1 | """ |
---|
2 | Module to perform P(r) inversion. |
---|
3 | The module contains the Invertor class. |
---|
4 | """ |
---|
5 | from sans.pr.core.pr_inversion import Cinvertor |
---|
6 | import numpy |
---|
7 | import sys |
---|
8 | |
---|
9 | def help(): |
---|
10 | """ |
---|
11 | Provide general online help text |
---|
12 | Future work: extend this function to allow topic selection |
---|
13 | """ |
---|
14 | info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. (1980) 13, 168-175.\n\n" |
---|
15 | info_txt += "P(r) is set to be equal to an expansion of base functions of the type " |
---|
16 | info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each base functions " |
---|
17 | info_txt += "in the expansion is found by performing a least square fit with the " |
---|
18 | info_txt += "following fit function:\n\n" |
---|
19 | info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 + Reg_term\n\n" |
---|
20 | info_txt += "where I_meas(q) is the measured scattering intensity and I_th(q) is " |
---|
21 | info_txt += "the prediction from the Fourier transform of the P(r) expansion. " |
---|
22 | info_txt += "The Reg_term term is a regularization term set to the second derivative " |
---|
23 | info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce a smooth P(r) output.\n\n" |
---|
24 | info_txt += "The following are user inputs:\n\n" |
---|
25 | info_txt += " - Number of terms: the number of base functions in the P(r) expansion.\n\n" |
---|
26 | info_txt += " - Regularization constant: a multiplicative constant to set the size of " |
---|
27 | info_txt += "the regularization term.\n\n" |
---|
28 | info_txt += " - Maximum distance: the maximum distance between any two points in the system.\n" |
---|
29 | |
---|
30 | return info_txt |
---|
31 | |
---|
32 | |
---|
33 | class Invertor(Cinvertor): |
---|
34 | """ |
---|
35 | Invertor class to perform P(r) inversion |
---|
36 | |
---|
37 | The problem is solved by posing the problem as Ax = b, |
---|
38 | where x is the set of coefficients we are looking for. |
---|
39 | |
---|
40 | Npts is the number of points. |
---|
41 | |
---|
42 | In the following i refers to the ith base function coefficient. |
---|
43 | The matrix has its entries j in its first Npts rows set to |
---|
44 | A[j][i] = (Fourier transformed base function for point j) |
---|
45 | |
---|
46 | We them choose a number of r-points, n_r, to evaluate the second |
---|
47 | derivative of P(r) at. This is used as our regularization term. |
---|
48 | For a vector r of length n_r, the following n_r rows are set to |
---|
49 | A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
50 | |
---|
51 | The vector b has its first Npts entries set to |
---|
52 | b[j] = (I(q) observed for point j) |
---|
53 | |
---|
54 | The following n_r entries are set to zero. |
---|
55 | |
---|
56 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
57 | the matrix and find the coefficients x. |
---|
58 | |
---|
59 | Methods inherited from Cinvertor: |
---|
60 | - get_peaks(pars): returns the number of P(r) peaks |
---|
61 | - oscillations(pars): returns the oscillation parameters for the output P(r) |
---|
62 | - get_positive(pars): returns the fraction of P(r) that is above zero |
---|
63 | - get_pos_err(pars): returns the fraction of P(r) that is 1-sigma above zero |
---|
