1 | #include <math.h> |
---|
2 | #include "invertor.h" |
---|
3 | #include <memory.h> |
---|
4 | #include <stdio.h> |
---|
5 | #include <stdlib.h> |
---|
6 | |
---|
7 | double pi = 3.1416; |
---|
8 | |
---|
9 | /** |
---|
10 | * Deallocate memory |
---|
11 | */ |
---|
12 | void invertor_dealloc(Invertor_params *pars) { |
---|
13 | free(pars->x); |
---|
14 | free(pars->y); |
---|
15 | free(pars->err); |
---|
16 | } |
---|
17 | |
---|
18 | void invertor_init(Invertor_params *pars) { |
---|
19 | pars->d_max = 180; |
---|
20 | pars->q_min = -1.0; |
---|
21 | pars->q_max = -1.0; |
---|
22 | } |
---|
23 | |
---|
24 | |
---|
25 | /** |
---|
26 | * P(r) of a sphere, for test purposes |
---|
27 | * |
---|
28 | * @param R: radius of the sphere |
---|
29 | * @param r: distance, in the same units as the radius |
---|
30 | * @return: P(r) |
---|
31 | */ |
---|
32 | double pr_sphere(double R, double r) { |
---|
33 | if (r <= 2.0*R) { |
---|
34 | return 12.0* pow(0.5*r/R, 2.0) * pow(1.0-0.5*r/R, 2.0) * ( 2.0 + 0.5*r/R ); |
---|
35 | } else { |
---|
36 | return 0.0; |
---|
37 | } |
---|
38 | } |
---|
39 | |
---|
40 | /** |
---|
41 | * Orthogonal functions: |
---|
42 | * B(r) = 2r sin(pi*nr/d) |
---|
43 | * |
---|
44 | */ |
---|
45 | double ortho(double d_max, int n, double r) { |
---|
46 | return 2.0*r*sin(pi*n*r/d_max); |
---|
47 | } |
---|
48 | |
---|
49 | /** |
---|
50 | * Fourier transform of the nth orthogonal function |
---|
51 | * |
---|
52 | */ |
---|
53 | double ortho_transformed(double d_max, int n, double q) { |
---|
54 | return 8.0*pow(pi, 2.0)/q * d_max * n * pow(-1.0, n+1) |
---|
55 | *sin(q*d_max) / ( pow(pi*n, 2.0) - pow(q*d_max, 2.0) ); |
---|
56 | } |
---|
57 | |
---|
58 | /** |
---|
59 | * First derivative in of the orthogonal function dB(r)/dr |
---|
60 | * |
---|
61 | */ |
---|
62 | double ortho_derived(double d_max, int n, double r) { |
---|
63 | return 2.0*sin(pi*n*r/d_max) + 2.0*r*cos(pi*n*r/d_max); |
---|
64 | } |
---|
65 | |
---|
66 | /** |
---|
67 | * Scattering intensity calculated from the expansion. |
---|
68 | */ |
---|
69 | double iq(double *pars, double d_max, int n_c, double q) { |
---|
70 | double sum = 0.0; |
---|
71 | int i; |
---|
72 | for (i=0; i<n_c; i++) { |
---|
73 | sum += pars[i] * ortho_transformed(d_max, i+1, q); |
---|
74 | } |
---|
75 | return sum; |
---|
76 | } |
---|
77 | |
---|
78 | /** |
---|
79 | * P(r) calculated from the expansion. |
---|
80 | */ |
---|
81 | double pr(double *pars, double d_max, int n_c, double r) { |
---|
82 | double sum = 0.0; |
---|
83 | int i; |
---|
84 | for (i=0; i<n_c; i++) { |
---|
85 | sum += pars[i] * ortho(d_max, i+1, r); |
---|
86 | } |
---|
87 | return sum; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * P(r) calculated from the expansion, with errors |
---|
92 | */ |
---|
93 | void pr_err(double *pars, double *err, double d_max, int n_c, |
---|
94 | double r, double *pr_value, double *pr_value_err) { |
---|
95 | double sum = 0.0; |
---|
96 | double sum_err = 0.0; |
---|
97 | double func_value; |
---|
98 | int i; |
---|
99 | for (i=0; i<n_c; i++) { |
---|
100 | func_value = ortho(d_max, i+1, r); |
---|
101 | sum += pars[i] * func_value; |
---|
102 | //sum_err += err[i]*err[i]*func_value*func_value; |
---|
103 | sum_err += err[i*n_c+i]*func_value*func_value; |
---|
104 | } |
---|
105 | *pr_value = sum; |
---|
106 | if (sum_err>0) { |
---|
107 | *pr_value_err = sqrt(sum_err); |
---|
108 | } else { |
---|
109 | *pr_value_err = sum; |
---|
110 | } |
---|
111 | } |
---|
112 | |
---|
113 | /** |
---|
114 | * dP(r)/dr calculated from the expansion. |
---|
115 | */ |
---|
116 | double dprdr(double *pars, double d_max, int n_c, double r) { |
