[aa36f96] | 1 | |
---|
| 2 | |
---|
[792db7d5] | 3 | """ |
---|
[aa36f96] | 4 | ScipyFitting module contains FitArrange , ScipyFit, |
---|
| 5 | Parameter classes.All listed classes work together to perform a |
---|
| 6 | simple fit with scipy optimizer. |
---|
[792db7d5] | 7 | """ |
---|
[61cb28d] | 8 | |
---|
[88b5e83] | 9 | import numpy |
---|
[511c6810] | 10 | import sys |
---|
[7705306] | 11 | from scipy import optimize |
---|
| 12 | |
---|
[b2f25dc5] | 13 | from sans.fit.AbstractFitEngine import FitEngine |
---|
| 14 | from sans.fit.AbstractFitEngine import SansAssembly |
---|
[511c6810] | 15 | from sans.fit.AbstractFitEngine import FitAbort |
---|
| 16 | |
---|
[61cb28d] | 17 | |
---|
[e0072082] | 18 | class fitresult(object): |
---|
[48882d1] | 19 | """ |
---|
[aa36f96] | 20 | Storing fit result |
---|
[48882d1] | 21 | """ |
---|
[c4d6900] | 22 | def __init__(self, model=None, param_list=None): |
---|
[89f3b66] | 23 | self.calls = None |
---|
| 24 | self.fitness = None |
---|
| 25 | self.chisqr = None |
---|
| 26 | self.pvec = None |
---|
| 27 | self.cov = None |
---|
| 28 | self.info = None |
---|
| 29 | self.mesg = None |
---|
| 30 | self.success = None |
---|
| 31 | self.stderr = None |
---|
[e0072082] | 32 | self.parameters = None |
---|
| 33 | self.model = model |
---|
[c4d6900] | 34 | self.param_list = param_list |
---|
[d603001] | 35 | self.iterations = 0 |
---|
[e0072082] | 36 | |
---|
| 37 | def set_model(self, model): |
---|
[aa36f96] | 38 | """ |
---|
| 39 | """ |
---|
[e0072082] | 40 | self.model = model |
---|
| 41 | |
---|
[90c9cdf] | 42 | def set_fitness(self, fitness): |
---|
[aa36f96] | 43 | """ |
---|
| 44 | """ |
---|
[90c9cdf] | 45 | self.fitness = fitness |
---|
| 46 | |
---|
[e0072082] | 47 | def __str__(self): |
---|
[aa36f96] | 48 | """ |
---|
| 49 | """ |
---|
[b2f25dc5] | 50 | if self.pvec == None and self.model is None and self.param_list is None: |
---|
[e0072082] | 51 | return "No results" |
---|
| 52 | n = len(self.model.parameterset) |
---|
[d603001] | 53 | self.iterations += 1 |
---|
[e0072082] | 54 | result_param = zip(xrange(n), self.model.parameterset) |
---|
[d603001] | 55 | msg = [" [Iteration #: %s] | P%-3d %s......|.....%s" % \ |
---|
| 56 | (self.iterations, p[0], p[1], p[1].value)\ |
---|
[b2f25dc5] | 57 | for p in result_param if p[1].name in self.param_list] |
---|
[c4d6900] | 58 | msg.append("=== goodness of fit: %s" % (str(self.fitness))) |
---|
| 59 | return "\n".join(msg) |
---|
[48882d1] | 60 | |
---|
[e0072082] | 61 | def print_summary(self): |
---|
[aa36f96] | 62 | """ |
---|
| 63 | """ |
---|
[e0072082] | 64 | print self |
---|
[88b5e83] | 65 | |
---|
[4c718654] | 66 | class ScipyFit(FitEngine): |
---|
[7705306] | 67 | """ |
---|
[aa36f96] | 68 | ScipyFit performs the Fit.This class can be used as follow: |
---|
| 69 | #Do the fit SCIPY |
---|
| 70 | create an engine: engine = ScipyFit() |
---|
| 71 | Use data must be of type plottable |
---|
| 72 | Use a sans model |
---|
| 73 | |
---|
| 74 | Add data with a dictionnary of FitArrangeDict where Uid is a key and data |
---|
| 75 | is saved in FitArrange object. |
---|
| 76 | engine.set_data(data,Uid) |
---|
| 77 | |
---|
| 78 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
| 79 | |
---|
| 80 | :note: Set_param() if used must always preceded set_model() |
---|
| 81 | for the fit to be performed.In case of Scipyfit set_param is called in |
---|
| 82 | fit () automatically. |
---|
| 83 | |
---|
| 84 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
| 85 | |
---|
| 86 | Add model with a dictionnary of FitArrangeDict{} where Uid is a key and model |
---|
| 87 | is save in FitArrange object. |
---|
| 88 | engine.set_model(model,Uid) |
---|
| 89 | |
---|
| 90 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
| 91 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
[7705306] | 92 | """ |
---|
[792db7d5] | 93 | def __init__(self): |
---|
| 94 | """ |
---|
[b2f25dc5] | 95 | Creates a dictionary (self.fit_arrange_dict={})of FitArrange elements |
---|
