1 | """ |
---|
2 | Module to perform P(r) inversion. |
---|
3 | The module contains the Invertor class. |
---|
4 | """ |
---|
5 | from sans.pr.core.pr_inversion import Cinvertor |
---|
6 | import numpy |
---|
7 | import sys |
---|
8 | import math, time |
---|
9 | from scipy.linalg.basic import lstsq |
---|
10 | |
---|
11 | def help(): |
---|
12 | """ |
---|
13 | Provide general online help text |
---|
14 | Future work: extend this function to allow topic selection |
---|
15 | """ |
---|
16 | info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. (1980) 13, 168-175.\n\n" |
---|
17 | info_txt += "P(r) is set to be equal to an expansion of base functions of the type " |
---|
18 | info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each base functions " |
---|
19 | info_txt += "in the expansion is found by performing a least square fit with the " |
---|
20 | info_txt += "following fit function:\n\n" |
---|
21 | info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 + Reg_term\n\n" |
---|
22 | info_txt += "where I_meas(q) is the measured scattering intensity and I_th(q) is " |
---|
23 | info_txt += "the prediction from the Fourier transform of the P(r) expansion. " |
---|
24 | info_txt += "The Reg_term term is a regularization term set to the second derivative " |
---|
25 | info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce a smooth P(r) output.\n\n" |
---|
26 | info_txt += "The following are user inputs:\n\n" |
---|
27 | info_txt += " - Number of terms: the number of base functions in the P(r) expansion.\n\n" |
---|
28 | info_txt += " - Regularization constant: a multiplicative constant to set the size of " |
---|
29 | info_txt += "the regularization term.\n\n" |
---|
30 | info_txt += " - Maximum distance: the maximum distance between any two points in the system.\n" |
---|
31 | |
---|
32 | return info_txt |
---|
33 | |
---|
34 | |
---|
35 | class Invertor(Cinvertor): |
---|
36 | """ |
---|
37 | Invertor class to perform P(r) inversion |
---|
38 | |
---|
39 | The problem is solved by posing the problem as Ax = b, |
---|
40 | where x is the set of coefficients we are looking for. |
---|
41 | |
---|
42 | Npts is the number of points. |
---|
43 | |
---|
44 | In the following i refers to the ith base function coefficient. |
---|
45 | The matrix has its entries j in its first Npts rows set to |
---|
46 | A[j][i] = (Fourier transformed base function for point j) |
---|
47 | |
---|
48 | We them choose a number of r-points, n_r, to evaluate the second |
---|
49 | derivative of P(r) at. This is used as our regularization term. |
---|
50 | For a vector r of length n_r, the following n_r rows are set to |
---|
51 | A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
52 | |
---|
53 | The vector b has its first Npts entries set to |
---|
54 | b[j] = (I(q) observed for point j) |
---|
55 | |
---|
56 | The following n_r entries are set to zero. |
---|
57 | |
---|
58 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
59 | the matrix and find the coefficients x. |
---|
60 | |
---|
61 | Methods inherited from Cinvertor: |
---|
62 | - get_peaks(pars): returns the number of P(r) peaks |
---|
63 | - oscillations(pars): returns the oscillation parameters for the output P(r) |
---|
64 | - get_positive(pars): returns the fraction of P(r) that is above zero |
---|
65 | - get_pos_err(pars): returns the fraction of P(r) that is 1-sigma above zero |
---|
66 | """ |
---|
67 | ## Chisqr of the last computation |
---|
68 | chi2 = 0 |
---|
69 | ## Time elapsed for last computation |
---|
70 | elapsed = 0 |
---|
71 | ## Alpha to get the reg term the same size as the signal |
---|
72 | suggested_alpha = 0 |
---|
73 | ## Last number of base functions used |
---|
74 | nfunc = 10 |
---|
