1 | """ |
---|
2 | Unit tests for fitting module |
---|
3 | @author M. Doucet |
---|
4 | """ |
---|
5 | import unittest |
---|
6 | from sans.fit.AbstractFitEngine import Model |
---|
7 | import math |
---|
8 | import numpy |
---|
9 | from sans.fit.Fitting import Fit |
---|
10 | from DataLoader.loader import Loader |
---|
11 | |
---|
12 | class testFitModule(unittest.TestCase): |
---|
13 | """ test fitting """ |
---|
14 | |
---|
15 | def test_scipy(self): |
---|
16 | """ Simple cylinder model fit (scipy) """ |
---|
17 | |
---|
18 | out=Loader().load("cyl_400_20.txt") |
---|
19 | # This data file has not error, add them |
---|
20 | out.dy = out.y |
---|
21 | |
---|
22 | fitter = Fit('scipy') |
---|
23 | fitter.set_data(out,1) |
---|
24 | |
---|
25 | # Receives the type of model for the fitting |
---|
26 | from sans.models.CylinderModel import CylinderModel |
---|
27 | model1 = CylinderModel() |
---|
28 | model1.setParam('contrast', 1) |
---|
29 | model = Model(model1) |
---|
30 | model.set(scale=1e-10) |
---|
31 | pars1 =['length','radius','scale'] |
---|
32 | fitter.set_model(model,1,pars1) |
---|
33 | |
---|
34 | # What the hell is this line for? |
---|
35 | fitter.select_problem_for_fit(Uid=1,value=1) |
---|
36 | result1 = fitter.fit() |
---|
37 | |
---|
38 | self.assert_(result1) |
---|
39 | self.assertTrue(len(result1.pvec)>0 or len(result1.pvec)==0 ) |
---|
40 | self.assertTrue(len(result1.stderr)> 0 or len(result1.stderr)==0) |
---|
41 | |
---|
42 | self.assertTrue( math.fabs(result1.pvec[0]-400.0)/3.0 < result1.stderr[0] ) |
---|
43 | self.assertTrue( math.fabs(result1.pvec[1]-20.0)/3.0 < result1.stderr[1] ) |
---|
44 | self.assertTrue( math.fabs(result1.pvec[2]-9.0e-12)/3.0 < result1.stderr[2] ) |
---|
45 | self.assertTrue( result1.fitness < 1.0 ) |
---|
46 | |
---|
47 | def test_scipy_dispersion(self): |
---|
48 | """ |
---|
49 | Cylinder fit with dispersion |
---|
50 | """ |
---|
51 | # Load data |
---|
52 | # This data is for a cylinder with |
---|
53 | # length=400, radius=20, radius disp=5, scale=1e-10 |
---|
54 | out=Loader().load("cyl_400_20_disp5r.txt") |
---|
55 | out.dy = numpy.zeros(len(out.y)) |
---|
56 | for i in range(len(out.y)): |
---|
57 | out.dy[i] = math.sqrt(out.y[i]) |
---|
58 | |
---|
59 | # Set up the fit |
---|
60 | fitter = Fit('scipy') |
---|
61 | # Receives the type of model for the fitting |
---|
62 | from sans.models.CylinderModel import CylinderModel |
---|
63 | model1 = CylinderModel() |
---|
64 | model1.setParam('contrast', 1) |
---|
65 | |
---|
66 | # Dispersion parameters |
---|
67 | model1.dispersion['radius']['width'] = 0.001 |
---|
68 | model1.dispersion['radius']['npts'] = 50 |
---|
69 | |
---|
70 | model = Model(model1) |
---|
71 | |
---|
72 | pars1 =['length','radius','scale','radius.width'] |
---|
73 | fitter.set_data(out,1) |
---|
74 | model.set(scale=1e-10) |
---|
75 | fitter.set_model(model,1,pars1) |
---|
76 | fitter.select_problem_for_fit(Uid=1,value=1) |
---|
77 | result1 = fitter.fit() |
---|
78 | |
---|
79 | self.assert_(result1) |
---|
80 | self.assertTrue(len(result1.pvec)>0 or len(result1.pvec)==0 ) |
---|
81 | self.assertTrue(len(result1.stderr)> 0 or len(result1.stderr)==0) |
---|
82 | |
---|
83 | self.assertTrue( math.fabs(result1.pvec[0]-400.0)/3.0 < result1.stderr[0] ) |
---|
84 | self.assertTrue( math.fabs(result1.pvec[1]-20.0)/3.0 < result1.stderr[1] ) |
---|
85 | self.assertTrue( math.fabs(result1.pvec[2]-1.0e-10)/3.0 < result1.stderr[2] ) |
---|
86 | self.assertTrue( math.fabs(result1.pvec[3]-5.0)/3.0 < result1.stderr[3] ) |
