[0997158f] | 1 | |
---|
| 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2008, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
| 9 | |
---|
[76e2369] | 10 | """ |
---|
[a7a5886] | 11 | Data manipulations for 2D data sets. |
---|
| 12 | Using the meta data information, various types of averaging |
---|
| 13 | are performed in Q-space |
---|
[76e2369] | 14 | """ |
---|
| 15 | #TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
| 16 | import math |
---|
| 17 | import numpy |
---|
| 18 | |
---|
[a7a5886] | 19 | #from data_info import plottable_2D |
---|
| 20 | from data_info import Data1D |
---|
| 21 | |
---|
| 22 | |
---|
[76e2369] | 23 | def get_q(dx, dy, det_dist, wavelength): |
---|
| 24 | """ |
---|
[0997158f] | 25 | :param dx: x-distance from beam center [mm] |
---|
| 26 | :param dy: y-distance from beam center [mm] |
---|
| 27 | |
---|
| 28 | :return: q-value at the given position |
---|
[76e2369] | 29 | """ |
---|
| 30 | # Distance from beam center in the plane of detector |
---|
| 31 | plane_dist = math.sqrt(dx*dx + dy*dy) |
---|
| 32 | # Half of the scattering angle |
---|
[a7a5886] | 33 | theta = 0.5 * math.atan(plane_dist/det_dist) |
---|
| 34 | return (4.0 * math.pi/wavelength) * math.sin(theta) |
---|
[acb37d9] | 35 | |
---|
[a7a5886] | 36 | def get_q_compo(dx, dy, det_dist, wavelength, compo=None): |
---|
[0997158f] | 37 | """ |
---|
| 38 | This reduces tiny error at very large q. |
---|
| 39 | Implementation of this func is not started yet.<--ToDo |
---|
| 40 | """ |
---|
[a7a5886] | 41 | if dy == 0: |
---|
| 42 | if dx >= 0: |
---|
| 43 | angle_xy = 0 |
---|
[acb37d9] | 44 | else: |
---|
[a7a5886] | 45 | angle_xy = math.pi |
---|
[acb37d9] | 46 | else: |
---|
[a7a5886] | 47 | angle_xy = math.atan(dx/dy) |
---|
[acb37d9] | 48 | |
---|
[a7a5886] | 49 | if compo == "x": |
---|
| 50 | out = get_q(dx, dy, det_dist, wavelength) * math.cos(angle_xy) |
---|
| 51 | elif compo == "y": |
---|
| 52 | out = get_q(dx, dy, det_dist, wavelength) * math.sin(angle_xy) |
---|
[acb37d9] | 53 | else: |
---|
[a7a5886] | 54 | out = get_q(dx, dy, det_dist, wavelength) |
---|
[acb37d9] | 55 | return out |
---|
[095ab1b] | 56 | |
---|
| 57 | def flip_phi(phi): |
---|
| 58 | """ |
---|
[0997158f] | 59 | Correct phi to within the 0 <= to <= 2pi range |
---|
| 60 | |
---|
| 61 | :return: phi in >=0 and <=2Pi |
---|
[095ab1b] | 62 | """ |
---|
| 63 | Pi = math.pi |
---|
| 64 | if phi < 0: |
---|
[a7a5886] | 65 | phi_out = phi + (2 * Pi) |
---|
| 66 | elif phi > (2 * Pi): |
---|
| 67 | phi_out = phi - (2 * Pi) |
---|
[095ab1b] | 68 | else: |
---|
| 69 | phi_out = phi |
---|
| 70 | return phi_out |
---|
| 71 | |
---|
| 72 | def reader2D_converter(data2d=None): |
---|
| 73 | """ |
---|
[a7a5886] | 74 | convert old 2d format opened by IhorReader or danse_reader |
---|
| 75 | to new Data2D format |
---|
[0997158f] | 76 | |
---|
| 77 | :param data2d: 2d array of Data2D object |
---|
| 78 | |
---|
| 79 | :return: 1d arrays of Data2D object |
---|
| 80 | |
---|
[095ab1b] | 81 | """ |
---|
[a7a5886] | 82 | if data2d.data == None or data2d.x_bins == None or data2d.y_bins == None: |
---|
| 83 | raise ValueError, "Can't convert this data: data=None..." |
---|
[76e2369] | 84 | |
---|
[47045e6] | 85 | from sans.dataloader.data_info import Data2D |
---|
[095ab1b] | 86 | |
---|
[a7a5886] | 87 | new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins), 1)) |
---|
| 88 | new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins), 1)) |
---|
| 89 | new_y = new_y.swapaxes(0, 1) |
---|
[095ab1b] | 90 | |
---|
| 91 | new_data = data2d.data.flatten() |
---|
| 92 | qx_data = new_x.flatten() |
---|
| 93 | qy_data = new_y.flatten() |
---|
[a7a5886] | 94 | q_data = numpy.sqrt(qx_data*qx_data + qy_data*qy_data) |
---|
| 95 | if data2d.err_data == None or numpy.any(data2d.err_data <= 0): |
---|
[f265927] | 96 | new_err_data = numpy.sqrt(numpy.abs(new_data)) |
---|
[dde2d44] | 97 | else: |
---|
| 98 | new_err_data = data2d.err_data.flatten() |
---|
[a7a5886] | 99 | mask = numpy.ones(len(new_data), dtype=bool) |
---|
[095ab1b] | 100 | |
---|
| 101 | output = Data2D() |
---|
| 102 | output = data2d |
---|
| 103 | output.data = new_data |
---|
| 104 | output.err_data = new_err_data |
---|
| 105 | output.qx_data = qx_data |
---|
| 106 | output.qy_data = qy_data |
---|
| 107 | output.q_data = q_data |
---|
| 108 | output.mask = mask |
---|
| 109 | |
---|
| 110 | return output |
---|
| 111 | |
---|
[70975f3] | 112 | class _Slab(object): |
---|
| 113 | """ |
---|
[0997158f] | 114 | Compute average I(Q) for a region of interest |
---|
[70975f3] | 115 | """ |
---|
[a7a5886] | 116 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, |
---|
| 117 | y_max=0.0, bin_width=0.001): |
---|
[70975f3] | 118 | # Minimum Qx value [A-1] |
---|
| 119 | self.x_min = x_min |
---|
| 120 | # Maximum Qx value [A-1] |
---|
| 121 | self.x_max = x_max |
---|
| 122 | # Minimum Qy value [A-1] |
---|
| 123 | self.y_min = y_min |
---|
| 124 | # Maximum Qy value [A-1] |
---|
| 125 | self.y_max = y_max |
---|
| 126 | # Bin width (step size) [A-1] |
---|
| 127 | self.bin_width = bin_width |
---|
[a7a5886] | 128 | # If True, I(|Q|) will be return, otherwise, |
---|
| 129 | # negative q-values are allowed |
---|
[70975f3] | 130 | self.fold = False |
---|
| 131 | |
---|
[a7a5886] | 132 | def __call__(self, data2D): |
---|
| 133 | return NotImplemented |
---|
[70975f3] | 134 | |
---|
| 135 | def _avg(self, data2D, maj): |
---|
| 136 | """ |
---|
[0997158f] | 137 | Compute average I(Q_maj) for a region of interest. |
---|
| 138 | The major axis is defined as the axis of Q_maj. |
---|
| 139 | The minor axis is the axis that we average over. |
---|
| 140 | |
---|
| 141 | :param data2D: Data2D object |
---|
| 142 | :param maj_min: min value on the major axis |
---|
| 143 | |
---|
| 144 | :return: Data1D object |
---|
[70975f3] | 145 | """ |
---|
| 146 | if len(data2D.detector) != 1: |
---|
[a7a5886] | 147 | msg = "_Slab._avg: invalid number of " |
---|
| 148 | msg += " detectors: %g" % len(data2D.detector) |
---|
| 149 | raise RuntimeError, msg |
---|
[70975f3] | 150 | |
---|
[095ab1b] | 151 | # Get data |
---|