75 | ## Last output values |
---|
76 | out = None |
---|
77 | ## Last errors on output values |
---|
78 | cov = None |
---|
79 | ## Background value |
---|
80 | background = 0 |
---|
81 | ## Information dictionary for application use |
---|
82 | info = {} |
---|
83 | |
---|
84 | |
---|
85 | def __init__(self): |
---|
86 | Cinvertor.__init__(self) |
---|
87 | |
---|
88 | def __setattr__(self, name, value): |
---|
89 | """ |
---|
90 | Set the value of an attribute. |
---|
91 | Access the parent class methods for |
---|
92 | x, y, err, d_max, q_min, q_max and alpha |
---|
93 | """ |
---|
94 | if name=='x': |
---|
95 | if 0.0 in value: |
---|
96 | raise ValueError, "Invertor: one of your q-values is zero. Delete that entry before proceeding" |
---|
97 | return self.set_x(value) |
---|
98 | elif name=='y': |
---|
99 | return self.set_y(value) |
---|
100 | elif name=='err': |
---|
101 | value2 = abs(value) |
---|
102 | return self.set_err(value2) |
---|
103 | elif name=='d_max': |
---|
104 | return self.set_dmax(value) |
---|
105 | elif name=='q_min': |
---|
106 | if value==None: |
---|
107 | return self.set_qmin(-1.0) |
---|
108 | return self.set_qmin(value) |
---|
109 | elif name=='q_max': |
---|
110 | if value==None: |
---|
111 | return self.set_qmax(-1.0) |
---|
112 | return self.set_qmax(value) |
---|
113 | elif name=='alpha': |
---|
114 | return self.set_alpha(value) |
---|
115 | elif name=='slit_height': |
---|
116 | return self.set_slit_height(value) |
---|
117 | elif name=='slit_width': |
---|
118 | return self.set_slit_width(value) |
---|
119 | elif name=='has_bck': |
---|
120 | if value==True: |
---|
121 | return self.set_has_bck(1) |
---|
122 | elif value==False: |
---|
123 | return self.set_has_bck(0) |
---|
124 | else: |
---|
125 | raise ValueError, "Invertor: has_bck can only be True or False" |
---|
126 | |
---|
127 | return Cinvertor.__setattr__(self, name, value) |
---|
128 | |
---|
129 | def __getattr__(self, name): |
---|
130 | """ |
---|
131 | Return the value of an attribute |
---|
132 | """ |
---|
133 | import numpy |
---|
134 | if name=='x': |
---|
135 | out = numpy.ones(self.get_nx()) |
---|
136 | self.get_x(out) |
---|
137 | return out |
---|
138 | elif name=='y': |
---|
139 | out = numpy.ones(self.get_ny()) |
---|
140 | self.get_y(out) |
---|
141 | return out |
---|
142 | elif name=='err': |
---|
143 | out = numpy.ones(self.get_nerr()) |
---|
144 | self.get_err(out) |
---|
145 | return out |
---|
146 | elif name=='d_max': |
---|
147 | return self.get_dmax() |
---|
148 | elif name=='q_min': |
---|
149 | qmin = self.get_qmin() |
---|
150 | if qmin<0: |
---|
151 | return None |
---|
152 | return qmin |
---|
153 | elif name=='q_max': |
---|
154 | qmax = self.get_qmax() |
---|
155 | if qmax<0: |
---|
156 | return None |
---|
157 | return qmax |
---|
158 | elif name=='alpha': |
---|
159 | return self.get_alpha() |
---|
160 | elif name=='slit_height': |
---|
161 | return self.get_slit_height() |
---|
162 | elif name=='slit_width': |
---|
163 | return self.get_slit_width() |
---|
164 | elif name=='has_bck': |
---|
165 | value = self.get_has_bck() |
---|
166 | if value==1: |
---|
167 | return True |
---|
168 | else: |
---|
169 | return False |
---|
170 | elif name in self.__dict__: |
---|
171 | return self.__dict__[name] |
---|
172 | return None |
---|
173 | |
---|
174 | def clone(self): |
---|
175 | """ |
---|
176 | Return a clone of this instance |
---|
177 | """ |
---|
178 | import copy |
---|
179 | |
---|
180 | invertor = Invertor() |
---|
181 | invertor.chi2 = self.chi2 |
---|
182 | invertor.elapsed = self.elapsed |
---|
183 | invertor.nfunc = self.nfunc |
---|
184 | invertor.alpha = self.alpha |
---|
185 | invertor.d_max = self.d_max |
---|
186 | invertor.q_min = self.q_min |
