[896abb3] | 1 | """ |
---|
| 2 | Module to perform P(r) inversion. |
---|
| 3 | The module contains the Invertor class. |
---|
| 4 | """ |
---|
[9e8dc22] | 5 | from sans.pr.core.pr_inversion import Cinvertor |
---|
| 6 | import numpy |
---|
[f71287f4] | 7 | import sys |
---|
[9e8dc22] | 8 | |
---|
[9a11937] | 9 | def help(): |
---|
| 10 | """ |
---|
| 11 | Provide general online help text |
---|
[43c0a8e] | 12 | Future work: extend this function to allow topic selection |
---|
[9a11937] | 13 | """ |
---|
| 14 | info_txt = "The inversion approach is based on Moore, J. Appl. Cryst. (1980) 13, 168-175.\n\n" |
---|
| 15 | info_txt += "P(r) is set to be equal to an expansion of base functions of the type " |
---|
| 16 | info_txt += "phi_n(r) = 2*r*sin(pi*n*r/D_max). The coefficient of each base functions " |
---|
| 17 | info_txt += "in the expansion is found by performing a least square fit with the " |
---|
| 18 | info_txt += "following fit function:\n\n" |
---|
| 19 | info_txt += "chi**2 = sum_i[ I_meas(q_i) - I_th(q_i) ]**2/error**2 + Reg_term\n\n" |
---|
| 20 | info_txt += "where I_meas(q) is the measured scattering intensity and I_th(q) is " |
---|
| 21 | info_txt += "the prediction from the Fourier transform of the P(r) expansion. " |
---|
| 22 | info_txt += "The Reg_term term is a regularization term set to the second derivative " |
---|
| 23 | info_txt += "d**2P(r)/dr**2 integrated over r. It is used to produce a smooth P(r) output.\n\n" |
---|
| 24 | info_txt += "The following are user inputs:\n\n" |
---|
| 25 | info_txt += " - Number of terms: the number of base functions in the P(r) expansion.\n\n" |
---|
| 26 | info_txt += " - Regularization constant: a multiplicative constant to set the size of " |
---|
| 27 | info_txt += "the regularization term.\n\n" |
---|
| 28 | info_txt += " - Maximum distance: the maximum distance between any two points in the system.\n" |
---|
| 29 | |
---|
| 30 | return info_txt |
---|
[9e8dc22] | 31 | |
---|
[9a11937] | 32 | |
---|
| 33 | class Invertor(Cinvertor): |
---|
| 34 | """ |
---|
| 35 | Invertor class to perform P(r) inversion |
---|
| 36 | |
---|
[ffca8f2] | 37 | The problem is solved by posing the problem as Ax = b, |
---|
| 38 | where x is the set of coefficients we are looking for. |
---|
[43c0a8e] | 39 | |
---|
[ffca8f2] | 40 | Npts is the number of points. |
---|
| 41 | |
---|
| 42 | In the following i refers to the ith base function coefficient. |
---|
| 43 | The matrix has its entries j in its first Npts rows set to |
---|
[a8b6364] | 44 | A[j][i] = (Fourier transformed base function for point j) |
---|
[ffca8f2] | 45 | |
---|
| 46 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 47 | derivative of P(r) at. This is used as our regularization term. |
---|
| 48 | For a vector r of length n_r, the following n_r rows are set to |
---|
[a8b6364] | 49 | A[j+Npts][i] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
[ffca8f2] | 50 | |
---|
| 51 | The vector b has its first Npts entries set to |
---|
| 52 | b[j] = (I(q) observed for point j) |
---|
| 53 | |