[c6f95bb] | 152 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 153 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 154 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 155 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 156 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 157 | |
---|
[70975f3] | 158 | # Build array of Q intervals |
---|
[a7a5886] | 159 | if maj == 'x': |
---|
| 160 | if self.fold: |
---|
| 161 | x_min = 0 |
---|
[095ab1b] | 162 | else: x_min = self.x_min |
---|
[a7a5886] | 163 | nbins = int(math.ceil((self.x_max - x_min)/self.bin_width)) |
---|
| 164 | qbins = self.bin_width * numpy.arange(nbins) + x_min |
---|
| 165 | elif maj == 'y': |
---|
[095ab1b] | 166 | if self.fold: y_min = 0 |
---|
| 167 | else: y_min = self.y_min |
---|
[a7a5886] | 168 | nbins = int(math.ceil((self.y_max - y_min)/self.bin_width)) |
---|
| 169 | qbins = self.bin_width * numpy.arange(nbins) + y_min |
---|
[70975f3] | 170 | else: |
---|
| 171 | raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj) |
---|
| 172 | |
---|
| 173 | x = numpy.zeros(nbins) |
---|
| 174 | y = numpy.zeros(nbins) |
---|
| 175 | err_y = numpy.zeros(nbins) |
---|
| 176 | y_counts = numpy.zeros(nbins) |
---|
| 177 | |
---|
[095ab1b] | 178 | # Average pixelsize in q space |
---|
| 179 | for npts in range(len(data)): |
---|
| 180 | # default frac |
---|
| 181 | frac_x = 0 |
---|
| 182 | frac_y = 0 |
---|
| 183 | # get ROI |
---|
| 184 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
| 185 | frac_x = 1 |
---|
| 186 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
| 187 | frac_y = 1 |
---|
| 188 | frac = frac_x * frac_y |
---|
| 189 | |
---|
[a7a5886] | 190 | if frac == 0: |
---|
| 191 | continue |
---|
[095ab1b] | 192 | # binning: find axis of q |
---|
[a7a5886] | 193 | if maj == 'x': |
---|
[095ab1b] | 194 | q_value = qx_data[npts] |
---|
| 195 | min = x_min |
---|
[a7a5886] | 196 | if maj == 'y': |
---|
[095ab1b] | 197 | q_value = qy_data[npts] |
---|
| 198 | min = y_min |
---|
[a7a5886] | 199 | if self.fold and q_value < 0: |
---|
| 200 | q_value = -q_value |
---|
[095ab1b] | 201 | # bin |
---|
[a7a5886] | 202 | i_q = int(math.ceil((q_value - min)/self.bin_width)) - 1 |
---|
[095ab1b] | 203 | |
---|
| 204 | # skip outside of max bins |
---|
[a7a5886] | 205 | if i_q < 0 or i_q >= nbins: |
---|
| 206 | continue |
---|
[095ab1b] | 207 | |
---|
| 208 | # give it full weight |
---|
| 209 | #frac = 1 |
---|
| 210 | |
---|
| 211 | #TODO: find better definition of x[i_q] based on q_data |
---|
[729bcf6] | 212 | x[i_q] += frac * q_value#min + (i_q + 1) * self.bin_width / 2.0 |
---|
[a7a5886] | 213 | y[i_q] += frac * data[npts] |
---|
[095ab1b] | 214 | |
---|
[a7a5886] | 215 | if err_data == None or err_data[npts] == 0.0: |
---|
| 216 | if data[npts] < 0: data[npts] = -data[npts] |
---|
[c6f95bb] | 217 | err_y[i_q] += frac * frac * data[npts] |
---|
[095ab1b] | 218 | else: |
---|
| 219 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
| 220 | y_counts[i_q] += frac |
---|
[8ba103f] | 221 | |
---|
[095ab1b] | 222 | # Average the sums |
---|
| 223 | for n in range(nbins): |
---|
| 224 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 225 | |
---|
[a7a5886] | 226 | err_y = err_y / y_counts |
---|
| 227 | y = y / y_counts |
---|
[729bcf6] | 228 | x = x / y_counts |
---|
[a7a5886] | 229 | idx = (numpy.isfinite(y) & numpy.isfinite(x)) |
---|
[095ab1b] | 230 | |
---|
| 231 | if not idx.any(): |
---|
[a7a5886] | 232 | msg = "Average Error: No points inside ROI to average..." |
---|
| 233 | raise ValueError, msg |
---|
| 234 | #elif len(y[idx])!= nbins: |
---|
| 235 | # msg = "empty bin(s) due to tight binning..." |
---|
| 236 | # print "resulted",nbins- len(y[idx]), msg |
---|
[095ab1b] | 237 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
[70975f3] | 238 | |
---|
| 239 | class SlabY(_Slab): |
---|
| 240 | """ |
---|
[0997158f] | 241 | Compute average I(Qy) for a region of interest |
---|
[70975f3] | 242 | """ |
---|
| 243 | def __call__(self, data2D): |
---|
| 244 | """ |
---|
[0997158f] | 245 | Compute average I(Qy) for a region of interest |
---|
| 246 | |
---|
| 247 | :param data2D: Data2D object |
---|
| 248 | |
---|
| 249 | :return: Data1D object |
---|
[70975f3] | 250 | """ |
---|
| 251 | return self._avg(data2D, 'y') |
---|
| 252 | |
---|
| 253 | class SlabX(_Slab): |
---|
| 254 | """ |
---|
[0997158f] | 255 | Compute average I(Qx) for a region of interest |
---|
[70975f3] | 256 | """ |
---|
| 257 | def __call__(self, data2D): |
---|
| 258 | """ |
---|
[0997158f] | 259 | Compute average I(Qx) for a region of interest |
---|
| 260 | |
---|
| 261 | :param data2D: Data2D object |
---|
| 262 | |
---|
| 263 | :return: Data1D object |
---|
| 264 | |
---|
[70975f3] | 265 | """ |
---|
| 266 | return self._avg(data2D, 'x') |
---|
[f8d0ee7] | 267 | |
---|
| 268 | class Boxsum(object): |
---|
| 269 | """ |
---|
[0997158f] | 270 | Perform the sum of counts in a 2D region of interest. |
---|
[f8d0ee7] | 271 | """ |
---|
| 272 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 273 | # Minimum Qx value [A-1] |
---|
| 274 | self.x_min = x_min |
---|
| 275 | # Maximum Qx value [A-1] |
---|
| 276 | self.x_max = x_max |
---|
| 277 | # Minimum Qy value [A-1] |
---|
| 278 | self.y_min = y_min |
---|
| 279 | # Maximum Qy value [A-1] |
---|
| 280 | self.y_max = y_max |
---|
| 281 | |
---|
| 282 | def __call__(self, data2D): |
---|
| 283 | """ |
---|
[0997158f] | 284 | Perform the sum in the region of interest |
---|
| 285 | |
---|
| 286 | :param data2D: Data2D object |
---|
| 287 | |
---|
| 288 | :return: number of counts, error on number of counts |
---|
| 289 | |
---|
[f8d0ee7] | 290 | """ |
---|
| 291 | y, err_y, y_counts = self._sum(data2D) |
---|
| 292 | |
---|
| 293 | # Average the sums |
---|
[a7a5886] | 294 | counts = 0 if y_counts == 0 else y |
---|
| 295 | error = 0 if y_counts == 0 else math.sqrt(err_y) |
---|
[f8d0ee7] | 296 | |
---|
| 297 | return counts, error |
---|
| 298 | |
---|
| 299 | def _sum(self, data2D): |
---|
| 300 | """ |
---|
[0997158f] | 301 | Perform the sum in the region of interest |
---|
| 302 | |
---|
| 303 | :param data2D: Data2D object |
---|
| 304 | |
---|
[a7a5886] | 305 | :return: number of counts, |
---|
| 306 | error on number of counts, number of entries summed |
---|
[0997158f] | 307 | |
---|
[f8d0ee7] | 308 | """ |
---|
| 309 | if len(data2D.detector) != 1: |
---|
[a7a5886] | 310 | msg = "Circular averaging: invalid number " |
