source: sasview/park_integration/test/test_fit_line.py @ d4fd13c

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since d4fd13c was 8296ff5, checked in by Gervaise Alina <gervyh@…>, 16 years ago

park _integration returning all values for parameters

  • Property mode set to 100644
File size: 10.4 KB
Line 
1"""
2    Unit tests for fitting module
3"""
4import unittest
5#from sans.guitools.plottables import Theory1D
6#from sans.guitools.plottables import Data1D
7from danse.common.plottools.plottables import Data1D,Theory1D
8from sans.fit.AbstractFitEngine import Data, Model,FitData1D
9import math
10class testFitModule(unittest.TestCase):
11    def smalltest(self):
12       
13        import numpy
14        x=[1,22,3]
15        y=[5,6,7,8]
16        array= numpy.zeros(len(x), len(y))
17       
18    """ test fitting """
19    def test1(self):
20        """ Fit 1 data (testdata_line.txt)and 1 model(lineModel) """
21        #load data
22        from DataLoader.loader import Loader
23        data1 = Loader().load("testdata_line.txt")
24        #Importing the Fit module
25        from sans.fit.Fitting import Fit
26        fitter = Fit('scipy')
27        # Receives the type of model for the fitting
28        from sans.models.LineModel import LineModel
29        model1  = LineModel()
30        model1.name = "M1"
31        #data = Data(sans_data=data1 )
32        #data1.smearer=None
33        data = FitData1D(data1 )
34        model = Model(model1)
35        #fit with scipy test
36       
37        pars1= ['param1','param2']
38        fitter.set_data(data,1)
39        try:fitter.set_model(model,1,pars1)
40        except ValueError,msg:
41           assert str(msg)=="wrong paramter %s used to set model %s. Choose\
42                            parameter name within %s"%('param1', model.model.name,str(model.model.getParamList()))
43        else: raise AssertError,"No error raised for scipy fitting with wrong parameters name to fit"
44        pars1= ['A','B']
45        fitter.set_model(model,1,pars1)
46        fitter.select_problem_for_fit(Uid=1,value=1)
47        result1 = fitter.fit()
48        self.assert_(result1)
49       
50        self.assertTrue( ( math.fabs(result1.pvec[0]-4)/3 == result1.stderr[0] ) or 
51                         ( math.fabs(result1.pvec[0]-4)/3 < result1.stderr[0]) ) 
52       
53        self.assertTrue( ( math.fabs(result1.pvec[1]-2.5)/3 == result1.stderr[1]) or
54                         ( math.fabs(result1.pvec[1]-2.5)/3 < result1.stderr[1] ) )
55        self.assertTrue( result1.fitness/49 < 2 )
56       
57        #fit with park test
58        fitter = Fit('park')
59        fitter.set_data(data,1)
60        fitter.set_model(model,1,pars1)
61        fitter.select_problem_for_fit(Uid=1,value=1)
62        result2 = fitter.fit()
63       
64        self.assert_(result2)
65       
66        self.assertTrue( ( math.fabs(result2.pvec[0]-4)/3 == result2.stderr[0] ) or 
67                         ( math.fabs(result2.pvec[0]-4)/3 < result2.stderr[0]) ) 
68       
69        self.assertTrue( ( math.fabs(result2.pvec[1]-2.5)/3 == result2.stderr[1] ) or
70                         ( math.fabs(result2.pvec[1]-2.5)/3 < result2.stderr[1]) )
71        self.assertTrue(result2.fitness/49 < 2)
72        # compare fit result result for scipy and park
73        self.assertAlmostEquals( result1.pvec[0], result2.pvec[0] )
74        self.assertAlmostEquals( result1.pvec[1],result2.pvec[1] )
75        self.assertAlmostEquals( result1.stderr[0],result2.stderr[0] )
76        self.assertAlmostEquals( result1.stderr[1],result2.stderr[1] )
77        self.assertAlmostEquals( result1.fitness,result2.fitness )
78       
79    def test2(self):
80        """ fit 2 data and 2 model with no constrainst"""
81        #load data