---|
| 54 | The following n_r entries are set to zero. |
---|
| 55 | |
---|
| 56 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 57 | the matrix and find the coefficients x. |
---|
[43c0a8e] | 58 | |
---|
| 59 | Methods inherited from Cinvertor: |
---|
[896abb3] | 60 | - get_peaks(pars): returns the number of P(r) peaks |
---|
| 61 | - oscillations(pars): returns the oscillation parameters for the output P(r) |
---|
| 62 | - get_positive(pars): returns the fraction of P(r) that is above zero |
---|
| 63 | - get_pos_err(pars): returns the fraction of P(r) that is 1-sigma above zero |
---|
[9a11937] | 64 | """ |
---|
[eca05c8] | 65 | ## Chisqr of the last computation |
---|
[2d06beb] | 66 | chi2 = 0 |
---|
| 67 | ## Time elapsed for last computation |
---|
| 68 | elapsed = 0 |
---|
[abad620] | 69 | ## Alpha to get the reg term the same size as the signal |
---|
| 70 | suggested_alpha = 0 |
---|
[f71287f4] | 71 | ## Last number of base functions used |
---|
| 72 | nfunc = 0 |
---|
| 73 | ## Last output values |
---|
| 74 | out = None |
---|
| 75 | ## Last errors on output values |
---|
| 76 | cov = None |
---|
[eca05c8] | 77 | |
---|
[9e8dc22] | 78 | def __init__(self): |
---|
| 79 | Cinvertor.__init__(self) |
---|
| 80 | |
---|
| 81 | def __setattr__(self, name, value): |
---|
| 82 | """ |
---|
| 83 | Set the value of an attribute. |
---|
| 84 | Access the parent class methods for |
---|
[896abb3] | 85 | x, y, err, d_max, q_min, q_max and alpha |
---|
[9e8dc22] | 86 | """ |
---|
| 87 | if name=='x': |
---|
[eca05c8] | 88 | if 0.0 in value: |
---|
| 89 | raise ValueError, "Invertor: one of your q-values is zero. Delete that entry before proceeding" |
---|
[9e8dc22] | 90 | return self.set_x(value) |
---|
| 91 | elif name=='y': |
---|
| 92 | return self.set_y(value) |
---|
| 93 | elif name=='err': |
---|
| 94 | return self.set_err(value) |
---|
| 95 | elif name=='d_max': |
---|
| 96 | return self.set_dmax(value) |
---|
[f71287f4] | 97 | elif name=='q_min': |
---|
| 98 | if value==None: |
---|
| 99 | return self.set_qmin(-1.0) |
---|
| 100 | return self.set_qmin(value) |
---|
| 101 | elif name=='q_max': |
---|
| 102 | if value==None: |
---|
| 103 | return self.set_qmax(-1.0) |
---|
| 104 | return self.set_qmax(value) |
---|
[eca05c8] | 105 | elif name=='alpha': |
---|
| 106 | return self.set_alpha(value) |
---|
[9e8dc22] | 107 | |
---|
| 108 | return Cinvertor.__setattr__(self, name, value) |
---|
| 109 | |
---|
| 110 | def __getattr__(self, name): |
---|
| 111 | """ |
---|
| 112 | Return the value of an attribute |
---|
| 113 | For the moment x, y, err and d_max are write-only |
---|
| 114 | TODO: change that! |
---|
| 115 | """ |
---|
| 116 | import numpy |
---|
| 117 | if name=='x': |
---|
| 118 | out = numpy.ones(self.get_nx()) |
---|
| 119 | self.get_x(out) |
---|
| 120 | return out |
---|
| 121 | elif name=='y': |
---|
| 122 | out = numpy.ones(self.get_ny()) |
---|
| 123 | self.get_y(out) |
---|
| 124 | return out |
---|
| 125 | elif name=='err': |
---|
| 126 | out = numpy.ones(self.get_nerr()) |
---|