---|
| 311 | msg += "of detectors: %g" % len(data2D.detector) |
---|
| 312 | raise RuntimeError, msg |
---|
[095ab1b] | 313 | # Get data |
---|
[c6f95bb] | 314 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 315 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 316 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 317 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 318 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 319 | |
---|
[f8d0ee7] | 320 | y = 0.0 |
---|
| 321 | err_y = 0.0 |
---|
| 322 | y_counts = 0.0 |
---|
| 323 | |
---|
[095ab1b] | 324 | # Average pixelsize in q space |
---|
| 325 | for npts in range(len(data)): |
---|
| 326 | # default frac |
---|
| 327 | frac_x = 0 |
---|
| 328 | frac_y = 0 |
---|
| 329 | |
---|
| 330 | # get min and max at each points |
---|
| 331 | qx = qx_data[npts] |
---|
| 332 | qy = qy_data[npts] |
---|
| 333 | |
---|
| 334 | # get the ROI |
---|
| 335 | if self.x_min <= qx and self.x_max > qx: |
---|
| 336 | frac_x = 1 |
---|
| 337 | if self.y_min <= qy and self.y_max > qy: |
---|
| 338 | frac_y = 1 |
---|
| 339 | #Find the fraction along each directions |
---|
| 340 | frac = frac_x * frac_y |
---|
[a7a5886] | 341 | if frac == 0: |
---|
| 342 | continue |
---|
[095ab1b] | 343 | y += frac * data[npts] |
---|
[a7a5886] | 344 | if err_data == None or err_data[npts] == 0.0: |
---|
| 345 | if data[npts] < 0: |
---|
| 346 | data[npts] = -data[npts] |
---|
[c6f95bb] | 347 | err_y += frac * frac * data[npts] |
---|
[095ab1b] | 348 | else: |
---|
| 349 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
[a7a5886] | 350 | y_counts += frac |
---|
[f8d0ee7] | 351 | return y, err_y, y_counts |
---|
[095ab1b] | 352 | |
---|
| 353 | |
---|
[f8d0ee7] | 354 | |
---|
| 355 | class Boxavg(Boxsum): |
---|
| 356 | """ |
---|
[0997158f] | 357 | Perform the average of counts in a 2D region of interest. |
---|
[f8d0ee7] | 358 | """ |
---|
| 359 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
[a7a5886] | 360 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, |
---|
| 361 | y_min=y_min, y_max=y_max) |
---|
[f8d0ee7] | 362 | |
---|
| 363 | def __call__(self, data2D): |
---|
| 364 | """ |
---|
[0997158f] | 365 | Perform the sum in the region of interest |
---|
| 366 | |
---|
| 367 | :param data2D: Data2D object |
---|
| 368 | |
---|
| 369 | :return: average counts, error on average counts |
---|
| 370 | |
---|
[f8d0ee7] | 371 | """ |
---|
| 372 | y, err_y, y_counts = self._sum(data2D) |
---|
| 373 | |
---|
| 374 | # Average the sums |
---|
[a7a5886] | 375 | counts = 0 if y_counts == 0 else y/y_counts |
---|
| 376 | error = 0 if y_counts == 0 else math.sqrt(err_y)/y_counts |
---|
[f8d0ee7] | 377 | |
---|
| 378 | return counts, error |
---|
| 379 | |
---|
| 380 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
| 381 | """ |
---|
[0997158f] | 382 | Return the fraction of the length |
---|
| 383 | from xmin to x.:: |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | A B |
---|
| 387 | +-----------+---------+ |
---|
| 388 | xmin x xmax |
---|
| 389 | |
---|
| 390 | :param x: x-value |
---|
| 391 | :param xmin: minimum x for the length considered |
---|
| 392 | :param xmax: minimum x for the length considered |
---|
| 393 | |
---|
| 394 | :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
| 395 | |
---|
[f8d0ee7] | 396 | """ |
---|
[a7a5886] | 397 | if x <= xmin: |
---|
[f8d0ee7] | 398 | return 0.0 |
---|
[a7a5886] | 399 | if x > xmin and x < xmax: |
---|
| 400 | return (x - xmin) / (xmax - xmin) |
---|
[f8d0ee7] | 401 | else: |
---|
| 402 | return 1.0 |
---|
| 403 | |
---|
[76e2369] | 404 | |
---|
| 405 | class CircularAverage(object): |
---|
| 406 | """ |
---|
[0997158f] | 407 | Perform circular averaging on 2D data |
---|
| 408 | |
---|
| 409 | The data returned is the distribution of counts |
---|
| 410 | as a function of Q |
---|
[76e2369] | 411 | """ |
---|
[095ab1b] | 412 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
[76e2369] | 413 | # Minimum radius included in the average [A-1] |
---|
| 414 | self.r_min = r_min |
---|
| 415 | # Maximum radius included in the average [A-1] |
---|
| 416 | self.r_max = r_max |
---|
| 417 | # Bin width (step size) [A-1] |
---|
| 418 | self.bin_width = bin_width |
---|
| 419 | |
---|
[8f12385] | 420 | def __call__(self, data2D, ismask=False): |
---|
[76e2369] | 421 | """ |
---|
[0997158f] | 422 | Perform circular averaging on the data |
---|
| 423 | |
---|
| 424 | :param data2D: Data2D object |
---|
| 425 | |
---|
| 426 | :return: Data1D object |
---|
[76e2369] | 427 | """ |
---|
[729bcf6] | 428 | # Get data W/ finite values |
---|
[c6f95bb] | 429 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 430 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
[729bcf6] | 431 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
[c6f95bb] | 432 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
[8f12385] | 433 | mask_data = data2D.mask[numpy.isfinite(data2D.data)] |
---|
[729bcf6] | 434 | |
---|
[342a506] | 435 | dq_data = None |
---|
[729bcf6] | 436 | |
---|
| 437 | # Get the dq for resolution averaging |
---|
[342a506] | 438 | if data2D.dqx_data != None and data2D.dqy_data != None: |
---|
[729bcf6] | 439 | # The pinholes and det. pix contribution present |
---|
| 440 | # in both direction of the 2D which must be subtracted when |
---|
| 441 | # converting to 1D: dq_overlap should calculated ideally at |
---|
| 442 | # q = 0. Note This method works on only pinhole geometry. |
---|
| 443 | # Extrapolate dqx(r) and dqy(phi) at q = 0, and take an average. |
---|
| 444 | z_max = max(data2D.q_data) |
---|
| 445 | z_min = min(data2D.q_data) |
---|
| 446 | x_max = data2D.dqx_data[data2D.q_data[z_max]] |
---|
| 447 | x_min = data2D.dqx_data[data2D.q_data[z_min]] |
---|
| 448 | y_max = data2D.dqy_data[data2D.q_data[z_max]] |
---|
| 449 | y_min = data2D.dqy_data[data2D.q_data[z_min]] |
---|
| 450 | # Find qdx at q = 0 |
---|
| 451 | dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) |
---|
| 452 | # when extrapolation goes wrong |
---|
| 453 | if dq_overlap_x > min(data2D.dqx_data): |
---|
| 454 | dq_overlap_x = min(data2D.dqx_data) |
---|
| 455 | dq_overlap_x *= dq_overlap_x |
---|
| 456 | # Find qdx at q = 0 |
---|
| 457 | dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) |