64 | """ |
---|
65 | #TODO: Allow for slit smearing. Smear each base function once before filling |
---|
66 | # the A matrix. |
---|
67 | |
---|
68 | ## Chisqr of the last computation |
---|
69 | chi2 = 0 |
---|
70 | ## Time elapsed for last computation |
---|
71 | elapsed = 0 |
---|
72 | ## Alpha to get the reg term the same size as the signal |
---|
73 | suggested_alpha = 0 |
---|
74 | ## Last number of base functions used |
---|
75 | nfunc = 0 |
---|
76 | ## Last output values |
---|
77 | out = None |
---|
78 | ## Last errors on output values |
---|
79 | cov = None |
---|
80 | ## Flag to allow I(q) data with constant background |
---|
81 | #has_bck = False |
---|
82 | ## Background value |
---|
83 | background = 0 |
---|
84 | |
---|
85 | |
---|
86 | def __init__(self): |
---|
87 | Cinvertor.__init__(self) |
---|
88 | |
---|
89 | def __setattr__(self, name, value): |
---|
90 | """ |
---|
91 | Set the value of an attribute. |
---|
92 | Access the parent class methods for |
---|
93 | x, y, err, d_max, q_min, q_max and alpha |
---|
94 | """ |
---|
95 | if name=='x': |
---|
96 | if 0.0 in value: |
---|
97 | raise ValueError, "Invertor: one of your q-values is zero. Delete that entry before proceeding" |
---|
98 | return self.set_x(value) |
---|
99 | elif name=='y': |
---|
100 | return self.set_y(value) |
---|
101 | elif name=='err': |
---|
102 | value2 = abs(value) |
---|
103 | return self.set_err(value2) |
---|
104 | elif name=='d_max': |
---|
105 | return self.set_dmax(value) |
---|
106 | elif name=='q_min': |
---|
107 | if value==None: |
---|
108 | return self.set_qmin(-1.0) |
---|
109 | return self.set_qmin(value) |
---|
110 | elif name=='q_max': |
---|
111 | if value==None: |
---|
112 | return self.set_qmax(-1.0) |
---|
113 | return self.set_qmax(value) |
---|
114 | elif name=='alpha': |
---|
115 | return self.set_alpha(value) |
---|
116 | elif name=='slit_height': |
---|
117 | return self.set_slit_height(value) |
---|
118 | elif name=='slit_width': |
---|
119 | return self.set_slit_width(value) |
---|
120 | elif name=='has_bck': |
---|
121 | if value==True: |
---|
122 | return self.set_has_bck(1) |
---|
123 | elif value==False: |
---|
124 | return self.set_has_bck(0) |
---|
125 | else: |
---|
126 | raise ValueError, "Invertor: has_bck can only be True or False" |
---|
127 | |
---|
128 | return Cinvertor.__setattr__(self, name, value) |
---|
129 | |
---|
130 | def __getattr__(self, name): |
---|
131 | """ |
---|
132 | Return the value of an attribute |
---|
133 | For the moment x, y, err and d_max are write-only |
---|
134 | TODO: change that! |
---|
135 | """ |
---|
136 | import numpy |
---|
137 | if name=='x': |
---|
138 | out = numpy.ones(self.get_nx()) |
---|
139 | self.get_x(out) |
---|
140 | return out |
---|
141 | elif name=='y': |
---|
142 | out = numpy.ones(self.get_ny()) |
---|
143 | self.get_y(out) |
---|
144 | return out |
---|
145 | elif name=='err': |
---|
146 | out = numpy.ones(self.get_nerr()) |
---|
147 | self.get_err(out) |
---|
148 | return out |
---|
149 | elif name=='d_max': |
---|
150 | return self.get_dmax() |
---|
151 | elif name=='q_min': |
---|
152 | qmin = self.get_qmin() |
---|
153 | if qmin<0: |
---|
154 | return None |
---|
155 | return qmin |
---|
156 | elif name=='q_max': |
---|
157 | qmax = self.get_qmax() |
---|
158 | if qmax<0: |
---|