| 127 | self.get_err(out) |
---|
| 128 | return out |
---|
| 129 | elif name=='d_max': |
---|
| 130 | return self.get_dmax() |
---|
[f71287f4] | 131 | elif name=='q_min': |
---|
| 132 | qmin = self.get_qmin() |
---|
| 133 | if qmin<0: |
---|
| 134 | return None |
---|
| 135 | return qmin |
---|
| 136 | elif name=='q_max': |
---|
| 137 | qmax = self.get_qmax() |
---|
| 138 | if qmax<0: |
---|
| 139 | return None |
---|
| 140 | return qmax |
---|
[eca05c8] | 141 | elif name=='alpha': |
---|
| 142 | return self.get_alpha() |
---|
[9e8dc22] | 143 | elif name in self.__dict__: |
---|
| 144 | return self.__dict__[name] |
---|
| 145 | return None |
---|
| 146 | |
---|
[2d06beb] | 147 | def clone(self): |
---|
| 148 | """ |
---|
| 149 | Return a clone of this instance |
---|
| 150 | """ |
---|
| 151 | invertor = Invertor() |
---|
| 152 | invertor.chi2 = self.chi2 |
---|
| 153 | invertor.elapsed = self.elapsed |
---|
| 154 | invertor.alpha = self.alpha |
---|
| 155 | invertor.d_max = self.d_max |
---|
[f71287f4] | 156 | invertor.q_min = self.q_min |
---|
| 157 | invertor.q_max = self.q_max |
---|
[2d06beb] | 158 | |
---|
| 159 | invertor.x = self.x |
---|
| 160 | invertor.y = self.y |
---|
| 161 | invertor.err = self.err |
---|
| 162 | |
---|
| 163 | return invertor |
---|
| 164 | |
---|
[ffca8f2] | 165 | def invert(self, nfunc=10, nr=20): |
---|
[9e8dc22] | 166 | """ |
---|
| 167 | Perform inversion to P(r) |
---|
[ffca8f2] | 168 | |
---|
| 169 | The problem is solved by posing the problem as Ax = b, |
---|
| 170 | where x is the set of coefficients we are looking for. |
---|
| 171 | |
---|
| 172 | Npts is the number of points. |
---|
| 173 | |
---|
| 174 | In the following i refers to the ith base function coefficient. |
---|
| 175 | The matrix has its entries j in its first Npts rows set to |
---|
| 176 | A[i][j] = (Fourier transformed base function for point j) |
---|
| 177 | |
---|
| 178 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 179 | derivative of P(r) at. This is used as our regularization term. |
---|
| 180 | For a vector r of length n_r, the following n_r rows are set to |
---|
| 181 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
| 182 | |
---|
| 183 | The vector b has its first Npts entries set to |
---|
| 184 | b[j] = (I(q) observed for point j) |
---|
| 185 | |
---|
| 186 | The following n_r entries are set to zero. |
---|
| 187 | |
---|
| 188 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 189 | the matrix and find the coefficients x. |
---|
| 190 | |
---|
| 191 | @param nfunc: number of base functions to use. |
---|
| 192 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
| 193 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
| 194 | """ |
---|
| 195 | #TODO: call the pyhton implementation for now. In the future, translate this to C. |
---|
| 196 | return self.lstsq(nfunc, nr=nr) |
---|
| 197 | |
---|
| 198 | def invert_optimize(self, nfunc=10, nr=20): |
---|
| 199 | """ |
---|
| 200 | Slower version of the P(r) inversion that uses scipy.optimize.leastsq. |
---|
| 201 | |