---|
| 458 | # when extrapolation goes wrong |
---|
| 459 | if dq_overlap_y > min(data2D.dqy_data): |
---|
| 460 | dq_overlap_y = min(data2D.dqy_data) |
---|
| 461 | # get dq at q=0. |
---|
| 462 | dq_overlap_y *= dq_overlap_y |
---|
| 463 | |
---|
| 464 | dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y)/2.0) |
---|
| 465 | # Final protection of dq |
---|
| 466 | if dq_overlap < 0: |
---|
| 467 | dq_overlap = y_min |
---|
| 468 | dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] |
---|
| 469 | dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap |
---|
| 470 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
| 471 | # Convert dq 2D to 1D here |
---|
| 472 | dqx = dqx_data * dqx_data |
---|
| 473 | dqy = dqy_data * dqy_data |
---|
| 474 | dq_data = numpy.add(dqx, dqy) |
---|
[342a506] | 475 | dq_data = numpy.sqrt(dq_data) |
---|
| 476 | |
---|
[729bcf6] | 477 | #q_data_max = numpy.max(q_data) |
---|
[095ab1b] | 478 | if len(data2D.q_data) == None: |
---|
[a7a5886] | 479 | msg = "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
| 480 | raise RuntimeError, msg |
---|
[095ab1b] | 481 | |
---|
[76e2369] | 482 | # Build array of Q intervals |
---|
[a7a5886] | 483 | nbins = int(math.ceil((self.r_max - self.r_min) / self.bin_width)) |
---|
| 484 | qbins = self.bin_width * numpy.arange(nbins) + self.r_min |
---|
[095ab1b] | 485 | |
---|
[76e2369] | 486 | x = numpy.zeros(nbins) |
---|
| 487 | y = numpy.zeros(nbins) |
---|
| 488 | err_y = numpy.zeros(nbins) |
---|
[342a506] | 489 | err_x = numpy.zeros(nbins) |
---|
[76e2369] | 490 | y_counts = numpy.zeros(nbins) |
---|
[095ab1b] | 491 | |
---|
[8f12385] | 492 | for npt in range(len(data)): |
---|
| 493 | |
---|
| 494 | if ismask and not mask_data[npt]: |
---|
| 495 | continue |
---|
| 496 | |
---|
[095ab1b] | 497 | frac = 0 |
---|
[76e2369] | 498 | |
---|
[095ab1b] | 499 | # q-value at the pixel (j,i) |
---|
[a7a5886] | 500 | q_value = q_data[npt] |
---|
[095ab1b] | 501 | data_n = data[npt] |
---|
[3c67340] | 502 | |
---|
[095ab1b] | 503 | ## No need to calculate the frac when all data are within range |
---|
| 504 | if self.r_min >= self.r_max: |
---|
[a7a5886] | 505 | raise ValueError, "Limit Error: min > max" |
---|
[76e2369] | 506 | |
---|
[a7a5886] | 507 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 508 | frac = 1 |
---|
| 509 | if frac == 0: |
---|
| 510 | continue |
---|
| 511 | i_q = int(math.floor((q_value - self.r_min) / self.bin_width)) |
---|
[095ab1b] | 512 | |
---|
| 513 | # Take care of the edge case at phi = 2pi. |
---|
| 514 | if i_q == nbins: |
---|
[a7a5886] | 515 | i_q = nbins -1 |
---|
[095ab1b] | 516 | y[i_q] += frac * data_n |
---|
[729bcf6] | 517 | # Take dqs from data to get the q_average |
---|
| 518 | x[i_q] += frac * q_value |
---|
[a7a5886] | 519 | if err_data == None or err_data[npt] == 0.0: |
---|
| 520 | if data_n < 0: |
---|
| 521 | data_n = -data_n |
---|
[c6f95bb] | 522 | err_y[i_q] += frac * frac * data_n |
---|
[8ba103f] | 523 | else: |
---|
[095ab1b] | 524 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
[342a506] | 525 | if dq_data != None: |
---|
[729bcf6] | 526 | # To be consistent with dq calculation in 1d reduction, |
---|
| 527 | # we need just the averages (not quadratures) because |
---|
| 528 | # it should not depend on the number of the q points |
---|
| 529 | # in the qr bins. |
---|
| 530 | err_x[i_q] += frac * dq_data[npt] |
---|
[342a506] | 531 | else: |
---|
| 532 | err_x = None |
---|
[095ab1b] | 533 | y_counts[i_q] += frac |
---|
| 534 | |
---|
| 535 | # Average the sums |
---|
| 536 | for n in range(nbins): |
---|
[a7a5886] | 537 | if err_y[n] < 0: err_y[n] = -err_y[n] |
---|
[095ab1b] | 538 | err_y[n] = math.sqrt(err_y[n]) |
---|
[729bcf6] | 539 | #if err_x != None: |
---|
| 540 | # err_x[n] = math.sqrt(err_x[n]) |
---|
[342a506] | 541 | |
---|
[a7a5886] | 542 | err_y = err_y / y_counts |
---|
[342a506] | 543 | err_y[err_y==0] = numpy.average(err_y) |
---|
[a7a5886] | 544 | y = y / y_counts |
---|
[729bcf6] | 545 | x = x / y_counts |
---|
[a7a5886] | 546 | idx = (numpy.isfinite(y)) & (numpy.isfinite(x)) |
---|
[8f12385] | 547 | |
---|
[342a506] | 548 | if err_x != None: |
---|
| 549 | d_x = err_x[idx] / y_counts[idx] |
---|
| 550 | else: |
---|
| 551 | d_x = None |
---|
| 552 | |
---|
[095ab1b] | 553 | if not idx.any(): |
---|
[a7a5886] | 554 | msg = "Average Error: No points inside ROI to average..." |
---|
| 555 | raise ValueError, msg |
---|
[342a506] | 556 | |
---|
| 557 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx], dx=d_x) |
---|
[76e2369] | 558 | |
---|
| 559 | |
---|
| 560 | class Ring(object): |
---|
| 561 | """ |
---|
[0997158f] | 562 | Defines a ring on a 2D data set. |
---|
| 563 | The ring is defined by r_min, r_max, and |
---|
| 564 | the position of the center of the ring. |
---|
| 565 | |
---|
| 566 | The data returned is the distribution of counts |
---|
| 567 | around the ring as a function of phi. |
---|
| 568 | |
---|
| 569 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 570 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
[76e2369] | 571 | """ |
---|
[095ab1b] | 572 | #Todo: remove center. |
---|
[a7a5886] | 573 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0, nbins=20): |
---|
[76e2369] | 574 | # Minimum radius |
---|
| 575 | self.r_min = r_min |
---|
| 576 | # Maximum radius |
---|
| 577 | self.r_max = r_max |
---|
| 578 | # Center of the ring in x |
---|
| 579 | self.center_x = center_x |
---|
| 580 | # Center of the ring in y |
---|
| 581 | self.center_y = center_y |
---|
| 582 | # Number of angular bins |
---|
[8ba103f] | 583 | self.nbins_phi = nbins |
---|
[76e2369] | 584 | |
---|
| 585 | def __call__(self, data2D): |
---|
| 586 | """ |
---|
[0997158f] | 587 | Apply the ring to the data set. |
---|
| 588 | Returns the angular distribution for a given q range |
---|
| 589 | |
---|
| 590 | :param data2D: Data2D object |
---|
| 591 | |
---|
| 592 | :return: Data1D object |
---|
[76e2369] | 593 | """ |
---|
| 594 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 595 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
| 596 | |
---|
[095ab1b] | 597 | Pi = math.pi |
---|
| 598 | |
---|
| 599 | # Get data |
---|