159 | return None |
---|
160 | return qmax |
---|
161 | elif name=='alpha': |
---|
162 | return self.get_alpha() |
---|
163 | elif name=='slit_height': |
---|
164 | return self.get_slit_height() |
---|
165 | elif name=='slit_width': |
---|
166 | return self.get_slit_width() |
---|
167 | elif name=='has_bck': |
---|
168 | value = self.get_has_bck() |
---|
169 | if value==1: |
---|
170 | return True |
---|
171 | else: |
---|
172 | return False |
---|
173 | elif name in self.__dict__: |
---|
174 | return self.__dict__[name] |
---|
175 | return None |
---|
176 | |
---|
177 | def clone(self): |
---|
178 | """ |
---|
179 | Return a clone of this instance |
---|
180 | """ |
---|
181 | invertor = Invertor() |
---|
182 | invertor.chi2 = self.chi2 |
---|
183 | invertor.elapsed = self.elapsed |
---|
184 | invertor.alpha = self.alpha |
---|
185 | invertor.d_max = self.d_max |
---|
186 | invertor.q_min = self.q_min |
---|
187 | invertor.q_max = self.q_max |
---|
188 | |
---|
189 | invertor.x = self.x |
---|
190 | invertor.y = self.y |
---|
191 | invertor.err = self.err |
---|
192 | invertor.has_bck = self.has_bck |
---|
193 | |
---|
194 | return invertor |
---|
195 | |
---|
196 | def invert(self, nfunc=10, nr=20): |
---|
197 | """ |
---|
198 | Perform inversion to P(r) |
---|
199 | |
---|
200 | The problem is solved by posing the problem as Ax = b, |
---|
201 | where x is the set of coefficients we are looking for. |
---|
202 | |
---|
203 | Npts is the number of points. |
---|
204 | |
---|
205 | In the following i refers to the ith base function coefficient. |
---|
206 | The matrix has its entries j in its first Npts rows set to |
---|
207 | A[i][j] = (Fourier transformed base function for point j) |
---|
208 | |
---|
209 | We them choose a number of r-points, n_r, to evaluate the second |
---|
210 | derivative of P(r) at. This is used as our regularization term. |
---|
211 | For a vector r of length n_r, the following n_r rows are set to |
---|
212 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
213 | |
---|
214 | The vector b has its first Npts entries set to |
---|
215 | b[j] = (I(q) observed for point j) |
---|
216 | |
---|
217 | The following n_r entries are set to zero. |
---|
218 | |
---|
219 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
220 | the matrix and find the coefficients x. |
---|
221 | |
---|
222 | @param nfunc: number of base functions to use. |
---|
223 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
224 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
225 | """ |
---|
226 | # Reset the background value before proceeding |
---|
227 | self.background = 0.0 |
---|
228 | return self.lstsq(nfunc, nr=nr) |
---|
229 | |
---|
230 | def iq(self, out, q): |
---|
231 | """ |
---|
232 | Function to call to evaluate the scattering intensity |
---|
233 | @param args: c-parameters, and q |
---|
234 | @return: I(q) |
---|
235 | """ |
---|
236 | return Cinvertor.iq(self, out, q)+self.background |
---|
237 | |
---|
238 | def invert_optimize(self, nfunc=10, nr=20): |
---|
239 | """ |
---|
240 | Slower version of the P(r) inversion that uses scipy.optimize.leastsq. |
---|
241 | |
---|
242 | This probably produce more reliable results, but is much slower. |
---|
243 | The minimization function is set to sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term, |
---|