---|
187 | invertor.q_max = self.q_max |
---|
188 | |
---|
189 | invertor.x = self.x |
---|
190 | invertor.y = self.y |
---|
191 | invertor.err = self.err |
---|
192 | invertor.has_bck = self.has_bck |
---|
193 | invertor.slit_height = self.slit_height |
---|
194 | invertor.slit_width = self.slit_width |
---|
195 | |
---|
196 | invertor.info = copy.deepcopy(self.info) |
---|
197 | |
---|
198 | return invertor |
---|
199 | |
---|
200 | def invert(self, nfunc=10, nr=20): |
---|
201 | """ |
---|
202 | Perform inversion to P(r) |
---|
203 | |
---|
204 | The problem is solved by posing the problem as Ax = b, |
---|
205 | where x is the set of coefficients we are looking for. |
---|
206 | |
---|
207 | Npts is the number of points. |
---|
208 | |
---|
209 | In the following i refers to the ith base function coefficient. |
---|
210 | The matrix has its entries j in its first Npts rows set to |
---|
211 | A[i][j] = (Fourier transformed base function for point j) |
---|
212 | |
---|
213 | We them choose a number of r-points, n_r, to evaluate the second |
---|
214 | derivative of P(r) at. This is used as our regularization term. |
---|
215 | For a vector r of length n_r, the following n_r rows are set to |
---|
216 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
217 | |
---|
218 | The vector b has its first Npts entries set to |
---|
219 | b[j] = (I(q) observed for point j) |
---|
220 | |
---|
221 | The following n_r entries are set to zero. |
---|
222 | |
---|
223 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
224 | the matrix and find the coefficients x. |
---|
225 | |
---|
226 | @param nfunc: number of base functions to use. |
---|
227 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
228 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
229 | """ |
---|
230 | # Reset the background value before proceeding |
---|
231 | self.background = 0.0 |
---|
232 | return self.lstsq(nfunc, nr=nr) |
---|
233 | |
---|
234 | def iq(self, out, q): |
---|
235 | """ |
---|
236 | Function to call to evaluate the scattering intensity |
---|
237 | @param args: c-parameters, and q |
---|
238 | @return: I(q) |
---|
239 | """ |
---|
240 | return Cinvertor.iq(self, out, q)+self.background |
---|
241 | |
---|
242 | def invert_optimize(self, nfunc=10, nr=20): |
---|
243 | """ |
---|
244 | Slower version of the P(r) inversion that uses scipy.optimize.leastsq. |
---|
245 | |
---|
246 | This probably produce more reliable results, but is much slower. |
---|
247 | The minimization function is set to sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term, |
---|
248 | where the reg_term is given by Svergun: it is the integral of the square of the first derivative |
---|
249 | of P(r), d(P(r))/dr, integrated over the full range of r. |
---|
250 | |
---|
251 | @param nfunc: number of base functions to use. |
---|
252 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
253 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
254 | """ |
---|
255 | |
---|
256 | from scipy import optimize |
---|
257 | import time |
---|
258 | |
---|
259 | self.nfunc = nfunc |
---|
260 | # First, check that the current data is valid |
---|
261 | if self.is_valid()<=0: |
---|
262 | raise RuntimeError, "Invertor.invert: Data array are of different length" |
---|
263 | |
---|
264 | p = numpy.ones(nfunc) |
---|
265 | t_0 = time.time() |
---|
266 | out, cov_x, info, mesg, success = optimize.leastsq(self.residuals, p, full_output=1, warning=True) |
---|
267 | |
---|
268 | # Compute chi^2 |
---|
269 | res = self.residuals(out) |
---|
270 | chisqr = 0 |
---|
271 | for i in range(len(res)): |
---|
272 | chisqr += res[i] |
---|
273 | |
---|
274 | self.chi2 = chisqr |
---|
275 | |
---|
276 | # Store computation time |