[c6f95bb] | 600 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 601 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 602 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 603 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 604 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 605 | |
---|
[095ab1b] | 606 | q_data_max = numpy.max(q_data) |
---|
| 607 | |
---|
| 608 | # Set space for 1d outputs |
---|
[76e2369] | 609 | phi_bins = numpy.zeros(self.nbins_phi) |
---|
| 610 | phi_counts = numpy.zeros(self.nbins_phi) |
---|
| 611 | phi_values = numpy.zeros(self.nbins_phi) |
---|
| 612 | phi_err = numpy.zeros(self.nbins_phi) |
---|
| 613 | |
---|
[095ab1b] | 614 | for npt in range(len(data)): |
---|
| 615 | frac = 0 |
---|
| 616 | # q-value at the point (npt) |
---|
| 617 | q_value = q_data[npt] |
---|
| 618 | data_n = data[npt] |
---|
| 619 | |
---|
| 620 | # phi-value at the point (npt) |
---|
[a7a5886] | 621 | phi_value = math.atan2(qy_data[npt], qx_data[npt]) + Pi |
---|
[76e2369] | 622 | |
---|
[a7a5886] | 623 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 624 | frac = 1 |
---|
| 625 | if frac == 0: |
---|
| 626 | continue |
---|
[095ab1b] | 627 | # binning |
---|
[a7a5886] | 628 | i_phi = int(math.floor((self.nbins_phi) * phi_value / (2 * Pi))) |
---|
[76e2369] | 629 | |
---|
[095ab1b] | 630 | # Take care of the edge case at phi = 2pi. |
---|
| 631 | if i_phi == self.nbins_phi: |
---|
[a7a5886] | 632 | i_phi = self.nbins_phi - 1 |
---|
[095ab1b] | 633 | phi_bins[i_phi] += frac * data[npt] |
---|
[76e2369] | 634 | |
---|
[a7a5886] | 635 | if err_data == None or err_data[npt] == 0.0: |
---|
| 636 | if data_n < 0: |
---|
| 637 | data_n = -data_n |
---|
[095ab1b] | 638 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
| 639 | else: |
---|
[a7a5886] | 640 | phi_err[i_phi] += frac * frac * err_data[npt] * err_data[npt] |
---|
[095ab1b] | 641 | phi_counts[i_phi] += frac |
---|
| 642 | |
---|
[76e2369] | 643 | for i in range(self.nbins_phi): |
---|
| 644 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
| 645 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
[a7a5886] | 646 | phi_values[i] = 2.0 * math.pi / self.nbins_phi * (1.0 * i + 0.5) |
---|
[76e2369] | 647 | |
---|
[095ab1b] | 648 | idx = (numpy.isfinite(phi_bins)) |
---|
| 649 | |
---|
[a7a5886] | 650 | if not idx.any(): |
---|
| 651 | msg = "Average Error: No points inside ROI to average..." |
---|
| 652 | raise ValueError, msg |
---|
| 653 | #elif len(phi_bins[idx])!= self.nbins_phi: |
---|
| 654 | # print "resulted",self.nbins_phi- len(phi_bins[idx]) |
---|
| 655 | #,"empty bin(s) due to tight binning..." |
---|
[095ab1b] | 656 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
[76e2369] | 657 | |
---|
| 658 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
| 659 | """ |
---|
[0997158f] | 660 | Returns the fraction of the pixel defined by |
---|
| 661 | the four corners (q_00, q_01, q_10, q_11) that |
---|
| 662 | has q < qmax.:: |
---|
| 663 | |
---|
[76e2369] | 664 | q_01 q_11 |
---|
| 665 | y=1 +--------------+ |
---|
| 666 | | | |
---|
| 667 | | | |
---|
| 668 | | | |
---|
| 669 | y=0 +--------------+ |
---|
[bb0b12c] | 670 | q_00 q_10 |
---|
[76e2369] | 671 | |
---|
| 672 | x=0 x=1 |
---|
[0997158f] | 673 | |
---|
[76e2369] | 674 | """ |
---|
| 675 | # y side for x = minx |
---|
| 676 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
| 677 | # y side for x = maxx |
---|
| 678 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
| 679 | |
---|
| 680 | # x side for y = miny |
---|
| 681 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
| 682 | # x side for y = maxy |
---|
| 683 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
| 684 | |
---|
| 685 | # surface fraction for a 1x1 pixel |
---|
| 686 | frac_max = 0 |
---|
| 687 | |
---|
| 688 | if x_0 and x_1: |
---|
[a7a5886] | 689 | frac_max = (x_0 + x_1) / 2.0 |
---|
[76e2369] | 690 | elif y_0 and y_1: |
---|
[a7a5886] | 691 | frac_max = (y_0 + y_1) / 2.0 |
---|
[76e2369] | 692 | elif x_0 and y_0: |
---|
| 693 | if q_00 < q_10: |
---|
[a7a5886] | 694 | frac_max = x_0 * y_0 / 2.0 |
---|
[76e2369] | 695 | else: |
---|
[a7a5886] | 696 | frac_max = 1.0 - x_0 * y_0 / 2.0 |
---|
[76e2369] | 697 | elif x_0 and y_1: |
---|
| 698 | if q_00 < q_10: |
---|
[a7a5886] | 699 | frac_max = x_0 * y_1 / 2.0 |
---|
[76e2369] | 700 | else: |
---|
[a7a5886] | 701 | frac_max = 1.0 - x_0 * y_1 / 2.0 |
---|
[76e2369] | 702 | elif x_1 and y_0: |
---|
| 703 | if q_00 > q_10: |
---|
[a7a5886] | 704 | frac_max = x_1 * y_0 / 2.0 |
---|
[76e2369] | 705 | else: |
---|
[a7a5886] | 706 | frac_max = 1.0 - x_1 * y_0 / 2.0 |
---|
[76e2369] | 707 | elif x_1 and y_1: |
---|
| 708 | if q_00 < q_10: |
---|
[a7a5886] | 709 | frac_max = 1.0 - (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
[76e2369] | 710 | else: |
---|
[a7a5886] | 711 | frac_max = (1.0 - x_1) * (1.0 - y_1) / 2.0 |
---|
[76e2369] | 712 | |
---|
| 713 | # If we make it here, there is no intercept between |
---|
| 714 | # this pixel and the constant-q ring. We only need |
---|
| 715 | # to know if we have to include it or exclude it. |
---|
[a7a5886] | 716 | elif (q_00 + q_01 + q_10 + q_11)/4.0 < qmax: |
---|
[76e2369] | 717 | frac_max = 1.0 |
---|
[095ab1b] | 718 | |
---|
[76e2369] | 719 | return frac_max |
---|
| 720 | |
---|
| 721 | def get_intercept(q, q_0, q_1): |
---|
| 722 | """ |
---|
[0997158f] | 723 | Returns the fraction of the side at which the |
---|
| 724 | q-value intercept the pixel, None otherwise. |
---|
| 725 | The values returned is the fraction ON THE SIDE |
---|
| 726 | OF THE LOWEST Q. :: |
---|
| 727 | |
---|
| 728 | |
---|
| 729 | A B |
---|
| 730 | +-----------+--------+ <--- pixel size |
---|
| 731 | 0 1 |
---|
| 732 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
[76e2369] | 733 | if Q_1 > Q_0, A is returned |
---|
| 734 | if Q_1 < Q_0, B is returned |
---|
| 735 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
| 736 | |
---|
| 737 | """ |
---|
| 738 | if q_1 > q_0: |
---|
| 739 | if (q > q_0 and q <= q_1): |
---|
[a7a5886] | 740 | return (q - q_0)/(q_1 - q_0) |
---|
[76e2369] | 741 | else: |
---|
| 742 | if (q > q_1 and q <= q_0): |
---|
[a7a5886] | 743 | return (q - q_1)/(q_0 - q_1) |
---|
[76e2369] | 744 | return None |
---|
[095ab1b] | 745 | |
---|
[fb198a9] | 746 | class _Sector: |
---|
| 747 | """ |
---|
[0997158f] | 748 | Defines a sector region on a 2D data set. |
