 586 | class TestDataExtraHighSlitPowerLaw(unittest.TestCase): |
---|
| 587 | """ |
---|
| 588 | for a smear data, test that the fitting go through |
---|
[c75a8ed] | 589 | real data for atleast the 2 first points |
---|
[76c1727] | 590 | """ |
---|
| 591 | |
---|
| 592 | def setUp(self): |
---|
| 593 | """ |
---|
| 594 | Generate a Guinier distribution. After extrapolating, we will |
---|
| 595 | verify that we obtain the scale and rg parameters |
---|
| 596 | """ |
---|
| 597 | self.scale = 1.5 |
---|
| 598 | self.m = 3.0 |
---|
| 599 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
| 600 | y = numpy.asarray([self.scale * math.pow(q ,-1.0*self.m) for q in x]) |
---|
| 601 | dy = y*.1 |
---|
| 602 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
| 603 | self.npts = 20 |
---|
| 604 | |
---|
| 605 | def test_high_q(self): |
---|
| 606 | """ |
---|
| 607 | Invariant with high-Q extrapolation with slit smear |
---|
| 608 | """ |
---|
| 609 | # Create invariant object. Background and scale left as defaults. |
---|
| 610 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 611 | # Set the extrapolation parameters for the low-Q range |
---|
| 612 | inv.set_extrapolation(range='high', npts=self.npts, function='power_law') |
---|
| 613 | |
---|
| 614 | self.assertEqual(inv._high_extrapolation_npts, self.npts) |
---|
| 615 | self.assertEqual(inv._high_extrapolation_function.__class__, invariant.PowerLaw) |
---|
| 616 | |
---|
| 617 | # Data boundaries for fiiting |
---|
| 618 | xlen = len(self.data.x) |
---|
| 619 | start = xlen - inv._high_extrapolation_npts |
---|
| 620 | qmin = inv._data.x[start] |
---|
| 621 | qmax = inv._data.x[xlen-1] |
---|
| 622 | |
---|
| 623 | # Extrapolate the high-Q data |
---|
[bdd162f] | 624 | inv._fit(model=inv._high_extrapolation_function, |
---|
[76c1727] | 625 | qmin=qmin, |
---|
| 626 | qmax=qmax, |
---|
| 627 | power=inv._high_extrapolation_power) |
---|
| 628 | |
---|
| 629 | |
---|
| 630 | qstar = inv.get_qstar(extrapolation='high') |
---|
| 631 | |
---|
| 632 | test_y = inv._high_extrapolation_function.evaluate_model(x=self.data.x[start: ]) |
---|
[c75a8ed] | 633 | self.assert_(len(test_y) == len(self.data.y[start:])) |
---|
[76c1727] | 634 | |
---|
| 635 | for i in range(len(self.data.x[start:])): |
---|
[c75a8ed] | 636 | value = math.fabs(test_y[i]-self.data.y[start+i])/self.data.y[start+i] |
---|
[76c1727] | 637 | self.assert_(value < 0.001) |
---|
| 638 | |
---|
| 639 | def test_high_data(self): |
---|
| 640 | """ |
---|
| 641 | Invariant with low-Q extrapolation with slit smear |
---|
| 642 | """ |
---|
| 643 | # Create invariant object. Background and scale left as defaults. |
---|
| 644 | inv = invariant.InvariantCalculator(data=self.data) |
---|
| 645 | # Set the extrapolation parameters for the low-Q range |
---|
| 646 | inv.set_extrapolation(range='high', npts=self.npts, function='power_law') |
---|
| 647 | |
---|
| 648 | self.assertEqual(inv._high_extrapolation_npts, self.npts) |
---|
| 649 | self.assertEqual(inv._high_extrapolation_function.__class__, invariant.PowerLaw) |
---|
| 650 | |
---|
| 651 | # Data boundaries for fiiting |
---|
| 652 | xlen = len(self.data.x) |
---|
| 653 | start = xlen - inv._high_extrapolation_npts |
---|
| 654 | qmin = inv._data.x[start] |
---|
| 655 | qmax = inv._data.x[xlen-1] |
---|
| 656 | |
---|
| 657 | # Extrapolate the high-Q data |
---|
[bdd162f] | 658 | inv._fit(model=inv._high_extrapolation_function, |
---|
[76c1727] | 659 | qmin=qmin, |
---|
| 660 | qmax=qmax, |
---|
| 661 | power=inv._high_extrapolation_power) |
---|
| 662 | |
---|
| 663 | qstar = inv.get_qstar(extrapolation='high') |
---|
| 664 | |
---|
[c75a8ed] | 665 | data_in_range= inv.get_extra_data_high(q_end = max(self.data.x), |
---|
| 666 | npts = inv._high_extrapolation_npts) |
---|
[76c1727] | 667 | test_y = data_in_range.y |
---|
[c75a8ed] | 668 | self.assert_(len(test_y) == len(self.data.y[start:])) |
---|
| 669 | temp = self.data.y[start:] |
---|
[76c1727] | 670 | |
---|
| 671 | for i in range(len(self.data.x[start:])): |
---|
| 672 | value = math.fabs(test_y[i]- temp[i])/temp[i] |
---|
[c75a8ed] | 673 | self.assert_(value < 0.001) |
---|
[76c1727] | 674 | |
---|