1 | |
---|
2 | |
---|
3 | import math |
---|
4 | import numpy |
---|
5 | import copy |
---|
6 | import time |
---|
7 | import unittest |
---|
8 | from sans.dataloader.loader import Loader |
---|
9 | from sans.fit.Fitting import Fit |
---|
10 | from sans.models.CylinderModel import CylinderModel |
---|
11 | import sans.models.dispersion_models |
---|
12 | from sans.models.qsmearing import smear_selection |
---|
13 | |
---|
14 | NPTS = 1 |
---|
15 | |
---|
16 | |
---|
17 | |
---|
18 | |
---|
19 | def classMapper(classInstance, classFunc, *args): |
---|
20 | """ |
---|
21 | Take an instance of a class and a function name as a string. |
---|
22 | Execute class.function and return result |
---|
23 | """ |
---|
24 | return getattr(classInstance,classFunc)(*args) |
---|
25 | |
---|
26 | def mapapply(arguments): |
---|
27 | return apply(arguments[0], arguments[1:]) |
---|
28 | |
---|
29 | |
---|
30 | |
---|
31 | class BatchScipyFit: |
---|
32 | """ |
---|
33 | test fit module |
---|
34 | """ |
---|
35 | def __init__(self, qmin=None, qmax=None): |
---|
36 | """ """ |
---|
37 | self.list_of_fitter = [] |
---|
38 | self.list_of_function = [] |
---|
39 | self.param_to_fit = ['scale', 'length', 'radius'] |
---|
40 | self.list_of_constraints = [] |
---|
41 | self.list_of_mapper = [] |
---|
42 | self.polydisp = sans.models.dispersion_models.models |
---|
43 | self.qmin = qmin |
---|
44 | self.qmax = qmin |
---|
45 | self.reset_value() |
---|
46 | |
---|
47 | def set_range(self, qmin=None, qmax=None): |
---|
48 | self.qmin = qmin |
---|
49 | self.qmax = qmax |
---|
50 | |
---|
51 | def _reset_helper(self, path=None, engine="scipy", npts=NPTS): |
---|
52 | """ |
---|
53 | Set value to fitter engine and prepare inputs for map function |
---|
54 | """ |
---|
55 | for i in range(npts): |
---|
56 | data = Loader().load(path) |
---|
57 | fitter = Fit(engine) |
---|
58 | #create model |
---|
59 | model = CylinderModel() |
---|
60 | model.setParam('scale', 1.0) |
---|
61 | model.setParam('radius', 20.0) |
---|
62 | model.setParam('length', 400.0) |
---|
63 | model.setParam('sldCyl', 4e-006) |
---|
64 | model.setParam('sldSolv', 1e-006) |
---|
65 | model.setParam('background', 0.0) |
---|
66 | for param in model.dispersion.keys(): |
---|
67 | model.set_dispersion(param, self.polydisp['gaussian']()) |
---|
68 | model.setParam('cyl_phi.width', 10) |
---|
69 | model.setParam('cyl_phi.npts', 3) |
---|
70 | model.setParam('cyl_theta.nsigmas', 10) |
---|
71 | """ for 2 data cyl_theta = 60.0 [deg] cyl_phi= 60.0 [deg]""" |
---|
72 | fitter.set_model(model, i, self.param_to_fit, |
---|
73 | self.list_of_constraints) |
---|
74 | #smear data |
---|
75 | current_smearer = smear_selection(data, model) |
---|
76 | import cPickle |
---|
77 | p = cPickle.dumps(current_smearer) |
---|
78 | sm = cPickle.loads(p) |
---|
79 | fitter.set_data(data=data, id=i, |
---|
80 | smearer=current_smearer, qmin=self.qmin, qmax=self.qmax) |
---|
81 | fitter.select_problem_for_fit(id=i, value=1) |
---|
82 | self.list_of_fitter.append(copy.deepcopy(fitter)) |
---|
83 | self.list_of_function.append('fit') |
---|
84 | self.list_of_mapper.append(classMapper) |
---|
85 | |
---|
86 | def reset_value(self): |
---|
87 | """ |
---|
88 | Initialize inputs for the map function |
---|
89 | """ |
---|
90 | self.list_of_fitter = [] |
---|
91 | self.list_of_function = [] |
---|
92 | self.param_to_fit = ['scale', 'length', 'radius'] |
---|
