1 | """ |
---|
2 | Unit tests for fitting module |
---|
3 | """ |
---|
4 | import unittest |
---|
5 | from sans.guitools.plottables import Theory1D |
---|
6 | from sans.guitools.plottables import Data1D |
---|
7 | from sans.fit.AbstractFitEngine import Data, Model |
---|
8 | import math |
---|
9 | class testFitModule(unittest.TestCase): |
---|
10 | """ test fitting """ |
---|
11 | def testLoader(self): |
---|
12 | """ |
---|
13 | test module Load |
---|
14 | """ |
---|
15 | from sans.fit.Loader import Load |
---|
16 | load= Load() |
---|
17 | load.set_filename("testdata_line.txt") |
---|
18 | self.assertEqual(load.get_filename(),"testdata_line.txt") |
---|
19 | load.set_values() |
---|
20 | x=[] |
---|
21 | y=[] |
---|
22 | dx=[] |
---|
23 | dy=[] |
---|
24 | x,y,dx,dy = load.get_values() |
---|
25 | # test that values have been loaded |
---|
26 | self.assertNotEqual(x, None) |
---|
27 | self.assertNotEqual(y, []) |
---|
28 | self.assertNotEqual(dy, None) |
---|
29 | self.assertEqual(len(x),len(y)) |
---|
30 | self.assertEqual(len(dy),len(y)) |
---|
31 | |
---|
32 | # test data the two plottables contained values loaded |
---|
33 | data1 = Theory1D(x=[], y=[], dy=None) |
---|
34 | data2 = Data1D(x=[], y=[],dx=None, dy=None) |
---|
35 | data1.name = "data1" |
---|
36 | data2.name = "data2" |
---|
37 | load.load_data(data1) |
---|
38 | load.load_data(data2) |
---|
39 | |
---|
40 | |
---|
41 | for i in range(len(x)): |
---|
42 | self.assertEqual(data2.x[i],x[i]) |
---|
43 | self.assertEqual(data1.y[i],y[i]) |
---|
44 | self.assertEqual(data2.y[i],y[i]) |
---|
45 | self.assertEqual(data1.dx[i],dx[i]) |
---|
46 | self.assertEqual(data2.dy[i],dy[i]) |
---|
47 | self.assertEqual(data1.x[i],data2.x[i]) |
---|
48 | self.assertEqual(data2.y[i],data2.y[i]) |
---|
49 | |
---|
50 | |
---|
51 | def testfit_1Data_1Model(self): |
---|
52 | """ test fitting for one data and one model park vs scipy""" |
---|
53 | #load data |
---|
54 | from sans.fit.Loader import Load |
---|
55 | load= Load() |
---|
56 | load.set_filename("testdata_line.txt") |
---|
57 | load.set_values() |
---|
58 | data11 = Data1D(x=[], y=[],dx=None, dy=None) |
---|
59 | load.load_data(data11) |
---|
60 | |
---|
61 | #Importing the Fit module |
---|
62 | from sans.fit.Fitting import Fit |
---|
63 | fitter= Fit('scipy') |
---|
64 | |
---|
65 | # Receives the type of model for the fitting |
---|
66 | from sans.guitools.LineModel import LineModel |
---|
67 | model11 = LineModel() |
---|
68 | model22 = LineModel() |
---|
69 | |
---|
70 | #Do the fit SCIPY |
---|
71 | model11.setParam( 'A', 2) |
---|
72 | model11.setParam( 'B', 1) |
---|
73 | data1=Data(sans_data=data11) |
---|
74 | model1 =Model(model11) |
---|
75 | model2 =Model(model22) |
---|
76 | |
---|
77 | fitter.set_data(data1,1) |
---|
78 | fitter.set_model(model1,"M1",1,['A','B']) |
---|
79 | |
---|
80 | result= fitter.fit() |
---|
81 | out1=result.pvec |
---|
82 | chisqr1=result.fitness |
---|
83 | cov1=result.cov |
---|
84 | print "scipy",chisqr1, out1, cov1 |
---|
85 | """ testing SCIPy results""" |
---|
86 | self.assert_(math.fabs(out1[1]-2.5)/math.sqrt(cov1[1][1]) < 2) |
---|
87 | self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2) |
---|
88 | self.assert_(chisqr1/len(data1.x) < 2) |
---|
89 | # PARK |
---|
90 | fitter= Fit('park') |
---|
91 | |
---|
92 | #Do the fit |
---|
93 | fitter.set_data(data1,1) |
---|
94 | model2.setParams( [2,1]) |
---|
95 | |
---|
96 | fitter.set_model(model2,"M1",1,['A','B']) |
---|
97 | |
---|
98 | result2=fitter.fit(None,None) |
---|
99 | out2=result2.pvec |
---|
100 | chisqr2=result2.fitness |
---|
101 | cov2=result2.cov |
---|
102 | self.assert_(math.fabs(out2[1]-2.5)/math.sqrt(cov2[1][1]) < 2) |
---|
103 | self.assert_(math.fabs(out2[0]-4.0)/math.sqrt(cov2[0][0]) < 2) |
---|
104 | self.assert_(chisqr2/len(data1.x) < 2) |
---|
105 | print "scipy",chisqr1, out1, cov1 |
---|
106 | print "park",chisqr2, out2, cov2 |
---|
107 | self.assertAlmostEquals(out1[1], out2[1],0) |
---|
108 | self.assertAlmostEquals(out1[0], out2[0],0) |
---|
109 | self.assertAlmostEquals(cov1[0][0], cov2[0][0],1) |
---|
110 | self.assertAlmostEquals(cov1[1][1], cov2[1][1],1) |
---|
111 | self.assertAlmostEquals(chisqr1, chisqr2) |
---|
112 | |
---|
113 | def testfit_1Data_1Model(self): |
---|
114 | """ test fitting for one data and one model cipy""" |
---|
115 | #load data |
---|
116 | from sans.fit.Loader import Load |
---|
117 | load= Load() |
---|
118 | load.set_filename("testdata_line.txt") |
---|
119 | load.set_values() |
---|
120 | data11 = Data1D(x=[], y=[],dx=None, dy=None) |
---|
121 | load.load_data(data11) |
---|
122 | data1=Data(sans_data=data11) |
---|
123 | |
---|
124 | #Importing the Fit module |
---|
125 | from sans.fit.Fitting import Fit |
---|
126 | fitter= Fit('scipy') |
---|
127 | |
---|
128 | # Receives the type of model for the fitting |
---|
129 | from sans.guitools.LineModel import LineModel |
---|
130 | model1 = LineModel() |
---|
131 | model =Model(model1) |
---|
132 | |
---|
133 | #Do the fit SCIPY |
---|
134 | fitter.set_data(data1,1) |
---|
135 | import math |
---|
136 | |
---|
137 | pars1=['A','B'] |
---|
138 | pars1.sort() |
---|
139 | fitter.set_model(model,"M1",1,pars1) |
---|
140 | result=fitter.fit() |
---|
141 | print "scipy",result.fitness,result.cov, result.pvec |
---|
142 | |
---|
143 | self.assert_(result.fitness) |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | |
---|