---|
277 | self.elapsed = time.time() - t_0 |
---|
278 | |
---|
279 | return out, cov_x |
---|
280 | |
---|
281 | def pr_fit(self, nfunc=5): |
---|
282 | """ |
---|
283 | This is a direct fit to a given P(r). It assumes that the y data |
---|
284 | is set to some P(r) distribution that we are trying to reproduce |
---|
285 | with a set of base functions. |
---|
286 | |
---|
287 | This method is provided as a test. |
---|
288 | """ |
---|
289 | from scipy import optimize |
---|
290 | |
---|
291 | # First, check that the current data is valid |
---|
292 | if self.is_valid()<=0: |
---|
293 | raise RuntimeError, "Invertor.invert: Data arrays are of different length" |
---|
294 | |
---|
295 | p = numpy.ones(nfunc) |
---|
296 | t_0 = time.time() |
---|
297 | out, cov_x, info, mesg, success = optimize.leastsq(self.pr_residuals, p, full_output=1, warning=True) |
---|
298 | |
---|
299 | # Compute chi^2 |
---|
300 | res = self.pr_residuals(out) |
---|
301 | chisqr = 0 |
---|
302 | for i in range(len(res)): |
---|
303 | chisqr += res[i] |
---|
304 | |
---|
305 | self.chisqr = chisqr |
---|
306 | |
---|
307 | # Store computation time |
---|
308 | self.elapsed = time.time() - t_0 |
---|
309 | |
---|
310 | return out, cov_x |
---|
311 | |
---|
312 | def pr_err(self, c, c_cov, r): |
---|
313 | """ |
---|
314 | Returns the value of P(r) for a given r, and base function |
---|
315 | coefficients, with error. |
---|
316 | |
---|
317 | @param c: base function coefficients |
---|
318 | @param c_cov: covariance matrice of the base function coefficients |
---|
319 | @param r: r-value to evaluate P(r) at |
---|
320 | @return: P(r) |
---|
321 | """ |
---|
322 | return self.get_pr_err(c, c_cov, r) |
---|
323 | |
---|
324 | def _accept_q(self, q): |
---|
325 | """ |
---|
326 | Check q-value against user-defined range |
---|
327 | """ |
---|
328 | if not self.q_min==None and q<self.q_min: |
---|
329 | return False |
---|
330 | if not self.q_max==None and q>self.q_max: |
---|
331 | return False |
---|
332 | return True |
---|
333 | |
---|
334 | def lstsq(self, nfunc=5, nr=20): |
---|
335 | """ |
---|
336 | The problem is solved by posing the problem as Ax = b, |
---|
337 | where x is the set of coefficients we are looking for. |
---|
338 | |
---|
339 | Npts is the number of points. |
---|
340 | |
---|
341 | In the following i refers to the ith base function coefficient. |
---|
342 | The matrix has its entries j in its first Npts rows set to |
---|
343 | A[i][j] = (Fourier transformed base function for point j) |
---|
344 | |
---|
345 | We them choose a number of r-points, n_r, to evaluate the second |
---|
346 | derivative of P(r) at. This is used as our regularization term. |
---|
347 | For a vector r of length n_r, the following n_r rows are set to |
---|
348 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
349 | |
---|
350 | The vector b has its first Npts entries set to |
---|
351 | b[j] = (I(q) observed for point j) |
---|
352 | |
---|
353 | The following n_r entries are set to zero. |
---|
354 | |
---|
355 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
356 | the matrix and find the coefficients x. |
---|
357 | |
---|
358 | @param nfunc: number of base functions to use. |
---|
359 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
360 | |
---|
361 | If the result does not allow us to compute the covariance matrix, |
---|
362 | a matrix filled with zeros will be returned. |
---|
363 | |
---|
364 | """ |
---|
365 | # Note: To make sure an array is contiguous: |
---|
366 | # blah = numpy.ascontiguousarray(blah_original) |
---|
367 | # ... before passing it to C |
---|
368 | |
---|
369 | if self.is_valid()<0: |
---|
370 | raise RuntimeError, "Invertor: invalid data; incompatible data lengths." |