---|
| 202 | This probably produce more reliable results, but is much slower. |
---|
| 203 | The minimization function is set to sum_i[ (I_obs(q_i) - I_theo(q_i))/err**2 ] + alpha * reg_term, |
---|
| 204 | where the reg_term is given by Svergun: it is the integral of the square of the first derivative |
---|
| 205 | of P(r), d(P(r))/dr, integrated over the full range of r. |
---|
| 206 | |
---|
| 207 | @param nfunc: number of base functions to use. |
---|
| 208 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
| 209 | @return: c_out, c_cov - the coefficients with covariance matrix |
---|
[9e8dc22] | 210 | """ |
---|
[ffca8f2] | 211 | |
---|
[9e8dc22] | 212 | from scipy import optimize |
---|
[2d06beb] | 213 | import time |
---|
[9e8dc22] | 214 | |
---|
[f71287f4] | 215 | self.nfunc = nfunc |
---|
[9e8dc22] | 216 | # First, check that the current data is valid |
---|
| 217 | if self.is_valid()<=0: |
---|
| 218 | raise RuntimeError, "Invertor.invert: Data array are of different length" |
---|
| 219 | |
---|
| 220 | p = numpy.ones(nfunc) |
---|
[2d06beb] | 221 | t_0 = time.time() |
---|
[9e8dc22] | 222 | out, cov_x, info, mesg, success = optimize.leastsq(self.residuals, p, full_output=1, warning=True) |
---|
| 223 | |
---|
[eca05c8] | 224 | # Compute chi^2 |
---|
| 225 | res = self.residuals(out) |
---|
| 226 | chisqr = 0 |
---|
| 227 | for i in range(len(res)): |
---|
| 228 | chisqr += res[i] |
---|
| 229 | |
---|
| 230 | self.chi2 = chisqr |
---|
[2d06beb] | 231 | |
---|
| 232 | # Store computation time |
---|
| 233 | self.elapsed = time.time() - t_0 |
---|
[eca05c8] | 234 | |
---|
| 235 | return out, cov_x |
---|
| 236 | |
---|
| 237 | def pr_fit(self, nfunc=5): |
---|
| 238 | """ |
---|
[ffca8f2] | 239 | This is a direct fit to a given P(r). It assumes that the y data |
---|
| 240 | is set to some P(r) distribution that we are trying to reproduce |
---|
| 241 | with a set of base functions. |
---|
| 242 | |
---|
| 243 | This method is provided as a test. |
---|
[eca05c8] | 244 | """ |
---|
| 245 | from scipy import optimize |
---|
| 246 | |
---|
| 247 | # First, check that the current data is valid |
---|
| 248 | if self.is_valid()<=0: |
---|
| 249 | raise RuntimeError, "Invertor.invert: Data arrays are of different length" |
---|
| 250 | |
---|
| 251 | p = numpy.ones(nfunc) |
---|
[2d06beb] | 252 | t_0 = time.time() |
---|
[eca05c8] | 253 | out, cov_x, info, mesg, success = optimize.leastsq(self.pr_residuals, p, full_output=1, warning=True) |
---|
| 254 | |
---|
| 255 | # Compute chi^2 |
---|
| 256 | res = self.pr_residuals(out) |
---|
| 257 | chisqr = 0 |
---|
| 258 | for i in range(len(res)): |
---|
| 259 | chisqr += res[i] |
---|
| 260 | |
---|
| 261 | self.chisqr = chisqr |
---|
| 262 | |
---|
[2d06beb] | 263 | # Store computation time |
---|
| 264 | self.elapsed = time.time() - t_0 |
---|
| 265 | |
---|
[9e8dc22] | 266 | return out, cov_x |
---|
| 267 | |
---|
[eca05c8] | 268 | def pr_err(self, c, c_cov, r): |
---|
[896abb3] | 269 | """ |
---|
| 270 | Returns the value of P(r) for a given r, and base function |