82        from DataLoader.loader import Loader
83        l = Loader()
84        out=l.load("testdata_line.txt")
85        data11 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
86        out=l.load("testdata_line1.txt")
87        data22 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
88        #Importing the Fit module
89        from sans.fit.Fitting import Fit
90        fitter = Fit('scipy')
91        # Receives the type of model for the fitting
92        from sans.models.LineModel import LineModel
93        model11  = LineModel()
94        model11.name= "M1"
95        model22  = LineModel()
96        model11.name= "M2"
97        data11.smearer=None
98        data22.smearer=None
99        data1 = FitData1D(data11 )
100        data2 = FitData1D(data22 )
101       
102        model1 = Model(model11)
103        model2 = Model(model22)
104        #fit with scipy test
105        pars1= ['A','B']
106        fitter.set_data(data1,1)
107        fitter.set_model(model1,1,pars1)
108        fitter.select_problem_for_fit(Uid=1,value=0)
109        fitter.set_data(data2,2)
110        fitter.set_model(model2,2,pars1)
111        fitter.select_problem_for_fit(Uid=2,value=0)
112       
113        try: result1 = fitter.fit()
114        except RuntimeError,msg:
115           assert str(msg)=="No Assembly scheduled for Scipy fitting."
116        else: raise AssertError,"No error raised for scipy fitting with no model"
117        fitter.select_problem_for_fit(Uid=1,value=1)
118        fitter.select_problem_for_fit(Uid=2,value=1)
119        try: result1 = fitter.fit()
120        except RuntimeError,msg:
121           assert str(msg)=="Scipy can't fit more than a single fit problem at a time."
122        else: raise AssertError,"No error raised for scipy fitting with more than 2 models"
123       
124        #fit with park test
125        fitter = Fit('park')
126        fitter.set_data(data1,1)
127        fitter.set_model(model1,1,pars1)
128        fitter.set_data(data2,2)
129        fitter.set_model(model2,2,pars1)
130        fitter.select_problem_for_fit(Uid=1,value=1)
131        fitter.select_problem_for_fit(Uid=2,value=1)
132        result2 = fitter.fit()
133       
134        self.assert_(result2)
135        self.assertTrue( ( math.fabs(result2.pvec[0]-4)/3 == result2.stderr[0] ) or 
136                         ( math.fabs(result2.pvec[0]-4)/3 < result2.stderr[0]) ) 
137       
138        self.assertTrue( ( math.fabs(result2.pvec[1]-2.5)/3 == result2.stderr[1] ) or
139                         ( math.fabs(result2.pvec[1]-2.5)/3 < result2.stderr[1]) )
140        self.assertTrue(result2.fitness/49 < 2)
141       
142       
143    def test3(self):
144        """ fit 2 data and 2 model with 1 constrainst"""
145        #load data
146        from DataLoader.loader import Loader
147        l = Loader()
148        out=l.load("testdata_line.txt")
149        data11 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
150        out=l.load("testdata_cst.txt")
151        data22 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
152        #Importing the Fit module
153        from sans.fit.Fitting import Fit
154        fitter = Fit('park')
155        # Receives the type of model for the fitting
156        from sans.models.LineModel import LineModel
157        from sans.models.Constant import Constant
158        model11  = LineModel()
159        model11.name= "line"
160       
161        model22  = Constant()
162        model22.name= "cst"
163        # Constrain the constant value to be equal to parameter B (the real value is 2.5)
164       
165        #data1 = Data(sans_data=data11 )
166        #data2 = Data(sans_data=data22 )
167        data11.smearer= None
168        data22.smearer= None
169        data1 = FitData1D(data11 )
170        data2 = FitData1D(data22 )