---|
371 | |
---|
372 | self.nfunc = nfunc |
---|
373 | # a -- An M x N matrix. |
---|
374 | # b -- An M x nrhs matrix or M vector. |
---|
375 | npts = len(self.x) |
---|
376 | nq = nr |
---|
377 | sqrt_alpha = math.sqrt(math.fabs(self.alpha)) |
---|
378 | if sqrt_alpha<0.0: |
---|
379 | nq = 0 |
---|
380 | |
---|
381 | # If we need to fit the background, add a term |
---|
382 | if self.has_bck==True: |
---|
383 | nfunc_0 = nfunc |
---|
384 | nfunc += 1 |
---|
385 | |
---|
386 | a = numpy.zeros([npts+nq, nfunc]) |
---|
387 | b = numpy.zeros(npts+nq) |
---|
388 | err = numpy.zeros([nfunc, nfunc]) |
---|
389 | |
---|
390 | # Construct the a matrix and b vector that represent the problem |
---|
391 | t_0 = time.time() |
---|
392 | self._get_matrix(nfunc, nq, a, b) |
---|
393 | |
---|
394 | # Perform the inversion (least square fit) |
---|
395 | c, chi2, rank, n = lstsq(a, b) |
---|
396 | # Sanity check |
---|
397 | try: |
---|
398 | float(chi2) |
---|
399 | except: |
---|
400 | chi2 = -1.0 |
---|
401 | self.chi2 = chi2 |
---|
402 | |
---|
403 | inv_cov = numpy.zeros([nfunc,nfunc]) |
---|
404 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
405 | self._get_invcov_matrix(nfunc, nr, a, inv_cov) |
---|
406 | |
---|
407 | # Compute the reg term size for the output |
---|
408 | sum_sig, sum_reg = self._get_reg_size(nfunc, nr, a) |
---|
409 | |
---|
410 | if math.fabs(self.alpha)>0: |
---|
411 | new_alpha = sum_sig/(sum_reg/self.alpha) |
---|
412 | else: |
---|
413 | new_alpha = 0.0 |
---|
414 | self.suggested_alpha = new_alpha |
---|
415 | |
---|
416 | try: |
---|
417 | cov = numpy.linalg.pinv(inv_cov) |
---|
418 | err = math.fabs(chi2/float(npts-nfunc)) * cov |
---|
419 | except: |
---|
420 | # We were not able to estimate the errors |
---|
421 | # Return an empty error matrix |
---|
422 | pass |
---|
423 | |
---|
424 | # Keep a copy of the last output |
---|
425 | if self.has_bck==False: |
---|
426 | self.background = 0 |
---|
427 | self.out = c |
---|
428 | self.cov = err |
---|
429 | else: |
---|
430 | self.background = c[0] |
---|
431 | |
---|
432 | err_0 = numpy.zeros([nfunc, nfunc]) |
---|
433 | c_0 = numpy.zeros(nfunc) |
---|
434 | |
---|
435 | for i in range(nfunc_0): |
---|
436 | c_0[i] = c[i+1] |
---|
437 | for j in range(nfunc_0): |
---|
438 | err_0[i][j] = err[i+1][j+1] |
---|
439 | |
---|
440 | self.out = c_0 |
---|
441 | self.cov = err_0 |
---|
442 | |
---|
443 | return self.out, self.cov |
---|
444 | |
---|
445 | def estimate_numterms(self, isquit_func=None): |
---|
446 | """ |
---|
447 | Returns a reasonable guess for the |
---|
448 | number of terms |
---|
449 | @param isquit_func: reference to thread function to call to |
---|
450 | check whether the computation needs to |
---|
451 | be stopped. |
---|
452 | |
---|
453 | @return: number of terms, alpha, message |
---|
454 | """ |
---|
455 | from num_term import Num_terms |
---|
456 | estimator = Num_terms(self.clone()) |
---|
457 | try: |
---|
458 | return estimator.num_terms(isquit_func) |
---|
459 | except: |
---|
460 | # If we fail, estimate alpha and return the default |
---|
461 | # number of terms |
---|
462 | best_alpha, message, elapsed =self.estimate_alpha(self.nfunc) |
---|
463 | return self.nfunc, best_alpha, "Could not estimate number of terms" |
---|
464 | |
---|
465 | def estimate_alpha(self, nfunc): |
---|
466 | """ |
---|
467 | Returns a reasonable guess for the |
---|
468 | regularization constant alpha |
---|
469 | |
---|
470 | @param nfunc: number of terms to use in the expansion. |
---|
471 | @return: alpha, message, elapsed |
---|
472 | |
---|
473 | where alpha is the estimate for alpha, |
---|
474 | message is a message for the user, |
---|
475 | elapsed is the computation time |