244 | where the reg_term is given by Svergun: it is the integral of the square of the first derivative |
---|
245 | of P(r), d(P(r))/dr, integrated over the full range of r. |
---|
246 | |
---|
247 | @param nfunc: number of base functions to use. |
---|
248 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
249 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
250 | """ |
---|
251 | |
---|
252 | from scipy import optimize |
---|
253 | import time |
---|
254 | |
---|
255 | self.nfunc = nfunc |
---|
256 | # First, check that the current data is valid |
---|
257 | if self.is_valid()<=0: |
---|
258 | raise RuntimeError, "Invertor.invert: Data array are of different length" |
---|
259 | |
---|
260 | p = numpy.ones(nfunc) |
---|
261 | t_0 = time.time() |
---|
262 | out, cov_x, info, mesg, success = optimize.leastsq(self.residuals, p, full_output=1, warning=True) |
---|
263 | |
---|
264 | # Compute chi^2 |
---|
265 | res = self.residuals(out) |
---|
266 | chisqr = 0 |
---|
267 | for i in range(len(res)): |
---|
268 | chisqr += res[i] |
---|
269 | |
---|
270 | self.chi2 = chisqr |
---|
271 | |
---|
272 | # Store computation time |
---|
273 | self.elapsed = time.time() - t_0 |
---|
274 | |
---|
275 | return out, cov_x |
---|
276 | |
---|
277 | def pr_fit(self, nfunc=5): |
---|
278 | """ |
---|
279 | This is a direct fit to a given P(r). It assumes that the y data |
---|
280 | is set to some P(r) distribution that we are trying to reproduce |
---|
281 | with a set of base functions. |
---|
282 | |
---|
283 | This method is provided as a test. |
---|
284 | """ |
---|
285 | from scipy import optimize |
---|
286 | |
---|
287 | # First, check that the current data is valid |
---|
288 | if self.is_valid()<=0: |
---|
289 | raise RuntimeError, "Invertor.invert: Data arrays are of different length" |
---|
290 | |
---|
291 | p = numpy.ones(nfunc) |
---|
292 | t_0 = time.time() |
---|
293 | out, cov_x, info, mesg, success = optimize.leastsq(self.pr_residuals, p, full_output=1, warning=True) |
---|
294 | |
---|
295 | # Compute chi^2 |
---|
296 | res = self.pr_residuals(out) |
---|
297 | chisqr = 0 |
---|
298 | for i in range(len(res)): |
---|
299 | chisqr += res[i] |
---|
300 | |
---|
301 | self.chisqr = chisqr |
---|
302 | |
---|
303 | # Store computation time |
---|
304 | self.elapsed = time.time() - t_0 |
---|
305 | |
---|
306 | return out, cov_x |
---|
307 | |
---|
308 | def pr_err(self, c, c_cov, r): |
---|
309 | """ |
---|
310 | Returns the value of P(r) for a given r, and base function |
---|
311 | coefficients, with error. |
---|
312 | |
---|
313 | @param c: base function coefficients |
---|
314 | @param c_cov: covariance matrice of the base function coefficients |
---|
315 | @param r: r-value to evaluate P(r) at |
---|
316 | @return: P(r) |
---|
317 | """ |
---|
318 | return self.get_pr_err(c, c_cov, r) |
---|
319 | |
---|
320 | def _accept_q(self, q): |
---|
321 | """ |
---|
322 | Check q-value against user-defined range |
---|
323 | """ |
---|
324 | if not self.q_min==None and q<self.q_min: |
---|
325 | return False |
---|
326 | if not self.q_max==None and q>self.q_max: |
---|
327 | return False |
---|
328 | return True |
---|
329 | |
---|
330 | def lstsq(self, nfunc=5, nr=20): |
---|
331 | #TODO: do this on the C side |
---|
332 | # |
---|
333 | # To make sure an array is contiguous: |