[aa36f96] | 96 | with Uid as keys |
---|
[792db7d5] | 97 | """ |
---|
[b2f25dc5] | 98 | FitEngine.__init__(self) |
---|
| 99 | self.fit_arrange_dict = {} |
---|
| 100 | self.param_list = [] |
---|
[c4d6900] | 101 | self.curr_thread = None |
---|
[511c6810] | 102 | self.result = None |
---|
[d9dc518] | 103 | #def fit(self, *args, **kw): |
---|
| 104 | # return profile(self._fit, *args, **kw) |
---|
[393f0f3] | 105 | |
---|
[e0072082] | 106 | def fit(self, q=None, handler=None, curr_thread=None): |
---|
[aa36f96] | 107 | """ |
---|
| 108 | """ |
---|
[89f3b66] | 109 | fitproblem = [] |
---|
[c4d6900] | 110 | for fproblem in self.fit_arrange_dict.itervalues(): |
---|
[89f3b66] | 111 | if fproblem.get_to_fit() == 1: |
---|
[393f0f3] | 112 | fitproblem.append(fproblem) |
---|
[89f3b66] | 113 | if len(fitproblem) > 1 : |
---|
[e0072082] | 114 | msg = "Scipy can't fit more than a single fit problem at a time." |
---|
| 115 | raise RuntimeError, msg |
---|
[a9e04aa] | 116 | return |
---|
[89f3b66] | 117 | elif len(fitproblem) == 0 : |
---|
[a9e04aa] | 118 | raise RuntimeError, "No Assembly scheduled for Scipy fitting." |
---|
| 119 | return |
---|
| 120 | |
---|
[89f3b66] | 121 | listdata = [] |
---|
[393f0f3] | 122 | model = fitproblem[0].get_model() |
---|
| 123 | listdata = fitproblem[0].get_data() |
---|
[792db7d5] | 124 | # Concatenate dList set (contains one or more data)before fitting |
---|
[e0072082] | 125 | data = listdata |
---|
[89f3b66] | 126 | self.curr_thread = curr_thread |
---|
[511c6810] | 127 | self.result = fitresult(model=model, param_list=self.param_list) |
---|
| 128 | self.handler = handler |
---|
| 129 | if self.handler is not None: |
---|
| 130 | self.handler.set_result(result=self.result) |
---|
[fd6b789] | 131 | #try: |
---|
[511c6810] | 132 | functor = SansAssembly(self.param_list, model, data, handler=self.handler, |
---|
| 133 | fitresult=self.result, curr_thread= self.curr_thread) |
---|
| 134 | |
---|
| 135 | try: |
---|
| 136 | out, cov_x, _, mesg, success = optimize.leastsq(functor, |
---|
[c4d6900] | 137 | model.get_params(self.param_list), |
---|
[3ab116f] | 138 | ftol = 0.001, |
---|
[c4d6900] | 139 | full_output=1, |
---|
| 140 | warning=True) |
---|
[511c6810] | 141 | except: |
---|
[9a608ed] | 142 | if hasattr(sys, 'last_type') and sys.last_type == FitAbort: |
---|
[511c6810] | 143 | if self.handler is not None: |
---|
| 144 | msg = "Fit Stop!" |
---|
| 145 | #self.handler.error(msg) |
---|
| 146 | self.result = self.handler.get_result() |
---|
| 147 | return self.result |
---|
| 148 | else: |
---|
| 149 | raise |
---|
| 150 | |
---|
[c4d6900] | 151 | chisqr = functor.chisq() |
---|
[fd6b789] | 152 | if cov_x is not None and numpy.isfinite(cov_x).all(): |
---|
| 153 | stderr = numpy.sqrt(numpy.diag(cov_x)) |
---|
| 154 | else: |
---|
[e0072082] | 155 | stderr = None |
---|
[511c6810] | 156 | |
---|
| 157 | if (out is not None) and not (numpy.isnan(out).any()) \ |
---|
| 158 | and (cov_x != None): |
---|
| 159 | self.result.fitness = chisqr |
---|
| 160 | self.result.stderr = stderr |
---|
| 161 | self.result.pvec = out |
---|
| 162 | self.result.success = success |
---|
[fd6b789] | 163 | else: |
---|
[511c6810] | 164 | msg = "SVD did not converge " + str(mesg) |
---|
| 165 | #handler.error(msg) |
---|
| 166 | return self.result |
---|
| 167 | |
---|
| 168 | |
---|
[e0072082] | 169 | |
---|
[d8a2e31] | 170 | |
---|
| 171 | |
---|
[c4d6900] | 172 | #def profile(fn, *args, **kw): |
---|
| 173 | # import cProfile, pstats, os |
---|
| 174 | # global call_result |
---|
| 175 | # def call(): |
---|
| 176 | # global call_result |
---|
| 177 | # call_result = fn(*args, **kw) |
---|
| 178 | # cProfile.runctx('call()', dict(call=call), {}, 'profile.out') |
---|
| 179 | # stats = pstats.Stats('profile.out') |
---|
| 180 | # stats.sort_stats('time') |
---|
| 181 | # stats.sort_stats('calls') |
---|
| 182 | # stats.print_stats() |
---|
| 183 | # os.unlink('profile.out') |
---|
| 184 | # return call_result |
---|
[9c648c7] | 185 | |
---|
[48882d1] | 186 | |
---|