---|
476 | """ |
---|
477 | import time |
---|
478 | try: |
---|
479 | pr = self.clone() |
---|
480 | |
---|
481 | # T_0 for computation time |
---|
482 | starttime = time.time() |
---|
483 | elapsed = 0 |
---|
484 | |
---|
485 | # If the current alpha is zero, try |
---|
486 | # another value |
---|
487 | if pr.alpha<=0: |
---|
488 | pr.alpha = 0.0001 |
---|
489 | |
---|
490 | # Perform inversion to find the largest alpha |
---|
491 | out, cov = pr.invert(nfunc) |
---|
492 | elapsed = time.time()-starttime |
---|
493 | initial_alpha = pr.alpha |
---|
494 | initial_peaks = pr.get_peaks(out) |
---|
495 | |
---|
496 | # Try the inversion with the estimated alpha |
---|
497 | pr.alpha = pr.suggested_alpha |
---|
498 | out, cov = pr.invert(nfunc) |
---|
499 | |
---|
500 | npeaks = pr.get_peaks(out) |
---|
501 | # if more than one peak to start with |
---|
502 | # just return the estimate |
---|
503 | if npeaks>1: |
---|
504 | #message = "Your P(r) is not smooth, please check your inversion parameters" |
---|
505 | message = None |
---|
506 | return pr.suggested_alpha, message, elapsed |
---|
507 | else: |
---|
508 | |
---|
509 | # Look at smaller values |
---|
510 | # We assume that for the suggested alpha, we have 1 peak |
---|
511 | # if not, send a message to change parameters |
---|
512 | alpha = pr.suggested_alpha |
---|
513 | best_alpha = pr.suggested_alpha |
---|
514 | found = False |
---|
515 | for i in range(10): |
---|
516 | pr.alpha = (0.33)**(i+1)*alpha |
---|
517 | out, cov = pr.invert(nfunc) |
---|
518 | |
---|
519 | peaks = pr.get_peaks(out) |
---|
520 | if peaks>1: |
---|
521 | found = True |
---|
522 | break |
---|
523 | best_alpha = pr.alpha |
---|
524 | |
---|
525 | # If we didn't find a turning point for alpha and |
---|
526 | # the initial alpha already had only one peak, |
---|
527 | # just return that |
---|
528 | if not found and initial_peaks==1 and initial_alpha<best_alpha: |
---|
529 | best_alpha = initial_alpha |
---|
530 | |
---|
531 | # Check whether the size makes sense |
---|
532 | message='' |
---|
533 | |
---|
534 | if not found: |
---|
535 | message = None |
---|
536 | elif best_alpha>=0.5*pr.suggested_alpha: |
---|
537 | # best alpha is too big, return a |
---|
538 | # reasonable value |
---|
539 | message = "The estimated alpha for your system is too large. " |
---|
540 | message += "Try increasing your maximum distance." |
---|
541 | |
---|
542 | return best_alpha, message, elapsed |
---|
543 | |
---|
544 | except: |
---|
545 | message = "Invertor.estimate_alpha: %s" % sys.exc_value |
---|
546 | return 0, message, elapsed |
---|
547 | |
---|
548 | |
---|
549 | def to_file(self, path, npts=100): |
---|
550 | """ |
---|
551 | Save the state to a file that will be readable |
---|
552 | by SliceView. |
---|
553 | @param path: path of the file to write |
---|
554 | @param npts: number of P(r) points to be written |
---|
555 | """ |
---|
556 | import pylab |
---|
557 | |
---|
558 | file = open(path, 'w') |
---|
559 | file.write("#d_max=%g\n" % self.d_max) |
---|
560 | file.write("#nfunc=%g\n" % self.nfunc) |
---|
561 | file.write("#alpha=%g\n" % self.alpha) |
---|
562 | file.write("#chi2=%g\n" % self.chi2) |
---|
563 | file.write("#elapsed=%g\n" % self.elapsed) |
---|
564 | file.write("#qmin=%s\n" % str(self.q_min)) |
---|
565 | file.write("#qmax=%s\n" % str(self.q_max)) |
---|
566 | file.write("#slit_height=%g\n" % self.slit_height) |
---|
567 | file.write("#slit_width=%g\n" % self.slit_width) |
---|
568 | file.write("#background=%g\n" % self.background) |
---|
569 | if self.has_bck==True: |
---|
570 | file.write("#has_bck=1\n") |
---|
571 | else: |
---|
572 | file.write("#has_bck=0\n") |
---|
573 | file.write("#alpha_estimate=%g\n" % self.suggested_alpha) |