---|
334 | # blah = numpy.ascontiguousarray(blah_original) |
---|
335 | # ... before passing it to C |
---|
336 | """ |
---|
337 | The problem is solved by posing the problem as Ax = b, |
---|
338 | where x is the set of coefficients we are looking for. |
---|
339 | |
---|
340 | Npts is the number of points. |
---|
341 | |
---|
342 | In the following i refers to the ith base function coefficient. |
---|
343 | The matrix has its entries j in its first Npts rows set to |
---|
344 | A[i][j] = (Fourier transformed base function for point j) |
---|
345 | |
---|
346 | We them choose a number of r-points, n_r, to evaluate the second |
---|
347 | derivative of P(r) at. This is used as our regularization term. |
---|
348 | For a vector r of length n_r, the following n_r rows are set to |
---|
349 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
350 | |
---|
351 | The vector b has its first Npts entries set to |
---|
352 | b[j] = (I(q) observed for point j) |
---|
353 | |
---|
354 | The following n_r entries are set to zero. |
---|
355 | |
---|
356 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
357 | the matrix and find the coefficients x. |
---|
358 | |
---|
359 | @param nfunc: number of base functions to use. |
---|
360 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
361 | |
---|
362 | If the result does not allow us to compute the covariance matrix, |
---|
363 | a matrix filled with zeros will be returned. |
---|
364 | |
---|
365 | """ |
---|
366 | #TODO: Allow for background by starting at n=0 (since the base function |
---|
367 | # is zero for n=0). |
---|
368 | import math, time |
---|
369 | from scipy.linalg.basic import lstsq |
---|
370 | |
---|
371 | if self.is_valid()<0: |
---|
372 | raise RuntimeError, "Invertor: invalid data; incompatible data lengths." |
---|
373 | |
---|
374 | self.nfunc = nfunc |
---|
375 | # a -- An M x N matrix. |
---|
376 | # b -- An M x nrhs matrix or M vector. |
---|
377 | npts = len(self.x) |
---|
378 | nq = nr |
---|
379 | sqrt_alpha = math.sqrt(math.fabs(self.alpha)) |
---|
380 | if sqrt_alpha<0.0: |
---|
381 | nq = 0 |
---|
382 | |
---|
383 | # If we need to fit the background, add a term |
---|
384 | if self.has_bck==True: |
---|
385 | nfunc_0 = nfunc |
---|
386 | nfunc += 1 |
---|
387 | |
---|
388 | a = numpy.zeros([npts+nq, nfunc]) |
---|
389 | b = numpy.zeros(npts+nq) |
---|
390 | err = numpy.zeros([nfunc, nfunc]) |
---|
391 | |
---|
392 | # Construct the a matrix and b vector that represent the problem |
---|
393 | self._get_matrix(nfunc, nq, a, b) |
---|
394 | |
---|
395 | # Perform the inversion (least square fit) |
---|
396 | c, chi2, rank, n = lstsq(a, b) |
---|
397 | # Sanity check |
---|
398 | try: |
---|
399 | float(chi2) |
---|
400 | except: |
---|
401 | chi2 = -1.0 |
---|
402 | self.chi2 = chi2 |
---|
403 | |
---|
404 | inv_cov = numpy.zeros([nfunc,nfunc]) |
---|
405 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
406 | self._get_invcov_matrix(nfunc, nr, a, inv_cov) |
---|
407 | |
---|
408 | # Compute the reg term size for the output |
---|
409 | sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a) |
---|
410 | |
---|
411 | if math.fabs(self.alpha)>0: |
---|
412 | new_alpha = sum_sig/(sum_reg/self.alpha) |
---|
413 | else: |
---|
414 | new_alpha = 0.0 |
---|
415 | self.suggested_alpha = new_alpha |