---|
| 749 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
| 750 | and the position of the center of the ring |
---|
[a7a5886] | 751 | where phi_min and phi_max are defined by the right |
---|
| 752 | and left lines wrt central line |
---|
[0997158f] | 753 | and phi_max could be less than phi_min. |
---|
| 754 | |
---|
[a7a5886] | 755 | Phi is defined between 0 and 2*pi in anti-clockwise |
---|
| 756 | starting from the x- axis on the left-hand side |
---|
[fb198a9] | 757 | """ |
---|
[a7a5886] | 758 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2*math.pi, nbins=20): |
---|
[fb198a9] | 759 | self.r_min = r_min |
---|
| 760 | self.r_max = r_max |
---|
| 761 | self.phi_min = phi_min |
---|
| 762 | self.phi_max = phi_max |
---|
| 763 | self.nbins = nbins |
---|
| 764 | |
---|
[095ab1b] | 765 | |
---|
[fb198a9] | 766 | def _agv(self, data2D, run='phi'): |
---|
| 767 | """ |
---|
[0997158f] | 768 | Perform sector averaging. |
---|
| 769 | |
---|
| 770 | :param data2D: Data2D object |
---|
| 771 | :param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
| 772 | |
---|
| 773 | :return: Data1D object |
---|
[fb198a9] | 774 | """ |
---|
| 775 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 776 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
[095ab1b] | 777 | Pi = math.pi |
---|
[c6f95bb] | 778 | |
---|
[095ab1b] | 779 | # Get the all data & info |
---|
[c6f95bb] | 780 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 781 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 782 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 783 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 784 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[342a506] | 785 | dq_data = None |
---|
[729bcf6] | 786 | |
---|
| 787 | # Get the dq for resolution averaging |
---|
[342a506] | 788 | if data2D.dqx_data != None and data2D.dqy_data != None: |
---|
[729bcf6] | 789 | # The pinholes and det. pix contribution present |
---|
| 790 | # in both direction of the 2D which must be subtracted when |
---|
| 791 | # converting to 1D: dq_overlap should calculated ideally at |
---|
| 792 | # q = 0. |
---|
| 793 | # Extrapolate dqy(perp) at q = 0 |
---|
| 794 | z_max = max(data2D.q_data) |
---|
| 795 | z_min = min(data2D.q_data) |
---|
| 796 | x_max = data2D.dqx_data[data2D.q_data[z_max]] |
---|
| 797 | x_min = data2D.dqx_data[data2D.q_data[z_min]] |
---|
| 798 | y_max = data2D.dqy_data[data2D.q_data[z_max]] |
---|
| 799 | y_min = data2D.dqy_data[data2D.q_data[z_min]] |
---|
| 800 | # Find qdx at q = 0 |
---|
| 801 | dq_overlap_x = (x_min * z_max - x_max * z_min) / (z_max - z_min) |
---|
| 802 | # when extrapolation goes wrong |
---|
| 803 | if dq_overlap_x > min(data2D.dqx_data): |
---|
| 804 | dq_overlap_x = min(data2D.dqx_data) |
---|
| 805 | dq_overlap_x *= dq_overlap_x |
---|
| 806 | # Find qdx at q = 0 |
---|
| 807 | dq_overlap_y = (y_min * z_max - y_max * z_min) / (z_max - z_min) |
---|
| 808 | # when extrapolation goes wrong |
---|
| 809 | if dq_overlap_y > min(data2D.dqy_data): |
---|
| 810 | dq_overlap_y = min(data2D.dqy_data) |
---|
| 811 | # get dq at q=0. |
---|
| 812 | dq_overlap_y *= dq_overlap_y |
---|
| 813 | |
---|
| 814 | dq_overlap = numpy.sqrt((dq_overlap_x + dq_overlap_y) / 2.0) |
---|
| 815 | if dq_overlap < 0: |
---|
| 816 | dq_overlap = y_min |
---|
| 817 | dqx_data = data2D.dqx_data[numpy.isfinite(data2D.data)] |
---|
| 818 | dqy_data = data2D.dqy_data[numpy.isfinite(data2D.data)] - dq_overlap |
---|
| 819 | # def; dqx_data = dq_r dqy_data = dq_phi |
---|
| 820 | # Convert dq 2D to 1D here |
---|
| 821 | dqx = dqx_data * dqx_data |
---|
| 822 | dqy = dqy_data * dqy_data |
---|
| 823 | dq_data = numpy.add(dqx, dqy) |
---|
[342a506] | 824 | dq_data = numpy.sqrt(dq_data) |
---|
| 825 | |
---|
[095ab1b] | 826 | #set space for 1d outputs |
---|
| 827 | x = numpy.zeros(self.nbins) |
---|
[fb198a9] | 828 | y = numpy.zeros(self.nbins) |
---|
[342a506] | 829 | y_err = numpy.zeros(self.nbins) |
---|
| 830 | x_err = numpy.zeros(self.nbins) |
---|
[fb198a9] | 831 | y_counts = numpy.zeros(self.nbins) |
---|
[095ab1b] | 832 | |
---|
| 833 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
| 834 | phi_min = flip_phi(self.phi_min) |
---|
| 835 | phi_max = flip_phi(self.phi_max) |
---|
[bb0b12c] | 836 | |
---|
[095ab1b] | 837 | q_data_max = numpy.max(q_data) |
---|
| 838 | |
---|
| 839 | for n in range(len(data)): |
---|
[a7a5886] | 840 | frac = 0 |
---|
| 841 | |
---|
| 842 | # q-value at the pixel (j,i) |
---|
| 843 | q_value = q_data[n] |
---|
| 844 | data_n = data[n] |
---|
| 845 | |
---|
| 846 | # Is pixel within range? |
---|
| 847 | is_in = False |
---|
| 848 | |
---|
| 849 | # phi-value of the pixel (j,i) |
---|
| 850 | phi_value = math.atan2(qy_data[n], qx_data[n]) + Pi |
---|
| 851 | |
---|
| 852 | ## No need to calculate the frac when all data are within range |
---|
| 853 | if self.r_min <= q_value and q_value <= self.r_max: |
---|
| 854 | frac = 1 |
---|
| 855 | if frac == 0: |
---|
| 856 | continue |
---|
| 857 | #In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
| 858 | if run.lower()=='q2': |
---|
| 859 | ## For minor sector wing |
---|
| 860 | # Calculate the minor wing phis |
---|
| 861 | phi_min_minor = flip_phi(phi_min - Pi) |
---|
| 862 | phi_max_minor = flip_phi(phi_max - Pi) |
---|
| 863 | # Check if phis of the minor ring is within 0 to 2pi |
---|
| 864 | if phi_min_minor > phi_max_minor: |
---|
| 865 | is_in = (phi_value > phi_min_minor or \ |
---|
| 866 | phi_value < phi_max_minor) |
---|
| 867 | else: |
---|
| 868 | is_in = (phi_value > phi_min_minor and \ |
---|
| 869 | phi_value < phi_max_minor) |
---|
[3c67340] | 870 | |
---|
[a7a5886] | 871 | #For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
| 872 | #Find pixels within ROI |
---|
| 873 | if phi_min > phi_max: |
---|
| 874 | is_in = is_in or (phi_value > phi_min or \ |
---|
| 875 | phi_value < phi_max) |
---|
| 876 | else: |
---|
| 877 | is_in = is_in or (phi_value >= phi_min and \ |
---|
| 878 | phi_value < phi_max) |
---|
| 879 | |
---|
| 880 | if not is_in: |
---|
| 881 | frac = 0 |
---|
| 882 | if frac == 0: |
---|
| 883 | continue |
---|
| 884 | # Check which type of averaging we need |
---|
| 885 | if run.lower() == 'phi': |
---|
