[e96a852] | 1 | import unittest, math, numpy, pylab, sys, string |
---|
| 2 | from sans.pr.invertor import Invertor |
---|
| 3 | |
---|
| 4 | class Num_terms(): |
---|
| 5 | |
---|
| 6 | def __init__(self, invertor): |
---|
| 7 | self.invertor = invertor |
---|
| 8 | self.nterm_min = 10 |
---|
| 9 | self.nterm_max = len(self.invertor.x) |
---|
[7578961] | 10 | if self.nterm_max>50: |
---|
| 11 | self.nterm_max=50 |
---|
[e96a852] | 12 | self.isquit_func = None |
---|
| 13 | |
---|
| 14 | self.osc_list = [] |
---|
| 15 | self.err_list = [] |
---|
| 16 | self.alpha_list = [] |
---|
| 17 | self.mess_list = [] |
---|
| 18 | |
---|
| 19 | self.dataset = [] |
---|
| 20 | |
---|
| 21 | def is_odd(self, n): |
---|
| 22 | return bool(n%2) |
---|
| 23 | |
---|
| 24 | def sort_osc(self): |
---|
| 25 | import copy |
---|
| 26 | osc = copy.deepcopy(self.dataset) |
---|
| 27 | lis = [] |
---|
| 28 | for i in range(len(osc)): |
---|
| 29 | osc.sort() |
---|
| 30 | re = osc.pop(0) |
---|
| 31 | lis.append(re) |
---|
| 32 | return lis |
---|
| 33 | |
---|
| 34 | def median_osc(self): |
---|
| 35 | osc = self.sort_osc() |
---|
| 36 | dv = len(osc) |
---|
| 37 | med = float(dv) / 2.0 |
---|
| 38 | odd = self.is_odd(dv) |
---|
| 39 | medi = 0 |
---|
| 40 | for i in range(dv): |
---|
| 41 | if odd == True: |
---|
| 42 | medi = osc[int(med)] |
---|
| 43 | else: |
---|
| 44 | medi = osc[int(med) - 1] |
---|
| 45 | return medi |
---|
| 46 | |
---|
| 47 | def get0_out(self): |
---|
| 48 | inver = self.invertor |
---|
| 49 | self.osc_list = [] |
---|
| 50 | self.err_list = [] |
---|
| 51 | self.alpha_list = [] |
---|
[7578961] | 52 | for k in range(self.nterm_min, self.nterm_max, 1): |
---|
[e96a852] | 53 | if self.isquit_func != None: |
---|
| 54 | self.isquit_func() |
---|
| 55 | best_alpha, message, elapsed = inver.estimate_alpha(k) |
---|
| 56 | inver.alpha = best_alpha |
---|
| 57 | inver.out, inver.cov = inver.lstsq(k) |
---|
| 58 | osc = inver.oscillations(inver.out) |
---|
| 59 | err = inver.get_pos_err(inver.out, inver.cov) |
---|
[7578961] | 60 | if osc>10.0: |
---|
| 61 | break |
---|
[e96a852] | 62 | self.osc_list.append(osc) |
---|
| 63 | self.err_list.append(err) |
---|
| 64 | self.alpha_list.append(inver.alpha) |
---|
| 65 | self.mess_list.append(message) |
---|
| 66 | |
---|
| 67 | #print "osc", self.osc_list |
---|
| 68 | #print "err", self.err_list |
---|
| 69 | #print "alpha", self.alpha_list |
---|
| 70 | new_ls = [] |
---|
| 71 | new_osc1 = [] |
---|
| 72 | new_osc2= [] |
---|
| 73 | new_osc3 = [] |
---|
| 74 | flag9=False |
---|
| 75 | flag8=False |
---|
| 76 | flag7=False |
---|
| 77 | for i in range(len(self.err_list)): |
---|
| 78 | if self.err_list[i] <= 1.0 and self.err_list[i] >=0.9: |
---|
| 79 | new_osc1.append(self.osc_list[i]) |
---|
| 80 | flag9=True |
---|
| 81 | if self.err_list[i] < 0.9 and self.err_list[i] >=0.8: |
---|
| 82 | new_osc2.append(self.osc_list[i]) |
---|
| 83 | flag8=True |
---|
| 84 | if self.err_list[i] <0.8 and self.err_list[i] >= 0.7: |
---|
| 85 | new_osc3.append(self.osc_list[i]) |
---|
| 86 | falg7=True |
---|
| 87 | |
---|
| 88 | if flag9==True: |
---|
| 89 | self.dataset = new_osc1 |
---|
| 90 | elif flag8==True: |
---|
| 91 | self.dataset = new_osc2 |
---|
| 92 | else: |
---|
| 93 | self.dataset = new_osc3 |
---|
| 94 | |
---|
| 95 | #print "dataset", self.dataset |
---|
| 96 | return self.dataset |