---|
| 271 | coefficients, with error. |
---|
| 272 | |
---|
| 273 | @param c: base function coefficients |
---|
| 274 | @param c_cov: covariance matrice of the base function coefficients |
---|
| 275 | @param r: r-value to evaluate P(r) at |
---|
| 276 | @return: P(r) |
---|
| 277 | """ |
---|
[43c0a8e] | 278 | return self.get_pr_err(c, c_cov, r) |
---|
[2d06beb] | 279 | |
---|
[f71287f4] | 280 | def _accept_q(self, q): |
---|
| 281 | """ |
---|
| 282 | Check q-value against user-defined range |
---|
| 283 | """ |
---|
| 284 | if not self.q_min==None and q<self.q_min: |
---|
| 285 | return False |
---|
| 286 | if not self.q_max==None and q>self.q_max: |
---|
| 287 | return False |
---|
| 288 | return True |
---|
| 289 | |
---|
[ffca8f2] | 290 | def lstsq(self, nfunc=5, nr=20): |
---|
[f71287f4] | 291 | #TODO: do this on the C side |
---|
| 292 | # |
---|
| 293 | # To make sure an array is contiguous: |
---|
| 294 | # blah = numpy.ascontiguousarray(blah_original) |
---|
| 295 | # ... before passing it to C |
---|
[9a11937] | 296 | """ |
---|
[ffca8f2] | 297 | The problem is solved by posing the problem as Ax = b, |
---|
| 298 | where x is the set of coefficients we are looking for. |
---|
| 299 | |
---|
| 300 | Npts is the number of points. |
---|
| 301 | |
---|
| 302 | In the following i refers to the ith base function coefficient. |
---|
| 303 | The matrix has its entries j in its first Npts rows set to |
---|
| 304 | A[i][j] = (Fourier transformed base function for point j) |
---|
| 305 | |
---|
| 306 | We them choose a number of r-points, n_r, to evaluate the second |
---|
| 307 | derivative of P(r) at. This is used as our regularization term. |
---|
| 308 | For a vector r of length n_r, the following n_r rows are set to |
---|
| 309 | A[i+Npts][j] = (2nd derivative of P(r), d**2(P(r))/d(r)**2, evaluated at r[j]) |
---|
| 310 | |
---|
| 311 | The vector b has its first Npts entries set to |
---|
| 312 | b[j] = (I(q) observed for point j) |
---|
| 313 | |
---|
| 314 | The following n_r entries are set to zero. |
---|
| 315 | |
---|
| 316 | The result is found by using scipy.linalg.basic.lstsq to invert |
---|
| 317 | the matrix and find the coefficients x. |
---|
| 318 | |
---|
| 319 | @param nfunc: number of base functions to use. |
---|
| 320 | @param nr: number of r points to evaluate the 2nd derivative at for the reg. term. |
---|
[9a11937] | 321 | """ |
---|
[2d06beb] | 322 | import math |
---|
| 323 | from scipy.linalg.basic import lstsq |
---|
| 324 | |
---|
[f71287f4] | 325 | self.nfunc = nfunc |
---|
[2d06beb] | 326 | # a -- An M x N matrix. |
---|
| 327 | # b -- An M x nrhs matrix or M vector. |
---|
| 328 | npts = len(self.x) |
---|
[ffca8f2] | 329 | nq = nr |
---|
[2d06beb] | 330 | sqrt_alpha = math.sqrt(self.alpha) |
---|
| 331 | |
---|
| 332 | a = numpy.zeros([npts+nq, nfunc]) |
---|
| 333 | b = numpy.zeros(npts+nq) |
---|
| 334 | err = numpy.zeros(nfunc) |
---|
| 335 | |
---|
| 336 | for j in range(nfunc): |
---|
| 337 | for i in range(npts): |
---|
[f71287f4] | 338 | if self._accept_q(self.x[i]): |