| 886 | temp_x = (self.nbins) * (phi_value - self.phi_min) |
---|
| 887 | temp_y = (self.phi_max - self.phi_min) |
---|
| 888 | i_bin = int(math.floor(temp_x / temp_y)) |
---|
| 889 | else: |
---|
| 890 | temp_x = (self.nbins) * (q_value - self.r_min) |
---|
[ec3959ab] | 891 | temp_y = (self.r_max - self.r_min) |
---|
[a7a5886] | 892 | i_bin = int(math.floor(temp_x / temp_y)) |
---|
[bb0b12c] | 893 | |
---|
[a7a5886] | 894 | # Take care of the edge case at phi = 2pi. |
---|
| 895 | if i_bin == self.nbins: |
---|
| 896 | i_bin = self.nbins - 1 |
---|
[095ab1b] | 897 | |
---|
[a7a5886] | 898 | ## Get the total y |
---|
| 899 | y[i_bin] += frac * data_n |
---|
[729bcf6] | 900 | x[i_bin] += frac * q_value |
---|
[342a506] | 901 | if err_data[n] == None or err_data[n] == 0.0: |
---|
[a7a5886] | 902 | if data_n < 0: |
---|
| 903 | data_n = -data_n |
---|
| 904 | y_err[i_bin] += frac * frac * data_n |
---|
| 905 | else: |
---|
| 906 | y_err[i_bin] += frac * frac * err_data[n] * err_data[n] |
---|
[342a506] | 907 | |
---|
| 908 | if dq_data != None: |
---|
[729bcf6] | 909 | # To be consistent with dq calculation in 1d reduction, |
---|
| 910 | # we need just the averages (not quadratures) because |
---|
| 911 | # it should not depend on the number of the q points |
---|
| 912 | # in the qr bins. |
---|
| 913 | x_err[i_bin] += frac * dq_data[n] |
---|
[342a506] | 914 | else: |
---|
| 915 | x_err = None |
---|
[a7a5886] | 916 | y_counts[i_bin] += frac |
---|
| 917 | |
---|
[095ab1b] | 918 | # Organize the results |
---|
[fb198a9] | 919 | for i in range(self.nbins): |
---|
| 920 | y[i] = y[i] / y_counts[i] |
---|
| 921 | y_err[i] = math.sqrt(y_err[i]) / y_counts[i] |
---|
[729bcf6] | 922 | |
---|
[095ab1b] | 923 | # The type of averaging: phi,q2, or q |
---|
| 924 | # Calculate x[i]should be at the center of the bin |
---|
[12c5b87] | 925 | if run.lower()=='phi': |
---|
| 926 | x[i] = (self.phi_max - self.phi_min) / self.nbins * \ |
---|
| 927 | (1.0 * i + 0.5) + self.phi_min |
---|
[095ab1b] | 928 | else: |
---|
[342a506] | 929 | # We take the center of ring area, not radius. |
---|
| 930 | # This is more accurate than taking the radial center of ring. |
---|
[729bcf6] | 931 | #delta_r = (self.r_max - self.r_min) / self.nbins |
---|
| 932 | #r_inner = self.r_min + delta_r * i |
---|
| 933 | #r_outer = r_inner + delta_r |
---|
| 934 | #x[i] = math.sqrt((r_inner * r_inner + r_outer * r_outer) / 2) |
---|
| 935 | x[i] = x[i] / y_counts[i] |
---|
[342a506] | 936 | y_err[y_err==0] = numpy.average(y_err) |
---|
[a7a5886] | 937 | idx = (numpy.isfinite(y) & numpy.isfinite(y_err)) |
---|
[342a506] | 938 | if x_err != None: |
---|
[729bcf6] | 939 | d_x = x_err[idx] / y_counts[idx] |
---|
[342a506] | 940 | else: |
---|
| 941 | d_x = None |
---|
[a7a5886] | 942 | if not idx.any(): |
---|
| 943 | msg = "Average Error: No points inside sector of ROI to average..." |
---|
| 944 | raise ValueError, msg |
---|
| 945 | #elif len(y[idx])!= self.nbins: |
---|
| 946 | # print "resulted",self.nbins- len(y[idx]), |
---|
| 947 | #"empty bin(s) due to tight binning..." |
---|
[342a506] | 948 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx], dx=d_x) |
---|
[fb198a9] | 949 | |
---|
[2e83ff3] | 950 | class SectorPhi(_Sector): |
---|
| 951 | """ |
---|
[0997158f] | 952 | Sector average as a function of phi. |
---|
| 953 | I(phi) is return and the data is averaged over Q. |
---|
| 954 | |
---|
| 955 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 956 | The number of bin in phi also has to be defined. |
---|
[2e83ff3] | 957 | """ |
---|
| 958 | def __call__(self, data2D): |
---|
| 959 | """ |
---|
[0997158f] | 960 | Perform sector average and return I(phi). |
---|
| 961 | |
---|
| 962 | :param data2D: Data2D object |
---|
| 963 | :return: Data1D object |
---|
[2e83ff3] | 964 | """ |
---|
[c6f95bb] | 965 | |
---|
[2e83ff3] | 966 | return self._agv(data2D, 'phi') |
---|
[fb198a9] | 967 | |
---|
| 968 | class SectorQ(_Sector): |
---|
| 969 | """ |
---|
[0997158f] | 970 | Sector average as a function of Q for both symatric wings. |
---|
| 971 | I(Q) is return and the data is averaged over phi. |
---|
| 972 | |
---|
| 973 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 974 | r_min, r_max, phi_min, phi_max >0. |
---|
| 975 | The number of bin in Q also has to be defined. |
---|
[fb198a9] | 976 | """ |
---|
| 977 | def __call__(self, data2D): |
---|
| 978 | """ |
---|
[0997158f] | 979 | Perform sector average and return I(Q). |
---|
| 980 | |
---|
| 981 | :param data2D: Data2D object |
---|
| 982 | |
---|
| 983 | :return: Data1D object |
---|
[fb198a9] | 984 | """ |
---|
| 985 | return self._agv(data2D, 'q2') |
---|
[c6f95bb] | 986 | |
---|
[f265927] | 987 | class Ringcut(object): |
---|
| 988 | """ |
---|
[0997158f] | 989 | Defines a ring on a 2D data set. |
---|
| 990 | The ring is defined by r_min, r_max, and |
---|
| 991 | the position of the center of the ring. |
---|
| 992 | |
---|
| 993 | The data returned is the region inside the ring |
---|
| 994 | |
---|
| 995 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 996 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
[f265927] | 997 | """ |
---|
| 998 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0 ): |
---|
| 999 | # Minimum radius |
---|
| 1000 | self.r_min = r_min |
---|
| 1001 | # Maximum radius |
---|
| 1002 | self.r_max = r_max |
---|
| 1003 | # Center of the ring in x |
---|
| 1004 | self.center_x = center_x |
---|
| 1005 | # Center of the ring in y |
---|
| 1006 | self.center_y = center_y |
---|
| 1007 | |
---|
| 1008 | |
---|
| 1009 | def __call__(self, data2D): |
---|
| 1010 | """ |
---|
[0997158f] | 1011 | Apply the ring to the data set. |
---|
| 1012 | Returns the angular distribution for a given q range |
---|
| 1013 | |
---|
| 1014 | :param data2D: Data2D object |
---|
| 1015 | |
---|
| 1016 | :return: index array in the range |
---|
[f265927] | 1017 | """ |
---|
| 1018 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1019 | raise RuntimeError, "Ring cut only take plottable_2D objects" |
---|
| 1020 | |
---|
| 1021 | # Get data |
---|
| 1022 | qx_data = data2D.qx_data |
---|
| 1023 | qy_data = data2D.qy_data |
---|
| 1024 | mask = data2D.mask |
---|
[a7a5886] | 1025 | q_data = numpy.sqrt(qx_data * qx_data + qy_data * qy_data) |
---|