---|
| 97 | |
---|
| 98 | def ls_osc(self): |
---|
| 99 | # Generate data |
---|
| 100 | ls_osc = self.get0_out() |
---|
| 101 | med = self.median_osc() |
---|
| 102 | |
---|
| 103 | #TODO: check 1 |
---|
| 104 | ls_osc = self.dataset |
---|
| 105 | ls = [] |
---|
| 106 | for i in range(len(ls_osc)): |
---|
| 107 | if int(med) == int(ls_osc[i]): |
---|
| 108 | ls.append(ls_osc[i]) |
---|
| 109 | return ls |
---|
| 110 | |
---|
| 111 | def compare_err(self): |
---|
| 112 | ls = self.ls_osc() |
---|
| 113 | #print "ls", ls |
---|
| 114 | nt_ls = [] |
---|
| 115 | for i in range(len(ls)): |
---|
| 116 | r = ls[i] |
---|
| 117 | n = self.osc_list.index(r) + 10 |
---|
| 118 | #er = self.err_list[n] |
---|
| 119 | #nt = self.osc_list.index(r) + 10 |
---|
| 120 | nt_ls.append(n) |
---|
[bd30f4a5] | 121 | #print "nt list", nt_ls |
---|
[e96a852] | 122 | return nt_ls |
---|
| 123 | |
---|
| 124 | def num_terms(self, isquit_func=None): |
---|
| 125 | try: |
---|
| 126 | self.isquit_func = isquit_func |
---|
| 127 | #self.nterm_max = len(self.invertor.x) |
---|
| 128 | #self.nterm_max = 32 |
---|
| 129 | nts = self.compare_err() |
---|
| 130 | #print "nts", nts |
---|
| 131 | div = len(nts) |
---|
| 132 | tem = float(div)/2.0 |
---|
| 133 | odd = self.is_odd(div) |
---|
| 134 | if odd == True: |
---|
| 135 | nt = nts[int(tem)] |
---|
| 136 | else: |
---|
| 137 | nt = nts[int(tem) - 1] |
---|
| 138 | return nt, self.alpha_list[nt - 10], self.mess_list[nt-10] |
---|
| 139 | except: |
---|
| 140 | return self.nterm_min, self.alpha_list[10], self.mess_list[10] |
---|
| 141 | |
---|
| 142 | #For testing |
---|
| 143 | def load(path): |
---|
| 144 | import numpy, math, sys |
---|
| 145 | # Read the data from the data file |
---|
| 146 | data_x = numpy.zeros(0) |
---|
| 147 | data_y = numpy.zeros(0) |
---|
| 148 | data_err = numpy.zeros(0) |
---|
| 149 | scale = None |
---|
| 150 | min_err = 0.0 |
---|
| 151 | if not path == None: |
---|
| 152 | input_f = open(path,'r') |
---|
| 153 | buff = input_f.read() |
---|
| 154 | lines = buff.split('\n') |
---|
| 155 | for line in lines: |
---|
| 156 | try: |
---|
| 157 | toks = line.split() |
---|
| 158 | x = float(toks[0]) |
---|
| 159 | y = float(toks[1]) |
---|
| 160 | if len(toks)>2: |
---|
| 161 | err = float(toks[2]) |
---|
| 162 | else: |
---|
| 163 | if scale==None: |
---|
| 164 | scale = 0.05*math.sqrt(y) |
---|
| 165 | #scale = 0.05/math.sqrt(y) |
---|
| 166 | min_err = 0.01*y |
---|
| 167 | err = scale*math.sqrt(y)+min_err |
---|
| 168 | #err = 0 |
---|
| 169 | |
---|
| 170 | data_x = numpy.append(data_x, x) |
---|
| 171 | data_y = numpy.append(data_y, y) |
---|
| 172 | data_err = numpy.append(data_err, err) |
---|
| 173 | except: |
---|
| 174 | pass |
---|
| 175 | |
---|
| 176 | return data_x, data_y, data_err |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | if __name__ == "__main__": |
---|
| 180 | i = Invertor() |
---|
| 181 | x, y, erro = load("test/Cyl_A_D102.txt") |
---|
| 182 | i.d_max = 102.0 |
---|
| 183 | i.nfunc = 10 |
---|
| 184 | #i.q_max = 0.4 |
---|
| 185 | #i.q_min = 0.07 |
---|
| 186 | i.x = x |
---|
| 187 | i.y = y |
---|
| 188 | i.err = erro |
---|
| 189 | #i.out, i.cov = i.lstsq(10) |
---|
| 190 | # Testing estimator |
---|
| 191 | est = Num_terms(i) |
---|
| 192 | print est.num_terms() |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | |
---|