---|
416 | |
---|
417 | try: |
---|
418 | cov = numpy.linalg.pinv(inv_cov) |
---|
419 | err = math.fabs(chi2/float(npts-nfunc)) * cov |
---|
420 | except: |
---|
421 | # We were not able to estimate the errors, |
---|
422 | # returns an empty covariance matrix |
---|
423 | print "lstsq:", sys.exc_value |
---|
424 | print chi2 |
---|
425 | pass |
---|
426 | |
---|
427 | # Keep a copy of the last output |
---|
428 | if self.has_bck==False: |
---|
429 | self.background = 0 |
---|
430 | self.out = c |
---|
431 | self.cov = err |
---|
432 | else: |
---|
433 | self.background = c[0] |
---|
434 | |
---|
435 | err_0 = numpy.zeros([nfunc, nfunc]) |
---|
436 | c_0 = numpy.zeros(nfunc) |
---|
437 | |
---|
438 | for i in range(nfunc_0): |
---|
439 | c_0[i] = c[i+1] |
---|
440 | for j in range(nfunc_0): |
---|
441 | err_0[i][j] = err[i+1][j+1] |
---|
442 | |
---|
443 | self.out = c_0 |
---|
444 | self.cov = err_0 |
---|
445 | |
---|
446 | return self.out, self.cov |
---|
447 | |
---|
448 | def lstsq_bck(self, nfunc=5, nr=20): |
---|
449 | #TODO: Allow for background by starting at n=0 (since the base function |
---|
450 | # is zero for n=0). |
---|
451 | import math |
---|
452 | from scipy.linalg.basic import lstsq |
---|
453 | |
---|
454 | if self.is_valid()<0: |
---|
455 | raise RuntimeError, "Invertor: invalid data; incompatible data lengths." |
---|
456 | |
---|
457 | self.nfunc = nfunc |
---|
458 | # a -- An M x N matrix. |
---|
459 | # b -- An M x nrhs matrix or M vector. |
---|
460 | npts = len(self.x) |
---|
461 | nq = nr |
---|
462 | sqrt_alpha = math.sqrt(math.fabs(self.alpha)) |
---|
463 | if sqrt_alpha<0.0: |
---|
464 | nq = 0 |
---|
465 | |
---|
466 | err_0 = numpy.zeros([nfunc, nfunc]) |
---|
467 | c_0 = numpy.zeros(nfunc) |
---|
468 | nfunc_0 = nfunc |
---|
469 | nfunc += 1 |
---|
470 | |
---|
471 | a = numpy.zeros([npts+nq, nfunc]) |
---|
472 | b = numpy.zeros(npts+nq) |
---|
473 | err = numpy.zeros([nfunc, nfunc]) |
---|
474 | |
---|
475 | # Construct the a matrix and b vector that represent the problem |
---|
476 | self._get_matrix(nfunc, nq, a, b) |
---|
477 | |
---|
478 | c, chi2, rank, n = lstsq(a, b) |
---|
479 | # Sanity check |
---|
480 | try: |
---|
481 | float(chi2) |
---|
482 | except: |
---|
483 | chi2 = -1.0 |
---|
484 | self.chi2 = chi2 |
---|
485 | |
---|
486 | inv_cov = numpy.zeros([nfunc,nfunc]) |
---|
487 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
488 | self._get_invcov_matrix(nfunc, nr, a, inv_cov) |
---|
489 | |
---|
490 | # Compute the reg term size for the output |
---|
491 | sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a) |
---|
492 | |
---|
493 | if math.fabs(self.alpha)>0: |
---|
494 | new_alpha = sum_sig/(sum_reg/self.alpha) |
---|
495 | else: |
---|
496 | new_alpha = 0.0 |
---|
497 | self.suggested_alpha = new_alpha |
---|
498 | |
---|
499 | try: |
---|
500 | cov = numpy.linalg.pinv(inv_cov) |
---|
501 | err = math.fabs(chi2/float(npts-nfunc)) * cov |
---|
502 | except: |
---|
503 | # We were not able to estimate the errors, |
---|
504 | # returns an empty covariance matrix |
---|
505 | print "lstsq:", sys.exc_value |
---|
506 | print chi2 |
---|
507 | pass |
---|
508 | |
---|
509 | # Keep a copy of the last output |
---|
510 | |
---|
511 | print "BACKGROUND =", c[0] |
---|
512 | self.background = c[0] |
---|
513 | |
---|
