[e5df560] | 1 | |
---|
[d1c8036] | 2 | |
---|
[e5df560] | 3 | import math |
---|
| 4 | import numpy |
---|
| 5 | import copy |
---|
| 6 | import time |
---|
| 7 | import unittest |
---|
[d48858da] | 8 | from sans.dataloader.loader import Loader |
---|
[e5df560] | 9 | from sans.fit.Fitting import Fit |
---|
| 10 | from sans.models.CylinderModel import CylinderModel |
---|
| 11 | import sans.models.dispersion_models |
---|
| 12 | from sans.models.qsmearing import smear_selection |
---|
| 13 | |
---|
| 14 | NPTS = 1 |
---|
| 15 | |
---|
[d48858da] | 16 | |
---|
| 17 | |
---|
| 18 | |
---|
[e5df560] | 19 | def classMapper(classInstance, classFunc, *args): |
---|
| 20 | """ |
---|
| 21 | Take an instance of a class and a function name as a string. |
---|
| 22 | Execute class.function and return result |
---|
| 23 | """ |
---|
| 24 | return getattr(classInstance,classFunc)(*args) |
---|
| 25 | |
---|
| 26 | def mapapply(arguments): |
---|
| 27 | return apply(arguments[0], arguments[1:]) |
---|
| 28 | |
---|
| 29 | |
---|
[d48858da] | 30 | |
---|
[e5df560] | 31 | class BatchScipyFit: |
---|
| 32 | """ |
---|
[d48858da] | 33 | test fit module |
---|
[e5df560] | 34 | """ |
---|
| 35 | def __init__(self, qmin=None, qmax=None): |
---|
| 36 | """ """ |
---|
| 37 | self.list_of_fitter = [] |
---|
| 38 | self.list_of_function = [] |
---|
| 39 | self.param_to_fit = ['scale', 'length', 'radius'] |
---|
| 40 | self.list_of_constraints = [] |
---|
| 41 | self.list_of_mapper = [] |
---|
| 42 | self.polydisp = sans.models.dispersion_models.models |
---|
| 43 | self.qmin = qmin |
---|
| 44 | self.qmax = qmin |
---|
| 45 | self.reset_value() |
---|
| 46 | |
---|
| 47 | def set_range(self, qmin=None, qmax=None): |
---|
| 48 | self.qmin = qmin |
---|
| 49 | self.qmax = qmax |
---|
| 50 | |
---|
| 51 | def _reset_helper(self, path=None, engine="scipy", npts=NPTS): |
---|
| 52 | """ |
---|
| 53 | Set value to fitter engine and prepare inputs for map function |
---|
| 54 | """ |
---|
| 55 | for i in range(npts): |
---|
| 56 | data = Loader().load(path) |
---|
| 57 | fitter = Fit(engine) |
---|
| 58 | #create model |
---|
| 59 | model = CylinderModel() |
---|
| 60 | model.setParam('scale', 1.0) |
---|
| 61 | model.setParam('radius', 20.0) |
---|
| 62 | model.setParam('length', 400.0) |
---|
| 63 | model.setParam('sldCyl', 4e-006) |
---|
| 64 | model.setParam('sldSolv', 1e-006) |
---|
| 65 | model.setParam('background', 0.0) |
---|
| 66 | for param in model.dispersion.keys(): |
---|
| 67 | model.set_dispersion(param, self.polydisp['gaussian']()) |
---|
| 68 | model.setParam('cyl_phi.width', 10) |
---|
| 69 | model.setParam('cyl_phi.npts', 3) |
---|
| 70 | model.setParam('cyl_theta.nsigmas', 10) |
---|
| 71 | """ for 2 data cyl_theta = 60.0 [deg] cyl_phi= 60.0 [deg]""" |
---|
| 72 | fitter.set_model(model, i, self.param_to_fit, |
---|
| 73 | self.list_of_constraints) |
---|
| 74 | #smear data |
---|
| 75 | current_smearer = smear_selection(data, model) |
---|
[d1c8036] | 76 | import cPickle |
---|
| 77 | p = cPickle.dumps(current_smearer) |
---|
| 78 | sm = cPickle.loads(p) |
---|
[e5df560] | 79 | fitter.set_data(data=data, id=i, |
---|
| 80 | smearer=current_smearer, qmin=self.qmin, qmax=self.qmax) |
---|
| 81 | fitter.select_problem_for_fit(id=i, value=1) |
---|
| 82 | self.list_of_fitter.append(copy.deepcopy(fitter)) |
---|
| 83 | self.list_of_function.append('fit') |
---|
| 84 | self.list_of_mapper.append(classMapper) |
---|
| 85 | |
---|
| 86 | def reset_value(self): |
---|
| 87 | """ |
---|
| 88 | Initialize inputs for the map function |
---|
| 89 | """ |
---|
| 90 | self.list_of_fitter = [] |
---|
| 91 | self.list_of_function = [] |
---|
| 92 | self.param_to_fit = ['scale', 'length', 'radius'] |
---|
| 93 | self.list_of_constraints = [] |
---|
| 94 | self.list_of_mapper = [] |
---|