---|
| 339 | a[i][j] = self.basefunc_ft(self.d_max, j+1, self.x[i])/self.err[i] |
---|
[ffca8f2] | 340 | |
---|
| 341 | #TODO: refactor this: i_q should really be i_r |
---|
[2d06beb] | 342 | for i_q in range(nq): |
---|
| 343 | r = self.d_max/nq*i_q |
---|
| 344 | #a[i_q+npts][j] = sqrt_alpha * 1.0/nq*self.d_max*2.0*math.fabs(math.sin(math.pi*(j+1)*r/self.d_max) + math.pi*(j+1)*r/self.d_max * math.cos(math.pi*(j+1)*r/self.d_max)) |
---|
| 345 | a[i_q+npts][j] = sqrt_alpha * 1.0/nq*self.d_max*2.0*(2.0*math.pi*(j+1)/self.d_max*math.cos(math.pi*(j+1)*r/self.d_max) + math.pi**2*(j+1)**2*r/self.d_max**2 * math.sin(math.pi*(j+1)*r/self.d_max)) |
---|
| 346 | |
---|
| 347 | for i in range(npts): |
---|
[f71287f4] | 348 | if self._accept_q(self.x[i]): |
---|
| 349 | b[i] = self.y[i]/self.err[i] |
---|
[2d06beb] | 350 | |
---|
| 351 | c, chi2, rank, n = lstsq(a, b) |
---|
| 352 | self.chi2 = chi2 |
---|
| 353 | |
---|
| 354 | at = numpy.transpose(a) |
---|
| 355 | inv_cov = numpy.zeros([nfunc,nfunc]) |
---|
| 356 | for i in range(nfunc): |
---|
| 357 | for j in range(nfunc): |
---|
| 358 | inv_cov[i][j] = 0.0 |
---|
[1a5c946] | 359 | for k in range(npts+nr): |
---|
[f71287f4] | 360 | if self._accept_q(self.x[i]): |
---|
| 361 | inv_cov[i][j] = at[i][k]*a[k][j] |
---|
[2d06beb] | 362 | |
---|
| 363 | # Compute the reg term size for the output |
---|
| 364 | sum_sig = 0.0 |
---|
| 365 | sum_reg = 0.0 |
---|
| 366 | for j in range(nfunc): |
---|
| 367 | for i in range(npts): |
---|
[f71287f4] | 368 | if self._accept_q(self.x[i]): |
---|
| 369 | sum_sig += (a[i][j])**2 |
---|
[2d06beb] | 370 | for i in range(nq): |
---|
[f71287f4] | 371 | sum_reg += (a[i+npts][j])**2 |
---|
[2d06beb] | 372 | |
---|
[4241e48] | 373 | if math.fabs(self.alpha)>0: |
---|
| 374 | new_alpha = sum_sig/(sum_reg/self.alpha) |
---|
| 375 | else: |
---|
| 376 | new_alpha = 0.0 |
---|
[abad620] | 377 | self.suggested_alpha = new_alpha |
---|
[2d06beb] | 378 | |
---|
| 379 | try: |
---|
| 380 | err = math.fabs(chi2/(npts-nfunc))* inv_cov |
---|
| 381 | except: |
---|
| 382 | print "Error estimating uncertainties" |
---|
| 383 | |
---|
[f71287f4] | 384 | # Keep a copy of the last output |
---|
| 385 | self.out = c |
---|
| 386 | self.cov = err |
---|
[2d06beb] | 387 | |
---|
| 388 | return c, err |
---|
| 389 | |
---|
[f71287f4] | 390 | def estimate_alpha(self, nfunc): |
---|
| 391 | """ |
---|
| 392 | Returns a reasonable guess for the |
---|
| 393 | regularization constant alpha |
---|
| 394 | |
---|
| 395 | @return: alpha, message, elapsed |
---|
| 396 | |
---|
| 397 | where alpha is the estimate for alpha, |
---|
| 398 | message is a message for the user, |
---|
| 399 | elapsed is the computation time |
---|
| 400 | """ |
---|
| 401 | import time |
---|
| 402 | try: |
---|
| 403 | pr = self.clone() |
---|
| 404 | |
---|
| 405 | # T_0 for computation time |
---|
| 406 | starttime = time.time() |
---|
[e39640f] | 407 | elapsed = 0 |
---|
[f71287f4] | 408 | |
---|
| 409 | # If the current alpha is zero, try |
---|