514 | for i in range(nfunc_0): |
---|
515 | c_0[i] = c[i+1] |
---|
516 | for j in range(nfunc_0): |
---|
517 | err_0[i][j] = err[i+1][j+1] |
---|
518 | |
---|
519 | self.out = c_0 |
---|
520 | self.cov = err_0 |
---|
521 | |
---|
522 | return c_0, err_0 |
---|
523 | |
---|
524 | def estimate_alpha(self, nfunc): |
---|
525 | """ |
---|
526 | Returns a reasonable guess for the |
---|
527 | regularization constant alpha |
---|
528 | |
---|
529 | @return: alpha, message, elapsed |
---|
530 | |
---|
531 | where alpha is the estimate for alpha, |
---|
532 | message is a message for the user, |
---|
533 | elapsed is the computation time |
---|
534 | """ |
---|
535 | import time |
---|
536 | try: |
---|
537 | pr = self.clone() |
---|
538 | |
---|
539 | # T_0 for computation time |
---|
540 | starttime = time.time() |
---|
541 | elapsed = 0 |
---|
542 | |
---|
543 | # If the current alpha is zero, try |
---|
544 | # another value |
---|
545 | if pr.alpha<=0: |
---|
546 | pr.alpha = 0.0001 |
---|
547 | |
---|
548 | # Perform inversion to find the largest alpha |
---|
549 | out, cov = pr.invert(nfunc) |
---|
550 | elapsed = time.time()-starttime |
---|
551 | initial_alpha = pr.alpha |
---|
552 | initial_peaks = pr.get_peaks(out) |
---|
553 | |
---|
554 | # Try the inversion with the estimated alpha |
---|
555 | pr.alpha = pr.suggested_alpha |
---|
556 | out, cov = pr.invert(nfunc) |
---|
557 | |
---|
558 | npeaks = pr.get_peaks(out) |
---|
559 | # if more than one peak to start with |
---|
560 | # just return the estimate |
---|
561 | if npeaks>1: |
---|
562 | message = "Your P(r) is not smooth, please check your inversion parameters" |
---|
563 | return pr.suggested_alpha, message, elapsed |
---|
564 | else: |
---|
565 | |
---|
566 | # Look at smaller values |
---|
567 | # We assume that for the suggested alpha, we have 1 peak |
---|
568 | # if not, send a message to change parameters |
---|
569 | alpha = pr.suggested_alpha |
---|
570 | best_alpha = pr.suggested_alpha |
---|
571 | found = False |
---|
572 | for i in range(10): |
---|
573 | pr.alpha = (0.33)**(i+1)*alpha |
---|
574 | out, cov = pr.invert(nfunc) |
---|
575 | |
---|
576 | peaks = pr.get_peaks(out) |
---|
577 | if peaks>1: |
---|
578 | found = True |
---|
579 | break |
---|
580 | best_alpha = pr.alpha |
---|
581 | |
---|
582 | # If we didn't find a turning point for alpha and |
---|
583 | # the initial alpha already had only one peak, |
---|
584 | # just return that |
---|
585 | if not found and initial_peaks==1 and initial_alpha<best_alpha: |
---|
586 | best_alpha = initial_alpha |
---|
587 | |
---|
588 | # Check whether the size makes sense |
---|
589 | message='' |
---|
590 | |
---|
591 | if not found: |
---|
592 | message = "None" |
---|
593 | elif best_alpha>=0.5*pr.suggested_alpha: |
---|
594 | # best alpha is too big, return a |
---|
595 | # reasonable value |
---|
596 | message = "The estimated alpha for your system is too large. " |
---|
597 | message += "Try increasing your maximum distance." |
---|
598 | |
---|
599 | return best_alpha, message, elapsed |
---|
600 | |
---|
601 | except: |
---|
602 | message = "Invertor.estimate_alpha: %s" % sys.exc_value |
---|
603 | return 0, message, elapsed |
---|
604 | |
---|
605 | |
---|
606 | def to_file(self, path, npts=100): |
---|
607 | """ |
---|