[d48858da] | 95 | engine ="scipy" |
---|
[e5df560] | 96 | |
---|
| 97 | path = "testdata_line3.txt" |
---|
[d48858da] | 98 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[e5df560] | 99 | path = "testdata_line.txt" |
---|
[d48858da] | 100 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[e5df560] | 101 | path = "SILIC010_noheader.DAT" |
---|
[d48858da] | 102 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[e5df560] | 103 | path = "cyl_400_20.txt" |
---|
[d48858da] | 104 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[e5df560] | 105 | path = "sphere_80.txt" |
---|
[d48858da] | 106 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[e5df560] | 107 | path = "PolySpheres.txt" |
---|
[d48858da] | 108 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
| 109 | path = "latex_qdev.txt" |
---|
| 110 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
| 111 | path = "latex_qdev2.txt" |
---|
| 112 | self._reset_helper(path=path, engine=engine, npts=NPTS) |
---|
[d1c8036] | 113 | |
---|
[e5df560] | 114 | |
---|
| 115 | def test_map_fit(self): |
---|
| 116 | """ |
---|
| 117 | """ |
---|
| 118 | results = map(classMapper,self.list_of_fitter, self.list_of_function) |
---|
[d48858da] | 119 | print len(results) |
---|
| 120 | for result in results: |
---|
| 121 | print result.fitness, result.stderr, result.pvec |
---|
[e5df560] | 122 | |
---|
| 123 | def test_process_map_fit(self, n=1): |
---|
| 124 | """ |
---|
| 125 | run fit usong map , n is the number of processes used |
---|
| 126 | """ |
---|
| 127 | t0 = time.time() |
---|
| 128 | print "start fit with %s process(es) at %s" % (str(n), time.strftime(" %H:%M:%S", time.localtime(t0))) |
---|
| 129 | from multiprocessing import Pool |
---|
| 130 | temp = zip(self.list_of_mapper, self.list_of_fitter, self.list_of_function) |
---|
| 131 | results = Pool(n).map(func=mapapply, |
---|
| 132 | iterable=temp) |
---|
| 133 | t1 = time.time() |
---|
[d48858da] | 134 | print "got fit results ", time.strftime(" %H:%M:%S", time.localtime(t1)), t1 - t0 |
---|
| 135 | print len(results) |
---|
| 136 | for result in results: |
---|
| 137 | print result.fitness, result.stderr, result.pvec |
---|
| 138 | t2 = time.time() |
---|
| 139 | print "print fit1 results ", time.strftime(" %H:%M:%S", time.localtime(t2)), t2 - t1 |
---|
[e5df560] | 140 | |
---|
| 141 | class testBatch(unittest.TestCase): |
---|
| 142 | """ |
---|
| 143 | fitting |
---|
| 144 | """ |
---|
| 145 | def setUp(self): |
---|
| 146 | self.test = BatchScipyFit(qmin=None, qmax=None) |
---|
[d1c8036] | 147 | |
---|
[e5df560] | 148 | |
---|
[d1c8036] | 149 | def __test_fit1(self): |
---|
[e5df560] | 150 | """test fit with python built in map function---- full range of each data""" |
---|
| 151 | self.test.test_map_fit() |
---|
| 152 | |
---|
[d1c8036] | 153 | def __test_fit2(self): |
---|
| 154 | """test fit with python built in map function---- common range for all data""" |
---|
| 155 | self.test.set_range(qmin=0.013, qmax=0.05) |
---|
| 156 | self.test.reset_value() |
---|
| 157 | self.test.test_map_fit() |
---|
[e5df560] | 158 | |
---|
| 159 | def test_fit3(self): |
---|
| 160 | """test fit with data full range using 1 processor and map""" |
---|
| 161 | self.test.set_range(qmin=None, qmax=None) |
---|
| 162 | self.test.reset_value() |
---|
[d1c8036] | 163 | self.test.test_process_map_fit(n=2) |
---|
[e5df560] | 164 | |
---|
[d1c8036] | 165 | def test_fit4(self): |
---|
| 166 | """test fit with a common fixed range for data using 1 processor and map""" |
---|
| 167 | self.test.set_range(qmin=-1, qmax=10) |
---|
| 168 | self.test.reset_value() |
---|
| 169 | self.test.test_process_map_fit(n=1) |
---|
[e5df560] | 170 | |
---|
| 171 | |
---|
| 172 | if __name__ == '__main__': |
---|
| 173 | unittest.main() |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | |
---|