1 | """ |
---|
2 | @organization: ScipyFitting module contains FitArrange , ScipyFit, |
---|
3 | Parameter classes.All listed classes work together to perform a |
---|
4 | simple fit with scipy optimizer. |
---|
5 | """ |
---|
6 | from sans.guitools.plottables import Data1D |
---|
7 | from Loader import Load |
---|
8 | from scipy import optimize |
---|
9 | |
---|
10 | |
---|
11 | class FitArrange: |
---|
12 | def __init__(self): |
---|
13 | """ |
---|
14 | Class FitArrange contains a set of data for a given model |
---|
15 | to perform the Fit.FitArrange must contain exactly one model |
---|
16 | and at least one data for the fit to be performed. |
---|
17 | model: the model selected by the user |
---|
18 | Ldata: a list of data what the user wants to fit |
---|
19 | |
---|
20 | """ |
---|
21 | self.model = None |
---|
22 | self.dList =[] |
---|
23 | |
---|
24 | def set_model(self,model): |
---|
25 | """ |
---|
26 | set_model save a copy of the model |
---|
27 | @param model: the model being set |
---|
28 | """ |
---|
29 | self.model = model |
---|
30 | |
---|
31 | def add_data(self,data): |
---|
32 | """ |
---|
33 | add_data fill a self.dList with data to fit |
---|
34 | @param data: Data to add in the list |
---|
35 | """ |
---|
36 | if not data in self.dList: |
---|
37 | self.dList.append(data) |
---|
38 | |
---|
39 | def get_model(self): |
---|
40 | """ @return: saved model """ |
---|
41 | return self.model |
---|
42 | |
---|
43 | def get_data(self): |
---|
44 | """ @return: list of data dList""" |
---|
45 | return self.dList |
---|
46 | |
---|
47 | def remove_data(self,data): |
---|
48 | """ |
---|
49 | Remove one element from the list |
---|
50 | @param data: Data to remove from dList |
---|
51 | """ |
---|
52 | if data in self.dList: |
---|
53 | self.dList.remove(data) |
---|
54 | def remove_datalist(self): |
---|
55 | """ empty the complet list dLst""" |
---|
56 | self.dList=[] |
---|
57 | |
---|
58 | class ScipyFit: |
---|
59 | """ |
---|
60 | ScipyFit performs the Fit.This class can be used as follow: |
---|
61 | #Do the fit SCIPY |
---|
62 | create an engine: engine = ScipyFit() |
---|
63 | Use data must be of type plottable |
---|
64 | Use a sans model |
---|
65 | |
---|
66 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
67 | is saved in FitArrange object. |
---|
68 | engine.set_data(data,Uid) |
---|
69 | |
---|
70 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
71 | @note: Set_param() if used must always preceded set_model() |
---|
72 | for the fit to be performed.In case of Scipyfit set_param is called in |
---|
73 | fit () automatically. |
---|
74 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
75 | |
---|
76 | Add model with a dictionnary of FitArrangeList{} where Uid is a key and model |
---|
77 | is save in FitArrange object. |
---|
78 | engine.set_model(model,Uid) |
---|
79 | |
---|
80 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
81 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
82 | """ |
---|
83 | def __init__(self): |
---|
84 | """ |
---|
85 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
86 | with Uid as keys |
---|
87 | """ |
---|
88 | self.fitArrangeList={} |
---|
89 | |
---|
90 | def fit(self,pars, qmin=None, qmax=None): |
---|
91 | """ |
---|
92 | Performs fit with scipy optimizer.It can only perform fit with one model |
---|
93 | and a set of data. |
---|
94 | @note: Cannot perform more than one fit at the time. |
---|
95 | |
---|
96 | @param pars: Dictionary of parameter names for the model and their values |
---|
97 | @param qmin: The minimum value of data's range to be fit |
---|
98 | @param qmax: The maximum value of data's range to be fit |
---|
99 | @return chisqr: Value of the goodness of fit metric |
---|
100 | @return out: list of parameter with the best value found during fitting |
---|
101 | @return cov: Covariance matrix |
---|
102 | """ |
---|
103 | # fitproblem contains first fitArrange object(one model and a list of data) |
---|
104 | fitproblem=self.fitArrangeList.values()[0] |
---|
105 | listdata=[] |
---|
106 | model = fitproblem.get_model() |
---|
107 | listdata = fitproblem.get_data() |
---|
108 | |
---|