| 410 | # another value |
---|
| 411 | if pr.alpha<=0: |
---|
| 412 | pr.alpha = 0.0001 |
---|
| 413 | |
---|
| 414 | # Perform inversion to find the largest alpha |
---|
| 415 | out, cov = pr.lstsq(nfunc) |
---|
| 416 | elapsed = time.time()-starttime |
---|
| 417 | initial_alpha = pr.alpha |
---|
| 418 | initial_peaks = pr.get_peaks(out) |
---|
| 419 | |
---|
| 420 | # Try the inversion with the estimated alpha |
---|
| 421 | pr.alpha = pr.suggested_alpha |
---|
| 422 | out, cov = pr.lstsq(nfunc) |
---|
| 423 | |
---|
| 424 | npeaks = pr.get_peaks(out) |
---|
| 425 | # if more than one peak to start with |
---|
| 426 | # just return the estimate |
---|
| 427 | if npeaks>1: |
---|
| 428 | message = "Your P(r) is not smooth, please check your inversion parameters" |
---|
| 429 | return pr.suggested_alpha, message, elapsed |
---|
| 430 | else: |
---|
| 431 | |
---|
| 432 | # Look at smaller values |
---|
| 433 | # We assume that for the suggested alpha, we have 1 peak |
---|
| 434 | # if not, send a message to change parameters |
---|
| 435 | alpha = pr.suggested_alpha |
---|
| 436 | best_alpha = pr.suggested_alpha |
---|
| 437 | found = False |
---|
| 438 | for i in range(10): |
---|
| 439 | pr.alpha = (0.33)**(i+1)*alpha |
---|
| 440 | out, cov = pr.lstsq(nfunc) |
---|
| 441 | |
---|
| 442 | peaks = pr.get_peaks(out) |
---|
| 443 | if peaks>1: |
---|
| 444 | found = True |
---|
| 445 | break |
---|
| 446 | best_alpha = pr.alpha |
---|
| 447 | |
---|
| 448 | # If we didn't find a turning point for alpha and |
---|
| 449 | # the initial alpha already had only one peak, |
---|
| 450 | # just return that |
---|
| 451 | if not found and initial_peaks==1 and initial_alpha<best_alpha: |
---|
| 452 | best_alpha = initial_alpha |
---|
| 453 | |
---|
| 454 | # Check whether the size makes sense |
---|
| 455 | message='' |
---|
| 456 | |
---|
| 457 | if not found: |
---|
| 458 | message = "None" |
---|
| 459 | elif best_alpha>=0.5*pr.suggested_alpha: |
---|
| 460 | # best alpha is too big, return a |
---|
| 461 | # reasonable value |
---|
| 462 | message = "The estimated alpha for your system is too large. " |
---|
| 463 | message += "Try increasing your maximum distance." |
---|
| 464 | |
---|
| 465 | return best_alpha, message, elapsed |
---|
| 466 | |
---|
| 467 | except: |
---|
| 468 | message = "Invertor.estimate_alpha: %s" % sys.exc_value |
---|
| 469 | return 0, message, elapsed |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | def to_file(self, path, npts=100): |
---|
| 473 | """ |
---|
| 474 | Save the state to a file that will be readable |
---|
| 475 | by SliceView. |
---|
| 476 | @param path: path of the file to write |
---|
| 477 | @param npts: number of P(r) points to be written |
---|
| 478 | """ |
---|
| 479 | import pylab |
---|
| 480 | |
---|
| 481 | file = open(path, 'w') |
---|
| 482 | file.write("#d_max=%g\n" % self.d_max) |
---|
| 483 | file.write("#nfunc=%g\n" % self.nfunc) |
---|
| 484 | file.write("#alpha=%g\n" % self.alpha) |
---|
| 485 | file.write("#chi2=%g\n" % self.chi2) |
---|
