1 | """ |
---|
2 | @organization: ScipyFitting module contains FitArrange , ScipyFit, |
---|
3 | Parameter classes.All listed classes work together to perform a |
---|
4 | simple fit with scipy optimizer. |
---|
5 | """ |
---|
6 | #import scipy.linalg |
---|
7 | import numpy |
---|
8 | |
---|
9 | from Loader import Load |
---|
10 | from scipy import optimize |
---|
11 | |
---|
12 | from AbstractFitEngine import FitEngine, sansAssembly |
---|
13 | |
---|
14 | class fitresult: |
---|
15 | """ |
---|
16 | Storing fit result |
---|
17 | """ |
---|
18 | calls = None |
---|
19 | fitness = None |
---|
20 | chisqr = None |
---|
21 | pvec = None |
---|
22 | cov = None |
---|
23 | info = None |
---|
24 | mesg = None |
---|
25 | success = None |
---|
26 | stderr = None |
---|
27 | parameters= None |
---|
28 | |
---|
29 | class ScipyFit(FitEngine): |
---|
30 | """ |
---|
31 | ScipyFit performs the Fit.This class can be used as follow: |
---|
32 | #Do the fit SCIPY |
---|
33 | create an engine: engine = ScipyFit() |
---|
34 | Use data must be of type plottable |
---|
35 | Use a sans model |
---|
36 | |
---|
37 | Add data with a dictionnary of FitArrangeDict where Uid is a key and data |
---|
38 | is saved in FitArrange object. |
---|
39 | engine.set_data(data,Uid) |
---|
40 | |
---|
41 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
42 | @note: Set_param() if used must always preceded set_model() |
---|
43 | for the fit to be performed.In case of Scipyfit set_param is called in |
---|
44 | fit () automatically. |
---|
45 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
46 | |
---|
47 | Add model with a dictionnary of FitArrangeDict{} where Uid is a key and model |
---|
48 | is save in FitArrange object. |
---|
49 | engine.set_model(model,Uid) |
---|
50 | |
---|
51 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
52 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
53 | """ |
---|
54 | def __init__(self): |
---|
55 | """ |
---|
56 | Creates a dictionary (self.fitArrangeDict={})of FitArrange elements |
---|
57 | with Uid as keys |
---|
58 | """ |
---|
59 | self.fitArrangeDict={} |
---|
60 | self.paramList=[] |
---|
61 | def fit(self ,handler=None, qmin=None, qmax=None): |
---|
62 | # Protect against simultanous fitting attempts |
---|
63 | #if len(self.fitArrangeDict)>1: |
---|
64 | # raise RuntimeError, "Scipy can't fit more than a single fit problem at a time." |
---|
65 | # fitproblem contains first fitArrange object(one model and a list of data) |
---|
66 | #list of fitproblem |
---|
67 | |
---|
68 | fitproblem=[] |
---|
69 | for id ,fproblem in self.fitArrangeDict.iteritems(): |
---|
70 | print "ScipyFitting:fproblem.get_to_fit() ",fproblem.get_to_fit() |
---|
71 | if fproblem.get_to_fit()==1: |
---|
72 | fitproblem.append(fproblem) |
---|
73 | if len(fitproblem)>1 : |
---|
74 | raise RuntimeError, "Scipy can't fit more than a single fit problem at a time." |
---|
75 | return |
---|
76 | elif len(fitproblem)==0 : |
---|
77 | raise RuntimeError, "No Assembly scheduled for Scipy fitting." |
---|
78 | return |
---|
79 | |
---|
80 | listdata=[] |
---|
81 | model = fitproblem[0].get_model() |
---|
82 | listdata = fitproblem[0].get_data() |
---|
83 | # Concatenate dList set (contains one or more data)before fitting |
---|
84 | #data=self._concatenateData( listdata) |
---|
85 | data=listdata |
---|
86 | #Assign a fit range is not boundaries were given |
---|
87 | if not hasattr(data, 'image'): |
---|
88 | if qmin==None: |
---|
89 | qmin= min(data.x) |
---|
90 | if qmax==None: |
---|
91 | qmax= max(data.x) |
---|
92 | else: |
---|
93 | if qmin==None: |
---|
94 | qmin= numpy.min(data.image) |
---|
95 | if qmax==None: |
---|
96 | qmax= numpy.max(data.image) |
---|
97 | functor= sansAssembly(self.paramList,model,data) |
---|
98 | out, cov_x, info, mesg, success = optimize.leastsq(functor,model.getParams(self.paramList), full_output=1, warning=True) |
---|
99 | chisqr = functor.chisq(out) |
---|
100 | |
---|
101 | if cov_x is not None and numpy.isfinite(cov_x).all(): |
---|
102 | stderr = numpy.sqrt(numpy.diag(cov_x)) |
---|
103 | else: |
---|
104 | stderr=None |
---|
105 | if not (numpy.isnan(out).any()) or ( cov_x !=None) : |
---|
106 | result = fitresult() |
---|
107 | result.fitness = chisqr |
---|
108 | result.stderr = stderr |
---|
109 | result.pvec = out |
---|
110 | result.success =success |
---|
111 | |
---|
112 | return result |
---|
113 | else: |
---|
114 | raise ValueError, "SVD did not converge"+str(success) |
---|
115 | |
---|
116 | |
---|
117 | |
---|
118 | |
---|
119 | |
---|