---|
87 | self.assertTrue( result1.fitness < 1.0 ) |
---|
88 | |
---|
89 | |
---|
90 | class smear_testdata(unittest.TestCase): |
---|
91 | """ |
---|
92 | Test fitting with the smearing operations |
---|
93 | The output of the fits should be compated to fits |
---|
94 | done with IGOR for the same models and data sets. |
---|
95 | """ |
---|
96 | def setUp(self): |
---|
97 | print "TEST DONE WITHOUT PROPER OUTPUT CHECK:" |
---|
98 | print " ---> TEST NEEDS TO BE COMPLETED" |
---|
99 | from sans.models.SphereModel import SphereModel |
---|
100 | data = Loader().load("latex_smeared.xml") |
---|
101 | self.data_res = data[0] |
---|
102 | self.data_slit = data[1] |
---|
103 | |
---|
104 | self.sphere = SphereModel() |
---|
105 | self.sphere.setParam('radius', 5000.0) |
---|
106 | self.sphere.setParam('scale', 1.0e-13) |
---|
107 | self.sphere.setParam('radius.npts', 30) |
---|
108 | self.sphere.setParam('radius.width',500) |
---|
109 | |
---|
110 | def test_reso(self): |
---|
111 | from DataLoader.qsmearing import smear_selection |
---|
112 | |
---|
113 | # Let the data module find out what smearing the |
---|
114 | # data needs |
---|
115 | smear = smear_selection(self.data_res) |
---|
116 | self.assertEqual(smear.__class__.__name__, 'QSmearer') |
---|
117 | |
---|
118 | # Fit |
---|
119 | fitter = Fit('scipy') |
---|
120 | |
---|
121 | # Data: right now this is the only way to set the smearer object |
---|
122 | # We should improve that and have a way to get access to the |
---|
123 | # data for a given fit. |
---|
124 | fitter.set_data(self.data_res,1) |
---|
125 | fitter._engine.fitArrangeDict[1].dList[0].smearer = smear |
---|
126 | print "smear ",smear |
---|
127 | # Model: maybe there's a better way to do this. |
---|
128 | # Ideally we should have to create a new model from our sans model. |
---|
129 | fitter.set_model(Model(self.sphere),1, ['radius','scale']) |
---|
130 | |
---|
131 | # Why do we have to do this...? |
---|
132 | fitter.select_problem_for_fit(Uid=1,value=1) |
---|
133 | |
---|
134 | # Perform the fit (might take a while) |
---|
135 | result1 = fitter.fit() |
---|
136 | |
---|
137 | # Replace this with proper test once we know what the |
---|
138 | # result should be |
---|
139 | print result1.pvec |
---|
140 | print result1.stderr |
---|
141 | |
---|
142 | def test_slit(self): |
---|
143 | from DataLoader.qsmearing import smear_selection |
---|
144 | |
---|
145 | smear = smear_selection(self.data_slit) |
---|
146 | self.assertEqual(smear.__class__.__name__, 'SlitSmearer') |
---|
147 | |
---|
148 | # Fit |
---|
149 | fitter = Fit('scipy') |
---|
150 | |
---|
151 | # Data: right now this is the only way to set the smearer object |
---|
152 | # We should improve that and have a way to get access to the |
---|
153 | # data for a given fit. |
---|
154 | fitter.set_data(self.data_slit,1) |
---|
155 | fitter._engine.fitArrangeDict[1].dList[0].smearer = smear |
---|
156 | fitter._engine.fitArrangeDict[1].dList[0].qmax = 0.003 |
---|
157 | |
---|
158 | # Model |
---|
159 | fitter.set_model(Model(self.sphere),1, ['radius','scale']) |
---|
160 | fitter.select_problem_for_fit(Uid=1,value=1) |
---|
161 | |
---|
162 | result1 = fitter.fit() |
---|
163 | |
---|
164 | # Replace this with proper test once we know what the |
---|
165 | # result should be |
---|
166 | print result1.pvec |
---|
167 | print result1.stderr |
---|
168 | |
---|
169 | |
---|
170 | |
---|
171 | if __name__ == '__main__': |
---|
172 | unittest.main() |
---|