| 486 | file.write("#elapsed=%g\n" % self.elapsed) |
---|
| 487 | file.write("#alpha_estimate=%g\n" % self.suggested_alpha) |
---|
| 488 | if not self.out==None: |
---|
| 489 | if len(self.out)==len(self.cov): |
---|
| 490 | for i in range(len(self.out)): |
---|
| 491 | file.write("#C_%i=%s+-%s\n" % (i, str(self.out[i]), str(self.cov[i][i]))) |
---|
| 492 | file.write("<r> <Pr> <dPr>\n") |
---|
| 493 | r = pylab.arange(0.0, self.d_max, self.d_max/npts) |
---|
| 494 | |
---|
| 495 | for r_i in r: |
---|
| 496 | (value, err) = self.pr_err(self.out, self.cov, r_i) |
---|
| 497 | file.write("%g %g %g\n" % (r_i, value, err)) |
---|
| 498 | |
---|
| 499 | file.close() |
---|
[9a11937] | 500 | |
---|
[2d06beb] | 501 | |
---|
[f71287f4] | 502 | def from_file(self, path): |
---|
| 503 | """ |
---|
| 504 | Load the state of the Invertor from a file, |
---|
| 505 | to be able to generate P(r) from a set of |
---|
| 506 | parameters. |
---|
| 507 | @param path: path of the file to load |
---|
| 508 | """ |
---|
| 509 | import os |
---|
| 510 | import re |
---|
| 511 | if os.path.isfile(path): |
---|
| 512 | try: |
---|
| 513 | fd = open(path, 'r') |
---|
| 514 | |
---|
| 515 | buff = fd.read() |
---|
| 516 | lines = buff.split('\n') |
---|
| 517 | for line in lines: |
---|
| 518 | if line.startswith('#d_max='): |
---|
| 519 | toks = line.split('=') |
---|
| 520 | self.d_max = float(toks[1]) |
---|
| 521 | elif line.startswith('#nfunc='): |
---|
| 522 | toks = line.split('=') |
---|
| 523 | self.nfunc = int(toks[1]) |
---|
| 524 | self.out = numpy.zeros(self.nfunc) |
---|
| 525 | self.cov = numpy.zeros([self.nfunc, self.nfunc]) |
---|
| 526 | elif line.startswith('#alpha='): |
---|
| 527 | toks = line.split('=') |
---|
| 528 | self.alpha = float(toks[1]) |
---|
| 529 | elif line.startswith('#chi2='): |
---|
| 530 | toks = line.split('=') |
---|
| 531 | self.chi2 = float(toks[1]) |
---|
| 532 | elif line.startswith('#elapsed='): |
---|
| 533 | toks = line.split('=') |
---|
| 534 | self.elapsed = float(toks[1]) |
---|
| 535 | elif line.startswith('#alpha_estimate='): |
---|
| 536 | toks = line.split('=') |
---|
| 537 | self.suggested_alpha = float(toks[1]) |
---|
| 538 | |
---|
| 539 | # Now read in the parameters |
---|
| 540 | elif line.startswith('#C_'): |
---|
| 541 | toks = line.split('=') |
---|
| 542 | p = re.compile('#C_([0-9]+)') |
---|
| 543 | m = p.search(toks[0]) |
---|
| 544 | toks2 = toks[1].split('+-') |
---|
| 545 | i = int(m.group(1)) |
---|
| 546 | self.out[i] = float(toks2[0]) |
---|
| 547 | |
---|
| 548 | self.cov[i][i] = float(toks2[1]) |
---|
| 549 | |
---|
| 550 | except: |
---|
| 551 | raise RuntimeError, "Invertor.from_file: corrupted file\n%s" % sys.exc_value |
---|
| 552 | else: |
---|
| 553 | raise RuntimeError, "Invertor.from_file: '%s' is not a file" % str(path) |
---|
[2d06beb] | 554 | |
---|
[eca05c8] | 555 | |
---|
| 556 | |
---|
[f71287f4] | 557 | |
---|
[9e8dc22] | 558 | if __name__ == "__main__": |
---|
| 559 | o = Invertor() |
---|
| 560 | |
---|
| 561 | |
---|
| 562 | |
---|
| 563 | |
---|
| 564 | |
---|