109 | #Create list of Parameter instances and save parameters values in model |
---|
110 | parameters = self.set_param(model,model.name,pars) |
---|
111 | |
---|
112 | # Concatenate dList set (contains one or more data)before fitting |
---|
113 | xtemp,ytemp,dytemp=self._concatenateData( listdata) |
---|
114 | |
---|
115 | #print "dytemp",dytemp |
---|
116 | #Assign a fit range is not boundaries were given |
---|
117 | if qmin==None: |
---|
118 | qmin= min(xtemp) |
---|
119 | if qmax==None: |
---|
120 | qmax= max(xtemp) |
---|
121 | |
---|
122 | #perform the fit |
---|
123 | chisqr, out, cov = fitHelper(model,parameters, xtemp,ytemp, dytemp ,qmin,qmax) |
---|
124 | return chisqr, out, cov |
---|
125 | |
---|
126 | def _concatenateData(self, listdata=[]): |
---|
127 | """ |
---|
128 | _concatenateData method concatenates each fields of all data contains ins listdata. |
---|
129 | @param listdata: list of data |
---|
130 | |
---|
131 | @return xtemp, ytemp,dytemp: x,y,dy respectively of data all combined |
---|
132 | if xi,yi,dyi of two or more data are the same the second appearance of xi,yi, |
---|
133 | dyi is ignored in the concatenation. |
---|
134 | |
---|
135 | @raise: if listdata is empty will return None |
---|
136 | @raise: if data in listdata don't contain dy field ,will create an error |
---|
137 | during fitting |
---|
138 | """ |
---|
139 | if listdata==[]: |
---|
140 | raise ValueError, " data list missing" |
---|
141 | else: |
---|
142 | xtemp=[] |
---|
143 | ytemp=[] |
---|
144 | dytemp=[] |
---|
145 | |
---|
146 | for data in listdata: |
---|
147 | for i in range(len(data.x)): |
---|
148 | if not data.x[i] in xtemp: |
---|
149 | xtemp.append(data.x[i]) |
---|
150 | |
---|
151 | if not data.y[i] in ytemp: |
---|
152 | ytemp.append(data.y[i]) |
---|
153 | if data.dy and len(data.dy)>0: |
---|
154 | if not data.dy[i] in dytemp: |
---|
155 | dytemp.append(data.dy[i]) |
---|
156 | else: |
---|
157 | raise ValueError,"dy is missing will not be able to fit later on" |
---|
158 | return xtemp, ytemp,dytemp |
---|
159 | |
---|
160 | def set_model(self,model,Uid): |
---|
161 | """ |
---|
162 | Set model in a FitArrange object and add that object in a dictionary |
---|
163 | with key Uid. |
---|
164 | @param model: the model added |
---|
165 | @param Uid: unique key corresponding to a fitArrange object with model |
---|
166 | """ |
---|
167 | #A fitArrange is already created but contains dList only at Uid |
---|
168 | if self.fitArrangeList.has_key(Uid): |
---|
169 | self.fitArrangeList[Uid].set_model(model) |
---|
170 | else: |
---|
171 | #no fitArrange object has been create with this Uid |
---|
172 | fitproblem= FitArrange() |
---|
173 | fitproblem.set_model(model) |
---|
174 | self.fitArrangeList[Uid]=fitproblem |
---|
175 | |
---|
176 | def set_data(self,data,Uid): |
---|
177 | """ Receives plottable, creates a list of data to fit,set data |
---|
178 | in a FitArrange object and adds that object in a dictionary |
---|
179 | with key Uid. |
---|
180 | @param data: data added |
---|
181 | @param Uid: unique key corresponding to a fitArrange object with data |
---|
182 | """ |
---|
183 | #A fitArrange is already created but contains model only at Uid |
---|
184 | if self.fitArrangeList.has_key(Uid): |
---|
185 | self.fitArrangeList[Uid].add_data(data) |
---|
186 | else: |
---|
187 | #no fitArrange object has been create with this Uid |
---|
188 | fitproblem= FitArrange() |
---|
189 | fitproblem.add_data(data) |
---|
190 | self.fitArrangeList[Uid]=fitproblem |
---|
191 | |
---|
192 | def get_model(self,Uid): |
---|
193 | """ |
---|
194 | @param Uid: Uid is key in the dictionary containing the model to return |
---|
195 | @return a model at this uid or None if no FitArrange element was created |
---|
196 | with this Uid |
---|
197 | """ |
---|
198 | if self.fitArrangeList.has_key(Uid): |
---|
199 | return self.fitArrangeList[Uid].get_model() |
---|
200 | else: |
---|
201 | return None |
---|
202 | |
---|
203 | def set_param(self,model,name, pars): |
---|
204 | """ |
---|
205 | Recieve a dictionary of parameter and save it |
---|
206 | @param model: model on with parameter values are set |
---|
207 | @param name: model name |
---|