93 | self.list_of_constraints = [] |
---|
94 | self.list_of_mapper = [] |
---|
95 | engine ="scipy" |
---|
96 | |
---|
97 | path = "testdata_line3.txt" |
---|
98 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
99 | path = "testdata_line.txt" |
---|
100 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
101 | path = "SILIC010_noheader.DAT" |
---|
102 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
103 | path = "cyl_400_20.txt" |
---|
104 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
105 | path = "sphere_80.txt" |
---|
106 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
107 | path = "PolySpheres.txt" |
---|
108 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
109 | path = "latex_qdev.txt" |
---|
110 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
111 | path = "latex_qdev2.txt" |
---|
112 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
113 | |
---|
114 | |
---|
115 | def test_map_fit(self): |
---|
116 | """ |
---|
117 | """ |
---|
118 | results = map(classMapper,self.list_of_fitter, self.list_of_function) |
---|
119 | print len(results) |
---|
120 | for result in results: |
---|
121 | print result.fitness, result.stderr, result.pvec |
---|
122 | |
---|
123 | def test_process_map_fit(self, n=1): |
---|
124 | """ |
---|
125 | run fit usong map , n is the number of processes used |
---|
126 | """ |
---|
127 | t0 = time.time() |
---|
128 | print "start fit with %s process(es) at %s" % (str(n), time.strftime(" %H:%M:%S", time.localtime(t0))) |
---|
129 | from multiprocessing import Pool |
---|
130 | temp = zip(self.list_of_mapper, self.list_of_fitter, self.list_of_function) |
---|
131 | results = Pool(n).map(func=mapapply, |
---|
132 | iterable=temp) |
---|
133 | t1 = time.time() |
---|
134 | print "got fit results ", time.strftime(" %H:%M:%S", time.localtime(t1)), t1 - t0 |
---|
135 | print len(results) |
---|
136 | for result in results: |
---|
137 | print result.fitness, result.stderr, result.pvec |
---|
138 | t2 = time.time() |
---|
139 | print "print fit1 results ", time.strftime(" %H:%M:%S", time.localtime(t2)), t2 - t1 |
---|
140 | |
---|
141 | class testBatch(unittest.TestCase): |
---|
142 | """ |
---|
143 | fitting |
---|
144 | """ |
---|
145 | def setUp(self): |
---|
146 | self.test = BatchScipyFit(qmin=None, qmax=None) |
---|
147 | |
---|
148 | |
---|
149 | def __test_fit1(self): |
---|
150 | """test fit with python built in map function---- full range of each data""" |
---|
151 | self.test.test_map_fit() |
---|
152 | |
---|
153 | def __test_fit2(self): |
---|
154 | """test fit with python built in map function---- common range for all data""" |
---|
155 | self.test.set_range(qmin=0.013, qmax=0.05) |
---|
156 | self.test.reset_value() |
---|
157 | self.test.test_map_fit() |
---|
158 | |
---|
159 | def test_fit3(self): |
---|
160 | """test fit with data full range using 1 processor and map""" |
---|
161 | self.test.set_range(qmin=None, qmax=None) |
---|
162 | self.test.reset_value() |
---|
163 | self.test.test_process_map_fit(n=2) |
---|
164 | |
---|
165 | def test_fit4(self): |
---|
166 | """test fit with a common fixed range for data using 1 processor and map""" |
---|
167 | self.test.set_range(qmin=-1, qmax=10) |
---|
168 | self.test.reset_value() |
---|
169 | self.test.test_process_map_fit(n=1) |
---|
170 | |
---|
171 | |
---|
172 | if __name__ == '__main__': |
---|
173 | unittest.main() |
---|
174 | |
---|
175 | |
---|
176 | |
---|