171        model1 = Model(model11)
172        model2 = Model(model22)
173        model1.set(A=4)
174        model1.set(B=3)
175        model2.set(value='line.B')
176        #fit with scipy test
177        pars1= ['A','B']
178        pars2= ['value']
179       
180        fitter.set_data(data1,1)
181        fitter.set_model(model1,1,pars1)
182        fitter.set_data(data2,2,smearer=None)
183        fitter.set_model(model2,2,pars2)
184        fitter.select_problem_for_fit(Uid=1,value=1)
185        fitter.select_problem_for_fit(Uid=2,value=1)
186       
187        result2 = fitter.fit()
188        self.assert_(result2)
189        self.assertTrue( ( math.fabs(result2.pvec[0]-4.0)/3. < result2.stderr[0]) ) 
190       
191        self.assertTrue( ( math.fabs(result2.pvec[1]-2.5)/3. < result2.stderr[1]) )
192        self.assertTrue(result2.fitness/49 < 2)
193       
194       
195    def test4(self):
196        """ fit 2 data concatenates with limited range of x and  one model """
197            #load data
198        from DataLoader.loader import Loader
199        l = Loader()
200        out=l.load("testdata_line.txt")
201        data11 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
202        out=l.load("testdata_line1.txt")
203        data22 = Data1D(x=out.x, y=out.y, dx=out.dx, dy=out.y)
204        #Importing the Fit module
205        from sans.fit.Fitting import Fit
206        fitter = Fit('scipy')
207        # Receives the type of model for the fitting
208        from sans.models.LineModel import LineModel
209        model1  = LineModel()
210        model1.name= "M1"
211     
212        data11.smearer=None
213        data22.smearer=None
214        data1 = FitData1D(data11 )
215        data2 = FitData1D(data22 )
216        model = Model(model1)
217       
218        #fit with scipy test
219        pars1= ['A','B']
220        fitter.set_data(data1,1,qmin=0, qmax=7)
221        fitter.set_model(model,1,pars1)
222        fitter.set_data(data2,1,qmin=1,qmax=10)
223        fitter.select_problem_for_fit(Uid=1,value=1)
224       
225        result1 = fitter.fit()
226        self.assert_(result1)
227
228        self.assertTrue( ( math.fabs(result1.pvec[0]-4)/3 == result1.stderr[0] ) or 
229                         ( math.fabs(result1.pvec[0]-4)/3 < result1.stderr[0]) ) 
230       
231        self.assertTrue( ( math.fabs(result1.pvec[1]-2.5)/3 == result1.stderr[1]) or
232                         ( math.fabs(result1.pvec[1]-2.5)/3 < result1.stderr[1] ) )
233        self.assertTrue( result1.fitness/49 < 2 )
234       
235       
236        #fit with park test
237        fitter = Fit('park')
238        fitter.set_data(data1,1,qmin=0, qmax=7)
239        fitter.set_model(model,1,pars1)
240        fitter.set_data(data2,1,qmin=1,qmax=10)
241        fitter.select_problem_for_fit(Uid=1,value=1)
242        result2 = fitter.fit()
243       
244        self.assert_(result2)
245        self.assertTrue( ( math.fabs(result2.pvec[0]-4)/3 == result2.stderr[0] ) or 
246                         ( math.fabs(result2.pvec[0]-4)/3 < result2.stderr[0]) ) 
247       
248        self.assertTrue( ( math.fabs(result2.pvec[1]-2.5)/3 == result2.stderr[1] ) or
249                         ( math.fabs(result2.pvec[1]-2.5)/3 < result2.stderr[1]) )
250        self.assertTrue(result2.fitness/49 < 2)
251        # compare fit result result for scipy and park
252        self.assertAlmostEquals( result1.pvec[0], result2.pvec[0] )
253        self.assertAlmostEquals( result1.pvec[1],result2.pvec[1] )
254        self.assertAlmostEquals( result1.stderr[0],result2.stderr[0] )
255        self.assertAlmostEquals( result1.stderr[1],result2.stderr[1] )
256        self.assertAlmostEquals( result1.fitness,result2.fitness )
257   
Note: See TracBrowser for help on using the repository browser.