---|
574 | if not self.out==None: |
---|
575 | if len(self.out)==len(self.cov): |
---|
576 | for i in range(len(self.out)): |
---|
577 | file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]), str(self.cov[i][i]))) |
---|
578 | file.write("<r> <Pr> <dPr>\n") |
---|
579 | r = pylab.arange(0.0, self.d_max, self.d_max/npts) |
---|
580 | |
---|
581 | for r_i in r: |
---|
582 | (value, err) = self.pr_err(self.out, self.cov, r_i) |
---|
583 | file.write("%g %g %g\n" % (r_i, value, err)) |
---|
584 | |
---|
585 | file.close() |
---|
586 | |
---|
587 | |
---|
588 | def from_file(self, path): |
---|
589 | """ |
---|
590 | Load the state of the Invertor from a file, |
---|
591 | to be able to generate P(r) from a set of |
---|
592 | parameters. |
---|
593 | @param path: path of the file to load |
---|
594 | """ |
---|
595 | import os |
---|
596 | import re |
---|
597 | if os.path.isfile(path): |
---|
598 | try: |
---|
599 | fd = open(path, 'r') |
---|
600 | |
---|
601 | buff = fd.read() |
---|
602 | lines = buff.split('\n') |
---|
603 | for line in lines: |
---|
604 | if line.startswith('#d_max='): |
---|
605 | toks = line.split('=') |
---|
606 | self.d_max = float(toks[1]) |
---|
607 | elif line.startswith('#nfunc='): |
---|
608 | toks = line.split('=') |
---|
609 | self.nfunc = int(toks[1]) |
---|
610 | self.out = numpy.zeros(self.nfunc) |
---|
611 | self.cov = numpy.zeros([self.nfunc, self.nfunc]) |
---|
612 | elif line.startswith('#alpha='): |
---|
613 | toks = line.split('=') |
---|
614 | self.alpha = float(toks[1]) |
---|
615 | elif line.startswith('#chi2='): |
---|
616 | toks = line.split('=') |
---|
617 | self.chi2 = float(toks[1]) |
---|
618 | elif line.startswith('#elapsed='): |
---|
619 | toks = line.split('=') |
---|
620 | self.elapsed = float(toks[1]) |
---|
621 | elif line.startswith('#alpha_estimate='): |
---|
622 | toks = line.split('=') |
---|
623 | self.suggested_alpha = float(toks[1]) |
---|
624 | elif line.startswith('#qmin='): |
---|
625 | toks = line.split('=') |
---|
626 | try: |
---|
627 | self.q_min = float(toks[1]) |
---|
628 | except: |
---|
629 | self.q_min = None |
---|
630 | elif line.startswith('#qmax='): |
---|
631 | toks = line.split('=') |
---|
632 | try: |
---|
633 | self.q_max = float(toks[1]) |
---|
634 | except: |
---|
635 | self.q_max = None |
---|
636 | elif line.startswith('#slit_height='): |
---|
637 | toks = line.split('=') |
---|
638 | self.slit_height = float(toks[1]) |
---|
639 | elif line.startswith('#slit_width='): |
---|
640 | toks = line.split('=') |
---|
641 | self.slit_width = float(toks[1]) |
---|
642 | elif line.startswith('#background='): |
---|
643 | toks = line.split('=') |
---|
644 | self.background = float(toks[1]) |
---|
645 | elif line.startswith('#has_bck='): |
---|
646 | toks = line.split('=') |
---|
647 | if int(toks[1])==1: |
---|
648 | self.has_bck=True |
---|
649 | else: |
---|
650 | self.has_bck=False |
---|
651 | |
---|
652 | # Now read in the parameters |
---|
653 | elif line.startswith('#C_'): |
---|
654 | toks = line.split('=') |
---|
655 | p = re.compile('#C_([0-9]+)') |
---|
656 | m = p.search(toks[0]) |
---|
657 | toks2 = toks[1].split('+-') |
---|
658 | i = int(m.group(1)) |
---|
659 | self.out[i] = float(toks2[0]) |
---|
660 | |
---|
661 | self.cov[i][i] = float(toks2[1]) |
---|
662 | |
---|
663 | except: |
---|
664 | raise RuntimeError, "Invertor.from_file: corrupted file\n%s" % sys.exc_value |
---|
665 | else: |
---|
666 | raise RuntimeError, "Invertor.from_file: '%s' is not a file" % str(path) |
---|
667 | |
---|
668 | |
---|
669 | |
---|
670 | |
---|
671 | if __name__ == "__main__": |
---|
672 | o = Invertor() |
---|
673 | |
---|
674 | |
---|
675 | |
---|
676 | |
---|
677 | |
---|