208 | @param pars: dictionary of paramaters name and value |
---|
209 | pars={parameter's name: parameter's value} |
---|
210 | @return list of Parameter instance |
---|
211 | """ |
---|
212 | parameters=[] |
---|
213 | if model==None: |
---|
214 | raise ValueError, "Cannot set parameters for empty model" |
---|
215 | else: |
---|
216 | model.name=name |
---|
217 | for key, value in pars.iteritems(): |
---|
218 | param = Parameter(model, key, value) |
---|
219 | parameters.append(param) |
---|
220 | return parameters |
---|
221 | |
---|
222 | def remove_data(self,Uid,data=None): |
---|
223 | """ remove one or all data.if data ==None will remove the whole |
---|
224 | list of data at Uid; else will remove only data in that list. |
---|
225 | @param Uid: unique id containing FitArrange object with data |
---|
226 | @param data:data to be removed |
---|
227 | """ |
---|
228 | if data==None: |
---|
229 | # remove all element in data list |
---|
230 | if self.fitArrangeList.has_key(Uid): |
---|
231 | self.fitArrangeList[Uid].remove_datalist() |
---|
232 | else: |
---|
233 | #remove only data in dList |
---|
234 | if self.fitArrangeList.has_key(Uid): |
---|
235 | self.fitArrangeList[Uid].remove_data(data) |
---|
236 | |
---|
237 | def remove_model(self,Uid): |
---|
238 | """ |
---|
239 | remove model in FitArrange object with Uid. |
---|
240 | @param Uid: Unique id corresponding to the FitArrange object |
---|
241 | where model must be removed. |
---|
242 | """ |
---|
243 | if self.fitArrangeList.has_key(Uid): |
---|
244 | self.fitArrangeList[Uid].remove_model() |
---|
245 | |
---|
246 | |
---|
247 | class Parameter: |
---|
248 | """ |
---|
249 | Class to handle model parameters |
---|
250 | """ |
---|
251 | def __init__(self, model, name, value=None): |
---|
252 | self.model = model |
---|
253 | self.name = name |
---|
254 | if not value==None: |
---|
255 | self.model.setParam(self.name, value) |
---|
256 | |
---|
257 | def set(self, value): |
---|
258 | """ |
---|
259 | Set the value of the parameter |
---|
260 | """ |
---|
261 | self.model.setParam(self.name, value) |
---|
262 | |
---|
263 | def __call__(self): |
---|
264 | """ |
---|
265 | Return the current value of the parameter |
---|
266 | """ |
---|
267 | return self.model.getParam(self.name) |
---|
268 | |
---|
269 | def fitHelper(model, pars, x, y, err_y ,qmin=None, qmax=None): |
---|
270 | """ |
---|
271 | Fit function |
---|
272 | @param model: sans model object |
---|
273 | @param pars: list of parameters |
---|
274 | @param x: vector of x data |
---|
275 | @param y: vector of y data |
---|
276 | @param err_y: vector of y errors |
---|
277 | @return chisqr: Value of the goodness of fit metric |
---|
278 | @return out: list of parameter with the best value found during fitting |
---|
279 | @return cov: Covariance matrix |
---|
280 | """ |
---|
281 | def f(params): |
---|
282 | """ |
---|
283 | Calculates the vector of residuals for each point |
---|
284 | in y for a given set of input parameters. |
---|
285 | @param params: list of parameter values |
---|
286 | @return: vector of residuals |
---|
287 | """ |
---|
288 | i = 0 |
---|
289 | for p in pars: |
---|
290 | p.set(params[i]) |
---|
291 | i += 1 |
---|
292 | |
---|
293 | residuals = [] |
---|
294 | for j in range(len(x)): |
---|
295 | if x[j]>qmin and x[j]<qmax: |
---|
296 | residuals.append( ( y[j] - model.runXY(x[j]) ) / err_y[j] ) |
---|
297 | |
---|
298 | return residuals |
---|
299 | |
---|
300 | def chi2(params): |
---|
301 | """ |
---|
302 | Calculates chi^2 |
---|
303 | @param params: list of parameter values |
---|
304 | @return: chi^2 |
---|
305 | """ |
---|
306 | sum = 0 |
---|
307 | res = f(params) |
---|
308 | for item in res: |
---|
309 | sum += item*item |
---|
310 | return sum |
---|
311 | |
---|
312 | p = [param() for param in pars] |
---|
313 | out, cov_x, info, mesg, success = optimize.leastsq(f, p, full_output=1, warning=True) |
---|
314 | print info, mesg, success |
---|
315 | # Calculate chi squared |
---|
316 | if len(pars)>1: |
---|
317 | chisqr = chi2(out) |
---|
318 | elif len(pars)==1: |
---|
319 | chisqr = chi2([out]) |
---|
320 | |
---|
321 | return chisqr, out, cov_x |
---|
322 | |
---|