---|
117 | double sum = 0.0; |
---|
118 | int i; |
---|
119 | for (i=0; i<n_c; i++) { |
---|
120 | sum += pars[i] * 2.0*(sin(pi*(i+1)*r/d_max) + pi*(i+1)*r/d_max * cos(pi*(i+1)*r/d_max)); |
---|
121 | } |
---|
122 | return sum; |
---|
123 | } |
---|
124 | |
---|
125 | /** |
---|
126 | * regularization term calculated from the expansion. |
---|
127 | */ |
---|
128 | double reg_term(double *pars, double d_max, int n_c, int nslice) { |
---|
129 | double sum = 0.0; |
---|
130 | double r; |
---|
131 | double deriv; |
---|
132 | int i; |
---|
133 | for (i=0; i<nslice; i++) { |
---|
134 | r = d_max/(1.0*nslice)*i; |
---|
135 | deriv = dprdr(pars, d_max, n_c, r); |
---|
136 | sum += deriv*deriv; |
---|
137 | } |
---|
138 | return sum/(1.0*nslice)*d_max; |
---|
139 | } |
---|
140 | |
---|
141 | /** |
---|
142 | * regularization term calculated from the expansion. |
---|
143 | */ |
---|
144 | double int_p2(double *pars, double d_max, int n_c, int nslice) { |
---|
145 | double sum = 0.0; |
---|
146 | double r; |
---|
147 | double value; |
---|
148 | int i; |
---|
149 | for (i=0; i<nslice; i++) { |
---|
150 | r = d_max/(1.0*nslice)*i; |
---|
151 | value = pr(pars, d_max, n_c, r); |
---|
152 | sum += value*value; |
---|
153 | } |
---|
154 | return sum/(1.0*nslice)*d_max; |
---|
155 | } |
---|
156 | |
---|
157 | /** |
---|
158 | * Get the number of P(r) peaks. |
---|
159 | */ |
---|
160 | int npeaks(double *pars, double d_max, int n_c, int nslice) { |
---|
161 | double r; |
---|
162 | double value; |
---|
163 | int i; |
---|
164 | double previous = 0.0; |
---|
165 | double slope = 0.0; |
---|
166 | int count = 0; |
---|
167 | for (i=0; i<nslice; i++) { |
---|
168 | r = d_max/(1.0*nslice)*i; |
---|
169 | value = pr(pars, d_max, n_c, r); |
---|
170 | if (previous<=value){ |
---|
171 | //if (slope<0) count += 1; |
---|
172 | slope = 1; |
---|
173 | } else { |
---|
174 | //printf("slope -1"); |
---|
175 | if (slope>0) count += 1; |
---|
176 | slope = -1; |
---|
177 | } |
---|
178 | previous = value; |
---|
179 | } |
---|
180 | return count; |
---|
181 | } |
---|
182 | |
---|
183 | /** |
---|
184 | * Get the fraction of the integral of P(r) over the whole range |
---|
185 | * of r that is above zero. |
---|
186 | * A valid P(r) is define as being positive for all r. |
---|
187 | */ |
---|
188 | double positive_integral(double *pars, double d_max, int n_c, int nslice) { |
---|
189 | double r; |
---|
190 | double value; |
---|
191 | int i; |
---|
192 | double sum_pos = 0.0; |
---|
193 | double sum = 0.0; |
---|
194 | |
---|
195 | for (i=0; i<nslice; i++) { |
---|
196 | r = d_max/(1.0*nslice)*i; |
---|
197 | value = pr(pars, d_max, n_c, r); |
---|
198 | if (value>0.0) sum_pos += value; |
---|
199 | sum += fabs(value); |
---|
200 | } |
---|
201 | return sum_pos/sum; |
---|
202 | } |
---|
203 | |
---|
204 | /** |
---|
205 | * Get the fraction of the integral of P(r) over the whole range |
---|
206 | * of r that is at least one sigma above zero. |
---|
207 | */ |
---|
208 | double positive_errors(double *pars, double *err, double d_max, int n_c, int nslice) { |
---|
209 | double r; |
---|
210 | double value; |
---|
211 | int i; |
---|
212 | double sum_pos = 0.0; |
---|
213 | double sum = 0.0; |
---|
214 | double pr_val; |
---|
215 | double pr_val_err; |
---|
216 | |
---|
217 | for (i=0; i<nslice; i++) { |
---|
218 | r = d_max/(1.0*nslice)*i; |
---|
219 | pr_err(pars, err, d_max, n_c, r, &pr_val, &pr_val_err); |
---|
220 | if (pr_val>pr_val_err) sum_pos += pr_val; |
---|
221 | sum += fabs(pr_val); |
---|
222 | |
---|
223 | |
---|
224 | } |
---|
225 | return sum_pos/sum; |
---|
226 | } |
---|