1 | """ |
---|
2 | @organization: ScipyFitting module contains FitArrange , ScipyFit, |
---|
3 | Parameter classes.All listed classes work together to perform a |
---|
4 | simple fit with scipy optimizer. |
---|
5 | """ |
---|
6 | from sans.guitools.plottables import Data1D |
---|
7 | from Loader import Load |
---|
8 | from scipy import optimize |
---|
9 | from AbstractFitEngine import FitEngine, Parameter |
---|
10 | from AbstractFitEngine import FitArrange |
---|
11 | |
---|
12 | class ScipyFit(FitEngine): |
---|
13 | """ |
---|
14 | ScipyFit performs the Fit.This class can be used as follow: |
---|
15 | #Do the fit SCIPY |
---|
16 | create an engine: engine = ScipyFit() |
---|
17 | Use data must be of type plottable |
---|
18 | Use a sans model |
---|
19 | |
---|
20 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
21 | is saved in FitArrange object. |
---|
22 | engine.set_data(data,Uid) |
---|
23 | |
---|
24 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
25 | @note: Set_param() if used must always preceded set_model() |
---|
26 | for the fit to be performed.In case of Scipyfit set_param is called in |
---|
27 | fit () automatically. |
---|
28 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
29 | |
---|
30 | Add model with a dictionnary of FitArrangeList{} where Uid is a key and model |
---|
31 | is save in FitArrange object. |
---|
32 | engine.set_model(model,Uid) |
---|
33 | |
---|
34 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
35 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
36 | """ |
---|
37 | def __init__(self): |
---|
38 | """ |
---|
39 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
40 | with Uid as keys |
---|
41 | """ |
---|
42 | self.fitArrangeList={} |
---|
43 | |
---|
44 | def fit(self,qmin=None, qmax=None): |
---|
45 | """ |
---|
46 | Performs fit with scipy optimizer.It can only perform fit with one model |
---|
47 | and a set of data. |
---|
48 | @note: Cannot perform more than one fit at the time. |
---|
49 | |
---|
50 | @param pars: Dictionary of parameter names for the model and their values |
---|
51 | @param qmin: The minimum value of data's range to be fit |
---|
52 | @param qmax: The maximum value of data's range to be fit |
---|
53 | @return chisqr: Value of the goodness of fit metric |
---|
54 | @return out: list of parameter with the best value found during fitting |
---|
55 | @return cov: Covariance matrix |
---|
56 | """ |
---|
57 | # fitproblem contains first fitArrange object(one model and a list of data) |
---|
58 | fitproblem=self.fitArrangeList.values()[0] |
---|
59 | listdata=[] |
---|
60 | model = fitproblem.get_model() |
---|
61 | listdata = fitproblem.get_data() |
---|
62 | |
---|
63 | |
---|
64 | # Concatenate dList set (contains one or more data)before fitting |
---|
65 | xtemp,ytemp,dytemp=self._concatenateData( listdata) |
---|
66 | |
---|
67 | #print "dytemp",dytemp |
---|
68 | #Assign a fit range is not boundaries were given |
---|
69 | if qmin==None: |
---|
70 | qmin= min(xtemp) |
---|
71 | if qmax==None: |
---|
72 | qmax= max(xtemp) |
---|
73 | |
---|
74 | #perform the fit |
---|
75 | chisqr, out, cov = fitHelper(model,self.parameters, xtemp,ytemp, dytemp ,qmin,qmax) |
---|
76 | |
---|
77 | return chisqr, out, cov |
---|
78 | |
---|
79 | |
---|
80 | def fitHelper(model, pars, x, y, err_y ,qmin=None, qmax=None): |
---|
81 | """ |
---|
82 | Fit function |
---|
83 | @param model: sans model object |
---|
84 | @param pars: list of parameters |
---|
85 | @param x: vector of x data |
---|
86 | @param y: vector of y data |
---|
87 | @param err_y: vector of y errors |
---|
88 | @return chisqr: Value of the goodness of fit metric |
---|
89 | @return out: list of parameter with the best value found during fitting |
---|
90 | @return cov: Covariance matrix |
---|
91 | """ |
---|
92 | def f(params): |
---|
93 | """ |
---|
94 | Calculates the vector of residuals for each point |
---|
95 | in y for a given set of input parameters. |
---|
96 | @param params: list of parameter values |
---|
97 | @return: vector of residuals |
---|
98 | """ |
---|
99 | i = 0 |
---|
100 | for p in pars: |
---|
101 | p.set(params[i]) |
---|
102 | i += 1 |
---|
103 | |
---|
104 | residuals = [] |
---|
105 | for j in range(len(x)): |
---|
106 | if x[j]>qmin and x[j]<qmax: |
---|
107 | residuals.append( ( y[j] - model.runXY(x[j]) ) / err_y[j] ) |
---|
108 | |
---|
109 | return residuals |
---|
110 | |
---|
111 | def chi2(params): |
---|
112 | """ |
---|
113 | Calculates chi^2 |
---|
114 | @param params: list of parameter values |
---|
115 | @return: chi^2 |
---|
116 | """ |
---|
117 | sum = 0 |
---|
118 | res = f(params) |
---|
119 | for item in res: |
---|
120 | sum += item*item |
---|
121 | return sum |
---|
122 | |
---|
123 | p = [param() for param in pars] |
---|
124 | out, cov_x, info, mesg, success = optimize.leastsq(f, p, full_output=1, warning=True) |
---|
125 | print info, mesg, success |
---|
126 | # Calculate chi squared |
---|
127 | if len(pars)>1: |
---|
128 | chisqr = chi2(out) |
---|
129 | elif len(pars)==1: |
---|
130 | chisqr = chi2([out]) |
---|
131 | |
---|
132 | return chisqr, out, cov_x |
---|
133 | |
---|