608 | Save the state to a file that will be readable |
---|
609 | by SliceView. |
---|
610 | @param path: path of the file to write |
---|
611 | @param npts: number of P(r) points to be written |
---|
612 | """ |
---|
613 | import pylab |
---|
614 | |
---|
615 | file = open(path, 'w') |
---|
616 | file.write("#d_max=%g\n" % self.d_max) |
---|
617 | file.write("#nfunc=%g\n" % self.nfunc) |
---|
618 | file.write("#alpha=%g\n" % self.alpha) |
---|
619 | file.write("#chi2=%g\n" % self.chi2) |
---|
620 | file.write("#elapsed=%g\n" % self.elapsed) |
---|
621 | file.write("#alpha_estimate=%g\n" % self.suggested_alpha) |
---|
622 | if not self.out==None: |
---|
623 | if len(self.out)==len(self.cov): |
---|
624 | for i in range(len(self.out)): |
---|
625 | file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]), str(self.cov[i][i]))) |
---|
626 | file.write("<r> <Pr> <dPr>\n") |
---|
627 | r = pylab.arange(0.0, self.d_max, self.d_max/npts) |
---|
628 | |
---|
629 | for r_i in r: |
---|
630 | (value, err) = self.pr_err(self.out, self.cov, r_i) |
---|
631 | file.write("%g %g %g\n" % (r_i, value, err)) |
---|
632 | |
---|
633 | file.close() |
---|
634 | |
---|
635 | |
---|
636 | def from_file(self, path): |
---|
637 | """ |
---|
638 | Load the state of the Invertor from a file, |
---|
639 | to be able to generate P(r) from a set of |
---|
640 | parameters. |
---|
641 | @param path: path of the file to load |
---|
642 | """ |
---|
643 | import os |
---|
644 | import re |
---|
645 | if os.path.isfile(path): |
---|
646 | try: |
---|
647 | fd = open(path, 'r') |
---|
648 | |
---|
649 | buff = fd.read() |
---|
650 | lines = buff.split('\n') |
---|
651 | for line in lines: |
---|
652 | if line.startswith('#d_max='): |
---|
653 | toks = line.split('=') |
---|
654 | self.d_max = float(toks[1]) |
---|
655 | elif line.startswith('#nfunc='): |
---|
656 | toks = line.split('=') |
---|
657 | self.nfunc = int(toks[1]) |
---|
658 | self.out = numpy.zeros(self.nfunc) |
---|
659 | self.cov = numpy.zeros([self.nfunc, self.nfunc]) |
---|
660 | elif line.startswith('#alpha='): |
---|
661 | toks = line.split('=') |
---|
662 | self.alpha = float(toks[1]) |
---|
663 | elif line.startswith('#chi2='): |
---|
664 | toks = line.split('=') |
---|
665 | self.chi2 = float(toks[1]) |
---|
666 | elif line.startswith('#elapsed='): |
---|
667 | toks = line.split('=') |
---|
668 | self.elapsed = float(toks[1]) |
---|
669 | elif line.startswith('#alpha_estimate='): |
---|
670 | toks = line.split('=') |
---|
671 | self.suggested_alpha = float(toks[1]) |
---|
672 | |
---|
673 | # Now read in the parameters |
---|
674 | elif line.startswith('#C_'): |
---|
675 | toks = line.split('=') |
---|
676 | p = re.compile('#C_([0-9]+)') |
---|
677 | m = p.search(toks[0]) |
---|
678 | toks2 = toks[1].split('+-') |
---|
679 | i = int(m.group(1)) |
---|
680 | self.out[i] = float(toks2[0]) |
---|
681 | |
---|
682 | self.cov[i][i] = float(toks2[1]) |
---|
683 | |
---|
684 | except: |
---|
685 | raise RuntimeError, "Invertor.from_file: corrupted file\n%s" % sys.exc_value |
---|
686 | else: |
---|
687 | raise RuntimeError, "Invertor.from_file: '%s' is not a file" % str(path) |
---|
688 | |
---|
689 | |
---|
690 | |
---|
691 | |
---|
692 | if __name__ == "__main__": |
---|
693 | o = Invertor() |
---|
694 | |
---|
695 | |
---|
696 | |
---|
697 | |
---|
698 | |
---|