[f265927] | 1026 | #q_data_max = numpy.max(q_data) |
---|
| 1027 | |
---|
| 1028 | # check whether or not the data point is inside ROI |
---|
| 1029 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
| 1030 | |
---|
| 1031 | return (out) |
---|
| 1032 | |
---|
| 1033 | |
---|
[c6f95bb] | 1034 | class Boxcut(object): |
---|
| 1035 | """ |
---|
[0997158f] | 1036 | Find a rectangular 2D region of interest. |
---|
[c6f95bb] | 1037 | """ |
---|
| 1038 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 1039 | # Minimum Qx value [A-1] |
---|
| 1040 | self.x_min = x_min |
---|
| 1041 | # Maximum Qx value [A-1] |
---|
| 1042 | self.x_max = x_max |
---|
| 1043 | # Minimum Qy value [A-1] |
---|
| 1044 | self.y_min = y_min |
---|
| 1045 | # Maximum Qy value [A-1] |
---|
| 1046 | self.y_max = y_max |
---|
| 1047 | |
---|
| 1048 | def __call__(self, data2D): |
---|
| 1049 | """ |
---|
[0997158f] | 1050 | Find a rectangular 2D region of interest. |
---|
| 1051 | |
---|
| 1052 | :param data2D: Data2D object |
---|
| 1053 | :return: mask, 1d array (len = len(data)) |
---|
| 1054 | with Trues where the data points are inside ROI, otherwise False |
---|
[c6f95bb] | 1055 | """ |
---|
| 1056 | mask = self._find(data2D) |
---|
| 1057 | |
---|
| 1058 | return mask |
---|
| 1059 | |
---|
| 1060 | def _find(self, data2D): |
---|
| 1061 | """ |
---|
[0997158f] | 1062 | Find a rectangular 2D region of interest. |
---|
| 1063 | |
---|
| 1064 | :param data2D: Data2D object |
---|
| 1065 | |
---|
| 1066 | :return: out, 1d array (length = len(data)) |
---|
| 1067 | with Trues where the data points are inside ROI, otherwise Falses |
---|
[c6f95bb] | 1068 | """ |
---|
| 1069 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1070 | raise RuntimeError, "Boxcut take only plottable_2D objects" |
---|
| 1071 | # Get qx_ and qy_data |
---|
| 1072 | qx_data = data2D.qx_data |
---|
| 1073 | qy_data = data2D.qy_data |
---|
[f265927] | 1074 | mask = data2D.mask |
---|
[c6f95bb] | 1075 | |
---|
| 1076 | # check whether or not the data point is inside ROI |
---|
[f265927] | 1077 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
| 1078 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
[c6f95bb] | 1079 | |
---|
| 1080 | return (outx & outy) |
---|
| 1081 | |
---|
| 1082 | class Sectorcut(object): |
---|
| 1083 | """ |
---|
[0997158f] | 1084 | Defines a sector (major + minor) region on a 2D data set. |
---|
| 1085 | The sector is defined by phi_min, phi_max, |
---|
[a7a5886] | 1086 | where phi_min and phi_max are defined by the right |
---|
| 1087 | and left lines wrt central line. |
---|
[0997158f] | 1088 | |
---|
| 1089 | Phi_min and phi_max are given in units of radian |
---|
| 1090 | and (phi_max-phi_min) should not be larger than pi |
---|
[c6f95bb] | 1091 | """ |
---|
[a7a5886] | 1092 | def __init__(self, phi_min=0, phi_max=math.pi): |
---|
[c6f95bb] | 1093 | self.phi_min = phi_min |
---|
| 1094 | self.phi_max = phi_max |
---|
| 1095 | |
---|
| 1096 | def __call__(self, data2D): |
---|
| 1097 | """ |
---|
[0997158f] | 1098 | Find a rectangular 2D region of interest. |
---|
| 1099 | |
---|
| 1100 | :param data2D: Data2D object |
---|
| 1101 | |
---|
| 1102 | :return: mask, 1d array (len = len(data)) |
---|
| 1103 | |
---|
| 1104 | with Trues where the data points are inside ROI, otherwise False |
---|
[c6f95bb] | 1105 | """ |
---|
| 1106 | mask = self._find(data2D) |
---|
| 1107 | |
---|
| 1108 | return mask |
---|
| 1109 | |
---|
| 1110 | def _find(self, data2D): |
---|
| 1111 | """ |
---|
[0997158f] | 1112 | Find a rectangular 2D region of interest. |
---|
| 1113 | |
---|
| 1114 | :param data2D: Data2D object |
---|
| 1115 | |
---|
| 1116 | :return: out, 1d array (length = len(data)) |
---|
| 1117 | |
---|
| 1118 | with Trues where the data points are inside ROI, otherwise Falses |
---|
[c6f95bb] | 1119 | """ |
---|
| 1120 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 1121 | raise RuntimeError, "Sectorcut take only plottable_2D objects" |
---|
| 1122 | Pi = math.pi |
---|
| 1123 | # Get data |
---|
| 1124 | qx_data = data2D.qx_data |
---|
| 1125 | qy_data = data2D.qy_data |
---|
| 1126 | phi_data = numpy.zeros(len(qx_data)) |
---|
| 1127 | |
---|
| 1128 | # get phi from data |
---|
[f265927] | 1129 | phi_data = numpy.arctan2(qy_data, qx_data) |
---|
| 1130 | |
---|
| 1131 | # Get the min and max into the region: -pi <= phi < Pi |
---|
[a7a5886] | 1132 | phi_min_major = flip_phi(self.phi_min + Pi) - Pi |
---|
| 1133 | phi_max_major = flip_phi(self.phi_max + Pi) - Pi |
---|
[c6f95bb] | 1134 | # check for major sector |
---|
[f265927] | 1135 | if phi_min_major > phi_max_major: |
---|
| 1136 | out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) |
---|
[c6f95bb] | 1137 | else: |
---|
[f265927] | 1138 | out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) |
---|
| 1139 | |
---|
[c6f95bb] | 1140 | # minor sector |
---|
| 1141 | # Get the min and max into the region: -pi <= phi < Pi |
---|
[a7a5886] | 1142 | phi_min_minor = flip_phi(self.phi_min) - Pi |
---|
| 1143 | phi_max_minor = flip_phi(self.phi_max) - Pi |
---|
[c6f95bb] | 1144 | |
---|
| 1145 | # check for minor sector |
---|
| 1146 | if phi_min_minor > phi_max_minor: |
---|
[a7a5886] | 1147 | out_minor = (phi_min_minor <= phi_data) + \ |
---|
| 1148 | (phi_max_minor >= phi_data) |
---|
[c6f95bb] | 1149 | else: |
---|
[a7a5886] | 1150 | out_minor = (phi_min_minor <= phi_data) & \ |
---|
| 1151 | (phi_max_minor >= phi_data) |
---|
[c6f95bb] | 1152 | out = out_major + out_minor |
---|
[f265927] | 1153 | |
---|
[c6f95bb] | 1154 | return out |
---|
| 1155 | |
---|
[76e2369] | 1156 | if __name__ == "__main__": |
---|
| 1157 | |
---|
| 1158 | from loader import Loader |
---|
| 1159 | |
---|
| 1160 | |
---|
[f8d0ee7] | 1161 | d = Loader().load('test/MAR07232_rest.ASC') |
---|
| 1162 | #d = Loader().load('test/MP_New.sans') |
---|
[76e2369] | 1163 | |
---|
| 1164 | |
---|
[d9629c53] | 1165 | r = SectorQ(r_min=.000001, r_max=.01, phi_min=0.0, phi_max=2*math.pi) |
---|
[f8d0ee7] | 1166 | o = r(d) |
---|
| 1167 | |
---|
[d9629c53] | 1168 | s = Ring(r_min=.000001, r_max=.01) |
---|
[2e83ff3] | 1169 | p = s(d) |
---|
[70975f3] | 1170 | |
---|
| 1171 | for i in range(len(o.x)): |
---|
| 1172 | print o.x[i], o.y[i], o.dy[i] |
---|
[76e2369] | 1173 | |
---|
| 1174 | |
---|
| 1175 | |
---|